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Abstract: Structured light with more controllable degrees-of-freedom (DoFs) is an exciting
topic with versatile applications. In contrast to conventional vector vortex beams (VVBs) with
two DoFs of orbital angular momentum (OAM) and polarization, a hybrid ray-wave structure was
recently proposed [Optica 7, 820 (2020)], which simultaneously manifests multiple DoFs such
as ray trajectory, coherent state phase, trajectory combination, besides OAM and polarization.
Here we further generalize this exotic structure as the astigmatic hybrid VVB by hatching a new
DoF of astigmatic degree. Importantly, the transverse topology varies with propagation, e.g. a
linearly distributed hybrid trajectory pattern can topologically evolve to a circularly polygonal
star shape, where the number of singularity changes from zero to multiple in a single beam. The
propagation-dependent evolution can be easily controlled by the astigmatic degree, including as
a vector vortex state such that different astigmatic trajectories have different polarizations. We
experimentally generate such beams from a simple laser with a special astigmatic conversion
by combined spherical and cylindrical lenses, and the results agree well with our theoretical
simulation. With our new structured light, the propagation-multiplexing multi-DoF patterns
can be controlled in a single beam, which can largely extend related applications such as
high-dimensional large-capacity optical communication, laser machining, and particle trapping.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Structured light has attracted increasingly attention for its diverse applications in both classical
and quantum optics, taking advantage of its customized distribution of intensity, phase, polar-
ization, orbital angular momentum (OAM), and other degrees-of-freedom (DoFs) [1–3]. In
particular, the emergence of vector vortex beams (VVBs) [4–6], as a vectorial combination of
polarization and OAM modes, has created amazing applications with on-demand DoF control,
e.g. high-speed laser machining of nano-structures [7–9], driving the microrobots [10], optical
tweezers for manipulating particles [11–13], high-precision metrology [14–16], kinematic sensing
[17,18], high-security encryption [19,20], large-capacity multi-channel quantum and classical
communications [21–25]. Therefore, it is highly topical today to generate versatile light beams
with more exotic structures and controllable DoFs. For example, VVBs can have more than two
DoFs, i.e. not only polarization and OAM, but also additional spatial structure, spin angular
momentum, anisotropy, coherence and time dynamics, etc [26–32].
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In contrast to conventional VVB manipulated by two DoFs, i.e. OAM mode and polarization,
the SU(2) geometric beam has recently demonstrated the capability of manipulating more DoFs
due to its unique structure of ray-wave duality (RWD) [33–37], which can be described by both
the geometric ray trajectories and coherent wave-packet. Such a geometric beam can be directly
generated from a laser cavity when the cavity geometry is precisely controlled into a frequency-
degenerate state that fulfills a periodic ray trajectory in laser oscillator [36–39]. Particularly,
for a SU(2) geometric beam, the corresponding periodic trajectories including a cluster of rays
under SU(2) symmetry, are described by a number of DoFs such as frequency-degenerate ratio,
trajectory combination and coherent-state phase [40]. After introducing OAM, in contrast to the
common vortex beams with a phase-singularity, the SU(2) vortex beams harness the structure of
multiple singularities, resulting into both center OAM and partial OAM [41–44]. Moreover, it
was discovered that finer structures on the light of each ray orbit in the geometric trajectory can
also be tailored, which hatched the multi-axis vortices structure [45]. Thus for a scalar SU(2)
vortex beam, many new DoFs were already manifested by its ray trajectories and multi-OAM
structures. Besides, the SU(2) vector vortex beams can further involve the polarization as a DoF.
Very recently, the hybrid SU(2) structure was proposed, which can combine two geometric beams
together and extend the DoFs to manipulate vectorial non-separable state of light [46]. In short,
the hybrid SU(2) VVB plays as an ideal candidate to meet the requirement of the development of
multi-DoF structured light.

In this paper, we propose a new kind of VVBs with astigmatic hybrid trajectory structure, which
introduces a new DoF, i.e. the astigmatic degree, in hybrid SU(2) geometric beams. Previously,
the transverse patterns of vortex geometric beams on various transverse planes are always similar
while rotating upon propagation. Here in our new astigmatic hybrid geometric beam, we show a
propagation-dependent transverse topology, e.g. it can gradually evolve from linearly distributed
orbits to circular polygonal star shapes during the beam propagation, revealing the complex OAM.
The propagation-dependent topology is manifested by the astigmatism controlled by combined
spherical and cylindrical lenses mode converter. We also realize the vector vortex state of the
astigmatic hybrid geometric beam, in which different trajectories can be tuned into different
polarized states by applying anisotropic gain crystal in the off-axis pumped degenerate cavity.
Importantly, in this new type of beam, the topological charges and vector singularities gradually
change from non-singularity to complex structures of multiple singularities upon propagation.
This exotic beam topology is extremely attractive in the cutting-edge topics of high-dimensional
vortices and longitudinally variable polarization optics, predicted by scientists very recently [47],
holding the promise for largely extending a myriad of fundamental physical studies and practical
applications of structured lights.

2. Experimental design

The experimental design includes two parts: the front-end structured light laser cavity and the
external astigmatic converter with combined spherical and cylindrical lenses. The structured light
laser is controlled to generate the planar geometric state of the vector hybrid SU(2) geometric
beam and the astigmatic converter is used to transfer the planar geometric beam into astigmatic
geometric beam with complex OAM and propagation-dependent topological charges, as shown
in Fig. 1, where planar trajectories are focused on a cylindrical lens by a spherical lens with
focal length f . Then the astigmatic beam evolves from planar geometric beam to circular vortex
geometric beam upon propagation after passing through the cylindrical lens.

When a laser cavity is precisely controlled into a special geometry that the ratio of transverse
and longitudinal mode frequency spaces is a prescribed rational number (the frequency-degenerate
state Ω = ω0/ωz = P/Q, where P and Q are coprime integers, ω0 and ωz are transverse and
longitudinal mode frequency spaces), the oscillation can fulfill a ray-like periodic trajectory
forming a closed path that is ever repeating back and forth [36]. The shape of trajectories and
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Fig. 1. Experimental design. The resonant cavity consists of a Nd:YVO4 crystal with
dichroic coating and output coupler. Planar ray oscillation would be excited by pump in
cavity. R is the radius of curvature of the output coupler. α is astigmatic degree and
α = π/4 selected here to illustrate the experimental design. Output planar ray trajectories
are focused on cylindrical lens by a spherical lens and then evolve into circularly polygonal
star shape gradually in propagation. The cases for (a) Q = 4 without hybrid structure; (b)
Q = 5 with hybrid structure; and (c) Q = 6 with hybrid structure, respectively. Pink and
light blue lines represent the clusters of ray trajectories for inner sub-beam with (ηNx, ηNy)

(η = cos2(2π/Q)/cos2(π/Q)) and outer sub-beam with (Nx, Ny) outside cavity, respectively.
Red and navy blue lines represent the inner and outer clusters of ray trajectories in cavity,
respectively.
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period of bounces are determined by the cavity length, cavity mirror curvatures, and the position
of the pump light. Thus in this case, the lasing beams have a preference to be localized on
the periodic ray trajectories [36]. We can use the off-axis pumping to generate the various
geometric beams coupled with the periodic trajectories [37]. Although ray-like, various rays are
coherent beams exhibiting a wave-like behaviour and the whole wave-packet can be described by
the formalism of SU(2) coherent states [48], illustrating the salient property of RWD [49,50].
Recently, it was already reported that two geometric beams can be generated together in a single
cavity as hybrid state [46], where the two trajectories have an overlapped location of inflection
points sharing the pumping spot (shown in Fig. 1(b),(c) for the two examples at |Ω = 1/5⟩ and
|Ω = 1/6⟩ states).

In our experiment of the geometric beam laser, a λ = 808 nm fiber-coupled laser diode (LD)
(FOCUSLIGHT, FL-FCSE08-7-808-200) was used as the pump source. With a telescope system
with magnification of about 1:1 constituted by two identical anti-reflective (AR) coated lenses
(focal length F = 25 mm), the pump light was focused into a c-cut Nd:YVO4 slice-like crystal
with dopant of 0.5 at.% and thickness of 5 mm, which was wrapped in a copper heat sink and
conductively water cooled at 18◦C. The outside surface of crystal was AR coated at 808 nm
and high-reflective coated at 1064nm and the inner surface AR coated at λ = 1064 nm. A
plane-concave mirror was used as the output coupler with the radius of curvature of 100 mm,
while the transmittance is 10% at 1064 nm for inner surface and AR coated for outer surface.

In contrast to the conventional astigmatic mode converter with two identical cylindrical
lenses that converts a HG mode into a LG mode carrying OAM [51–54], a form of astigmatic
transformation with combined spherical and cylindrical lenses has been proposed to convert more
general structured light with topological phase [55,56]. The output beam from the cavity was
focused by the spherical lenses to make the Rayleigh range zR equal to f and form a new waist at
a distance f in front of the cylindrical lenses [57]. The evolution of transmitted light is related
to the angle α between the output beam (in x-y coordinate) and the cylindrical lens (in x′-y′
coordinate) as shown in Fig. 1. In the following we will construct an analytic model to interpret
this astigmatic hybrid geometric beam from the perspective of ray trajectories including the
effect of α on longitudinally mode evolution and principle of vector astigmatic hybrid geometric
beam generation, further to tailor a novel vector astigmatic hybrid SU(2) geometric beam with
more controllable DoFs. Besides, it is worth noting that astigmatic optics are used not only as
mode converters, but also for detecting the topological charge of the OAM [58,59] and also for
visualization of the polarization state of VVBs [60].

3. Theoretical model

SU(2) coherent state, a quantum state with classical-resembling property, can be decomposed into

a superposition of eigenstate |K, M⟩ by SU(2) Lie algebra, as |ϕ⟩ = 1
2M/2

M∑︁
K=0

⎛⎜⎝
M

K
⎞⎟⎠

1/2

eiKφ |K, M⟩,

where K and (M − K) are number of bosons in the first and second modes of eigenstate |K, M⟩,
M is total number of bosons and ϕ is the coherent state phase [61]. The corresponding classical
analogy, SU(2) geometric beam with RWD, can be constructed just by replacing state |K, M⟩ with

a set of frequency-degenerate eigenmode as Φ = 1
2M/2

M∑︁
K=0

⎛⎜⎝
M

K
⎞⎟⎠

1/2

eiKφψn+pK,m+qK,l+sK , where

ψn+pK,m+qK,l+sK is frequency-degenerate eigenmode with p + q = Q and s = −P [36]. The
wave-packet of SU(2) geometric beam is coupled with classical trajectories, thus so-called SU(2)
geometric beam [35–39]. In this section, we would research the classical trajectories and the
corresponding wave-packet of hybrid SU(2) geometric beam, a superposition of two SU(2)
geometric beams with specific geometric relations firstly. Then a novel astigmatic hybrid SU(2)
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geometric beam with longitudinally variant topology is constructed by hatching a new DoF of
astigmatic degree α, which would evolve from hybrid planar geometric beam to hybrid vortex
(star-shaped) geometric beam in propagation for α = π/4. Besides, we would tailor a novel
longitudinally variant vector structured light, vector astigmatic hybrid SU(2) geometric beam, by
coupling various polarizations in two decomposed astigmatic SU(2) geometric beams.

3.1. Hybrid SU(2) geometric beam with ray-wave structure

Without loss of generality, we consider a stable plano-concave cavity consisting of a concave
mirror with radius of curvature R and a planar mirror for discussions. The structure of laser
beams mainly depends on the ratio P/Q. Without astigmatism, when the effective cavity length
L fullfills L = zR tan(πP/Q) where zR is Rayleigh range, the classical trajectories for SU(2)
geometric beam in frequency-degenerate cavity can be derived as [48,62]:{︄

xs(z) =
√︁

Nxw(z) cos[θs + ϕx ± θG(z)]

ys(z) =
√︁

Nyw(z) cos[θs + ϕy ± θG(z)]
, (1)

where θs = (2πs)(P/Q), s = 0, 1, 2, . . . , Q − 1 is running index of periodic geometric trajectories,
ϕx and ϕy are phase factors related to coherent state phase ϕ, transverse indices Nx and Ny

determining transverse scale in x- and y- directions, θG(z) Gouy phase, w(z) = w0
√︁

1 + (z/zR)

Gaussian beam waist parameter, zR = w2
0π/λ the Rayleigh range, λ the wavelength, + and −

represent the ray trajectories of forward and backward propagation, respectively.
Then we could obtain the wave-packet of hybrid SU(2) geometric beam from classical

trajectories Eq. (1) as [62]:

Φ(x̃, ỹ, z̃) =
Q−1∑︂
s=0

φs(x̃, ỹ, z̃), (2)

φs(x̃, ỹ, z̃) =
1
Q

G(x̃, ỹ, z̃)F(x̃, u±s )F(ỹ, v±s )ei(Nx+Ny)(2πs)P/Q, (3)

where G(x̃, ỹ, z̃) = π−1/2e−(x̃2+ỹ2)(1+iz̃)/2ei(Nx+Ny)θG(z), F(x̃, u±s ) = e−[(u±s )2+ |u±s |2−2
√

2u±s x̃]/2, F(ỹ, v±s ) =
e−[(v±s )2+ |v±s |2−2

√
2v±s ỹ]/2, x̃ =

√
2x/w(z) =

√
2Re(u±s ), ỹ =

√
2y/w(z) =

√
2Re(v±s ), z̃ = z/zR,

u±s (z) =
√

Nxe−i[θs+φx±θG(z)], v±s (z) =
√︁

Nye−i[θs+φy±θG(z)]. φs(x̃, ỹ, z̃) reveals that each classical
trajectory labeled s corresponds to a Gaussian wave packet. And it was demonstrated that
Φ(x̃, ỹ, z̃) is equivalent to SU(2) geometric beam in Supplement of [46], where the parameters’
relations between (Nx, Ny, ϕx, ϕy) and (n, m, ϕ) are as Nx ∝ n, Ny ∝ m [63], ϕx = ϕ/Q [46], ϕy
is not considered for planar state since Ny = 0 while OAM state requires |ϕx − ϕy | = π/2 for
forming the spatial ray trajectory [62]. Since the structure of SU(2) geometric beam is determined
by transverse indices (Nx, Ny) and coherent state phase ϕ, the corresponding cluster of classical
trajectories can be noted as {(xs, ys, z)}Nx,Ny,φ .

Classical trajectory offers us an intuitive tool to construct and tailor novel structured light
[46,64]. Recently a novel hybrid structured light has been proposed [46], a hybrid superposition
of two SU(2) vortex geometric beams with specific geometric relations: |ϕi − ϕj | = π/Q and
Ni/Nj = cos2(2π/Q)/cos2(π/Q) (i, j = 1, 2), where subscripts i, j correspond to two decomposed
beams of hybrid SU(2) geometric beam, respectively. The two decomposed beams can be
resonated in cavity with off-axis pumping simultaneously and form a star-shaped beam with exotic
vortex structure. The specific geometric relations reveal that the relation of the transverse indices
of two decomposed beams is linear as (Nx, Ny)i = η(Nx, Ny)j, η = cos2(2π/Q)/cos2(π/Q). Thus
the corresponding cluster of hybrid classical trajectories noted as {(xs, ys, z)}h can be expressed
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as
{(xs, ys, z)}h = {(xs, ys, z)}Nx,Ny,φ + {(xs, ys, z)}ηNx,ηNy,φ+π , (4)

where Q>4, since hybrid SU(2) geometric beam with Q ≤ 4 can not be resonated in cavity
simultaneously [46]. The decomposed beam with larger transverse indices has a larger scale
thus called outer sub-beam and the other one the inner sub-beam. Due to η<1 for Q>4, thus
{(xs, ys, z)}ηNx,ηNy,φ+π corresponds to the cluster of classical trajectories of inner sub-beam and
{(xs, ys, z)}Nx,Ny,φ corresponds to the cluster of trajectories of outer sub-beam, respectively.

The wave-packet of outer sub-beam can be obtained by substituting the classical tra-
jectories {(xs, ys, z)}Nx,Ny,φ into Eq. (2). Analogously, substituting the classical trajectories
{(xs, ys, z)}ηNx,ηNy,φ+π into Eq. (2) would lead to the wave-packet of inner sub-beam. Since hybrid
SU(2) geometric beam is the superposition of two decomposed beams with specific geometric
relations fundamentally, the wave-packet of hybrid SU(2) geometric beam can be obtained by
substituting the classical trajectories {(xs, ys, z)}h into Eq. (2) as:

Φh(x̃, ỹ, z̃) = ΦNx,Ny,φ(x̃, ỹ, z̃) + ΦηNx,ηNy,φ+π(x̃, ỹ, z̃), (5)

where ΦNx,Ny,φ(x̃, ỹ, z̃) and ΦηNx,ηNy,φ+π(x̃, ỹ, z̃) are wave-packets of outer and inner sub-beams,
respectively.

3.2. Astigmatic hybrid SU(2) geometric beam

Astigmatism was reported only in SU(2) geometric beam [45,57] and has never been researched
in hybrid SU(2) geometric beam. Hereinafter, we will derive a set of mathematical formulas
for characterizing the topological evolution of astigmatic hybrid SU(2) geometric beam in the
perspective of classical trajectories providing a physical insight in the picture of semi-classical
RWD [49,50]. Selecting z = 0 as the position of the cylindrical lens, the cylindrical lenses can make
a difference for Gouy phase in x′− and y′− axis labeled in Fig. 1 as θG,x′(z) = π/2 + tan−1( z−zR

zR
),

θG,y′(z) = tan−1( z+zR
zR

) [52,57]. In addition, Gaussian beam waist parameter in x′− and y′−

axis need to be modified as wx′(z) = w0

√︂
1 + ( z−zR

zR
)2, wy′(z) = w0

√︂
1 + ( z+zR

zR
)2 [57]. Since the

trajectories of output beam from cavity is located on a plane generally as shown in Fig. 1, the
parameters (Nx, Ny) for which can be selected as (N, 0). To facilitate the analysis of astigmatism,
a transformation of coordinates from (x, y) to (x′, y′) is required to perform beforehand as:⎡⎢⎢⎢⎢⎣

x′s
y′s

⎤⎥⎥⎥⎥⎦ = R(α)
⎡⎢⎢⎢⎢⎣
xs

0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cos(α) sin(α)

− sin(α) cos(α)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
xs

0

⎤⎥⎥⎥⎥⎦ , (6)

where α is the rotating angle between (x, y) and (x′, y′), as shown in Fig. 1. Thus the astigmatic
classical trajectories in (x′, y′) coordinate can be explicitly derived as:{︄

x′s(z) =
√

N cos(α)wx′(z) cos[θs + ϕx ± θG,x′(z)]

y′s(z) = −
√

N sin(α)wy′(z) cos[θs + ϕx ± θG,y′(z)]
, (7)

The mathematical expressions of astigmatic geometric beam have been derived since corre-
sponding expression in (x, y) coordinate requires only an inverse transformation as (xA

s , yA
s )

T =
R(−α)(x′s, x′s), where superscript ‘A’ is used to distinguish from non-astigmatic classical trajecto-
ries in Eq. (4) and superscript ‘T’ represents matrix transpose. Then we can obtain the wave
packet of astigmatic beams by substituting the astigmatic classical trajectories (x′s, y′s, z) into
Eq. (2) as Φ(x′s, y′s, z) (xs → x′s, ys → y′s), which is equivalent to the wave-packet of astigmatic

SU(2) geometric beam as Φ = 1
2M/2

M∑︁
K=0

⎛⎜⎝
M

K
⎞⎟⎠

1/2

eiKφψ ′
n+pK,m+qK,l+sK in which the eigenmodes are

just replaced by astigmatic eigenmodes (ψ → ψ ′) [45,57].
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Since the cluster of classical trajectories of astigmatic hybrid SU(2) geometric beam is equal
to a superposition of classical trajectories of inner and outer astigmatic beams, we can further get
the mathematical formulas of classical trajectories of astigmatic hybrid SU(2) geometric beam as{︁
(x′s, y′s, z)

}︁
h =

{︁
(x′s, y′s, z)

}︁
Nx,Ny,φ +

{︁
(x′s, y′s, z)

}︁
ηNx,ηNy,φ+π by substituting Eq. (7) to Eq. (4). Then

the corresponding wave-packet of astigmatic hybrid SU(2) geometric beam can be derived as
Φh(x′s, y′s, z) = ΦNx,Ny,φ(x′s, y′s, z)+ΦηNx,ηNy,φ+π(x′s, y′s, z) based on Eq. (5), whereΦNx,Ny,φ(x′s, y′s, z)
is wave-packet of astigmatic outer sub-beam and the other one the inner sub-beam, respectively.

Fig. 2. Classical trajectories with corresponding transverse modes for astigmatic
hybrid SU(2) geometric beam. The range z of classical trajectories is 0 − 5zR. The
transverse modes on top and bottom of subplots are intensity distributions at z = 100zR and
0, respectively. (a) α = 0 non-astigmatism essentially; (b) α = π/8; (c) α = π/4. The cases
for Q = 4 without hybrid structure and Q = 5, 6 with hybrid structure. Red and blue lines
represent the clusters of classical trajectories for inner and outer sub-beams, respectively.
(Colormap: darkness to brightness means 0 to 1 for intensity.)
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The classical trajectories and intensity distributions in (x, y) coordinate of astigmatic (hybrid)
SU(2) geometric beam are shown in Fig. 2 for (P, Q) = (1, 4), (1, 5) and (1, 6) respectively. In
order to provide a clear view of near field, the classical trajectories sketched in Fig. 2 only cover
the range 0 − 5zR before it expands too large in propagation. The transverse modes in the near
field (z = 0) and far field (z = 100zR) are attached in each subplot of Fig. 2. When α = 0,
classical trajectories are still located on a plane without astigmatism. When α = π/8, astigmatic
SU(2) geometric beam evolves from planar to elliptical multi-path beam in propagation with
longitudinally variant characteristics. When α = π/4, astigmatic planar geometric beam will
evolve to vortex multi-path beam at far field (z = 100zR). The parameter α modulates the
mode evolution longitudinally and provides a new DoF for structured light, having the potential
to offer an useful tool for longitudinally variant polarized optics. In addition, the classical
trajectories for (P, Q) = (1, 5) and (1, 6) can be decomposed into two groups of astigmatic
classical trajectories, one with smaller transverse indices (ηNx, ηNy) for red trajectories and
another with larger transverse indices (Nx, Ny) for blue trajectories, as shown in Fig. 3. And these
two decomposed astigmatic SU(2) geometric beams with specific geometric relations can be
resonated in cavity and modulated out simultaneously [46]. The principles about the generation
of astigmatic hybrid SU(2) geometric beam are shown in Fig. 3, where the red (inner) and blue
(outer) trajectories represent a smaller scale beam and larger one respectively. When α = π/4,
the astigmatic classical trajectories of planar SU(2) geometric beam (at z = 0) would diverge to
form a star-shaped distribution (at far field). Besides, the phase distribution of scalar astigmatic

Fig. 3. Generation principles for astigmatic hybrid SU(2) geometric beam. The
transverse modes on top and bottom rows are intensity distributions at z = 100zR and 0 in
subplots, respectively. The range z of classical trajectories is 0 − 5zR and α = π/4 selected
here. (a) Q = 5; (b) Q = 6. Red and blue lines represent the clusters of ray trajectories for
inner and outer sub-beams, respectively. (Colormap: darkness to brightness means 0 to 1 for
intensity.)
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hybrid geometric beam performs longitudinally variant singularity in propagation as shown in
Fig. 4. And a novel vector structured light with longitudinally variant polarization singularity is
constructed based on astigmatic hybrid SU(2) geometric beam in next subsection.

Fig. 4. Scalar astigmatic hybrid SU(2) geometric beam with longitudinally variant
phase singularities. (a) |Ω = 1/5⟩; (b) |Ω = 1/6⟩. The left column is the classical
trajectories of astigmatic hybrid SU(2) geometric beam in the range of z from 0 to 5zR and
α = π/4 selected. Red and blue lines represent the clusters of classical trajectories for inner
and outer sub-beams, respectively. The first, second and third columns are experimental
results, theoretical intensity and phase distributions at some transverse planes. The red line
is the boundary of the regions between severe and moderate phase variation. The subplots
on bottom row are partial enlarged details for phase distributions in white square labeled in
(a1)-(a4) and (b1)-(b4), respectively. (Colormap: darkness to brightness means 0 to 1 for
intensity and −π to π for phase.)

3.3. Vector astigmatic hybrid SU(2) geometric beam

In addition to longitudinally variant phase singularity, astigmatic hybrid SU(2) geometric beam
also offers us a potential way to construct an exotic longitudinally variant polarized structured
light by coupling various polarizations in inner and outer sub-beams, as an example:

|Φh⟩ = ΦNx,Ny,φ(x′s, y′s, z)|H⟩ + ΦηNx,ηNy,φ+π(x′s, y′s, z)|V⟩, (8)

where |H⟩ and |V⟩ represent horizontal and vertical polarizations, respectively. Besides,
the coupled polarizations could be generalized to other states such as circular and vertical
polarizations as shown in Fig. 5(a). Vector astigmatic hybrid SU(2) geometric beam has exotic
longitudinally variant singularities and topological phase, the polarization of which depends
on propagation parameter z. Two parameters, Θ1 = tan−1(|Ex |/|Ey |) and Θ2 = tan−1(Ex/Ey),
are defined to characterize the vector property of structured light [46], where Ex and Ey are
the horizontal and vertical components of structured light, respectively. The parameter Θ1
(varying from 0 to π/2) reveals the relative distribution of intensity of polarized component
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that Θ1 = 0, π/4, π/2 correspond to horizontal, circular and vertical polarization states. The
parameter Θ2 depicts the distribution of polarization singularities of the vector structured light
and would be reduced into phase for scalar field. The novel longitudinally variant polarization
property would extend structured light in applications such as optical tweezers and exploration
of manipulating technologies [47]. The experimental results and detailed discussion about
longitudinally variant structured light constructed by astigmatic hybrid SU(2) geometric beam
are presented in next section.

Fig. 5. Vector astigmatic hybrid SU(2) geometric beam with longitudinally variant po-
larization singularities. The range z of classical trajectories is 0−5zR and α = π/4 selected.
Red and blue trajectories correspond to inner sub-beam with circular polarization and outer
sub-beam with vertical polarization in (a) |Ω = 1/5⟩, and inner sub-beam with horizontal
polarization and outer sub-beam with vertical polarization in (b) |Ω = 1/6⟩, respectively.
The white arrows in bottom section represent orientation of the polarizer. The transverse
modes are hybrid planar SU(2) geometric beams at near field and hybrid SU(2) vortex
(star-shaped) geometric beams at far field. Subplots (a1),(a5),(b1),(b5) and (a3),(a7),(b3),(b7)
are experimental and theoretical intensities, respectively. Subplots (a2),(a6),(b2),(b6) and
(a4),(a8),(b4),(b8) are Θ1 and Θ2 distributions, respectively. (Colormap: darkness to
brightness means 0 to 1 for intensity, 0 to π/2 for Θ1, and −π to π for Θ2.)
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4. Results

4.1. Longitudinally variant phase singularities

The experimental results present transverse distributions of astigmatic hybrid SU(2) geometric
beam for (P, Q) = (1, 5) and (1, 6) at some planes, demonstrating the evolution from hybrid
planar SU(2) geometric beam at near field to hybrid vortex (star-shaped) geometric beam at far
field in Fig. 4. The corresponding theoretical intensity and phase distributions are attached in the
right columns of experimental results. The length of plane-concave cavity can be calculated by
L = R sin2(πP/Q), where R =100 mm is the radius of curvature of output coupler [36]. Thus
L ≈36 mm, 25 mm, for (P, Q) = (1, 5) and (1, 6), respectively. Since the outer sub-beam has
larger transverse indices than the inner sub-beam, the phase distribution in outer region varies
more frequently than in inner region, with red line labeling the boundary between these two
regions. Partial enlarged manifestations of white square in Fig. 4(a1)-(a4) and (b1)-(b4) are
shown in bottom section of Fig. 4, which clearly demonstrates that leap of phase variation across
the boundary. To a certain extent, the shape of red line would reveal the property of longitudinally
variant phase singularity, varying from irregular polygon at near field to star-shape at far field.
More intriguingly, astigmatic hybrid SU(2) geometric beam with various coupled polarizations
would have exotic vector property in the following subsection.

4.2. Longitudinally variant polarization singularities

We generate and study the property of longitudinally variant singularities and topological phase
of two vector astigmatic hybrid SU(2) geometric beams as examples shown in Fig. 5. The red
and blue symbols represent circular and vertical polarizations in Fig. 5(a), and horizontally and
vertical polarizations in Fig. 5(b). The white symbols represent the orientation of polarizer. The
experimental and theoretical transverse distributions are hybrid vortex (star-shaped) beams at far
field and hybrid planar beams at near field, respectively.

For the beam |Φh⟩ = ΦNx,Ny,φ(x′s, y′s, z)|L⟩ +ΦηNx,ηNy,φ+π(x′s, y′s, z)|V⟩ [Fig. 5(a)], the light field
localized on the inner trajectories is circularly polarized, and thus its intensity is independent
of orientation of polarizer; while the outer sub-beam is vertically linearly polarized, and thus
its intensity would vanish through the polarizer with horizontal orientation, and reach the
maximum with vertical orientation as shown in bottom section of Fig. 5(a). For the beam
|Φh⟩ = ΦNx,Ny,φ(x′s, y′s, z)|H⟩ + ΦηNx,ηNy,φ+π(x′s, y′s, z)|V⟩ [Fig. 5(b)], the light fields localized on
the inner and outer trajectories are orthogonally polarized. Thus the vector beam would be
reduced into a scalar astigmatic SU(2) geometric beam through a vertically or horizontally
oriented polarizer as shown in bottom section of Fig. 5(b). Figure 5(a2) and (b2) show the
distributions of Θ1 at far field clearly demonstrating the critical region of chaotic polarized states
along a star-shaped line. Distributions of Θ1 at near field are stripes as shown in Fig. 5(a6)
and (b6). The distributions of Θ2 manifest more refined topological information about vector
structured light, as shown in Fig. 5(a4),(a8),(b4),(b8). For vector beam |Φh⟩ shown in Fig. 5(a) at
far field, almost all the polarization singularities are located on the outer sub-beam region, as
shown in Fig. 5(a4), since Ex/Ey is a constant for light with circular polarization. For vector beam
|Φh⟩ shown in Fig. 5(b) at far field, consisting of inner and outer sub-beams with orthogonal
polarizations, the polarization singularities are distributed over the entire field, as shown in
Fig. 5(b4).

5. Discussion

Furthermore, astigmatic hybrid SU(2) geometric beam defined byΦh(x′s, y′s, z) can be decomposed
into a set of sub-beams φs(x′s, y′s, z) located on each classical trajectory, which has the potential to
tailor vector structured light with much more DoFs by manipulating each sub-beam φs(x′s, y′s, z).
Modulating the polarization of beams attached to each classical trajectory of astigmatic hybrid
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SU(2) geometric beam can generate a novel longitudinally variant vector beams as shown in
Fig. 6. Such vector structured light has more general controllable DoFs [40]. A generalized
vector astigmatic hybrid SU(2) geometric beam can be expressed as:

|Φh⟩ = (

Q−1∑︂
s=0

φs(x′s, y′s, z)|σ1,s⟩)Nx,Ny,φ + (

Q−1∑︂
s=0

φs(x′s, y′s, z)|σ2,s⟩)ηNx,ηNy,φ+π , (9)

where |σi,s⟩ (i = 1, 2, s = 0, 1, . . . , Q − 1) represents polarization of beams located on each
trajectory of astigmatic hybrid SU(2) geometric beam, respectively. For example, consider two
polarization states only and assume that there are only two values of σi,s, where σi,s = −1, 1
represents left-handed circle, and right-handed circular polarizations, respectively. Thus the
vector astigmatic hybrid SU(2) geometric beam would have 22Q vector states with longitudinally
variant singularities and topological phase. For a general case that there are n polarization
states, the vector astigmatic hybrid SU(2) geometric beam would have n2Q vector states. In
addition, the various polarizations coupled in each sub-beam are shown in Fig. 6. The white

Fig. 6. Vector astigmatic hybrid SU(2) geometric beam with complex coupled polar-
izations. The range z of classical trajectories is 0−5zR. Red and blue trajectories correspond
to inner and outer sub-beams. α = π/4 selected. (a) |Ω = 1/5⟩; (b) |Ω = 1/6⟩. The white
arrows in subplots (a1),(a5),(b1),(b5) represent polarizations coupled in each sub-beam.
The white arrows in bottom section represent orientation of the polarizer. The transverse
modes are hybrid planar SU(2) geometric beams at near field and hybrid vortex (star-shaped)
SU(2) geometric beams at far field. Subplots (a1),(a5),(b1),(b5) and (a3),(a7),(b3),(b7)
are theoretical intensity and phase distributions, respectively. Subplots (a2),(a6),(b2),(b6)
and (a4),(a8),(b4),(b8) are Θ1 and Θ2 distributions, respectively. (Colormap: darkness to
brightness means 0 to 1 for intensity, −π to π for phase, 0 to π/2 for Θ1, and −π to π for Θ2.)
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arrows in Fig. 6(a1)(a5)(b1)(b5) represent various polarizations coupled in sub-beams, leading to
flower-shape distributions with five (Fig. 6(a2)) and six (Fig. 6(b2)) petals of Θ1, respectively.
Polarizations coupled in each sub-beam of astigmatic hybrid SU(2) geometric beam is feasible and
significant to inspire more controllable DoFs [40]. The vector astigmatic hybrid SU(2) geometric
beams have almost unlimited potential in tailoring structured light with more controllable DoFs
in theory. Here we have realized the hybrid ray-wave beams at frequency-degenerate states of
|Ω = 1/5⟩ and |Ω = 1/6⟩. Notably, we expect to realize more complex fractional frequency-
degenerate states of general |Ω = P/Q⟩ to extend more controllable DoFs by improving the
precision of devices in the future work, which is of significance to further exploring the related
applications in longitudinally variant polarized optics, optical manipulation and communication,
etc.

6. Conclusion

In conclusion, we construct a novel type of structured light with an exotic ray-wave structure,
astigmatic hybrid SU(2) VVBs, by hatching an additional DoF of astigmatic degree α in
multi-DoF hybrid SU(2) geometric beam from the perspective of classical ray trajectories. The
astigmatic degree is presented to manifest seminal topology of complex OAM and polarization
in hybrid ray-wave structure. In contrast to conventional beam, our new structured light
beam has longitudinally-variant spatial twisted ray-wave structure and vector singularities upon
propagation, which can inspire explorations in the cutting-edge topics of high-dimensional vortices
and longitudinally variable polarization optics. We also design a convenient and compact device
for tailoring such high-dimensional vectorial structured light and generate various experimental
results in degenerate states |Ω = 1/5⟩ and |Ω = 1/6⟩, demonstrating the longitudinally variant
topology and singularities that well agree with our theoretical simulation. Furthermore, we
illustrate that astigmatic hybrid SU(2) VVBs unveil more controllable DoFs than any other
prior beams that are convenient for extending new applications for higher-dimensional optical
communication, laser machining, particle trapping and manipulation.
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