Optical Gating of Graphene on Photoconductive Fe:LiNbO₃

Jon Gorecki,‡,† Vasilis Apostolopoulos,‡ Jun-Yu Ou,‡ Sakellaris Mailis,† and Nikitas Papasimakis†
‡Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
†Department of Physics, University of Southampton, Southampton SO17 1BJ, U.K.

ABSTRACT: We demonstrate experimentally nonvolatile, all-optical control of graphene’s charge transport properties by virtue of an Fe:LiNbO₃ photoconductive substrate. The substrate can register and sustain photoinduced charge distributions which modify locally the electrostatic environment of the graphene monolayer and allow spatial control of graphene resistivity. We present light-induced changes of graphene sheet resistivity as high as ~370 Ω/sq (~2.6-fold increase) under spatially nonuniform light illumination. The light-induced modifications in the sheet resistivity are stable at room temperature but can be reversed by uniform illumination or thermal annealing (100 °C for 4 h), thus restoring graphene’s electrical properties to their initial, preillumination values. The process can be subsequently repeated by further spatially nonuniform illumination.

KEYWORDS: graphene, two-dimensional materials, reconfigurable electronics, field-effect, photoconductive, lithium niobate

G raphene, demonstrated to be the world’s first truly two-dimensional monolayer material in 2004 by Novoselov and Geim,1 has attracted intense research interest owing to its unique electrical and optical properties. Consisting of carbon atoms arranged in a two-dimensional hexagonal lattice, graphene exhibits a linear dispersion for electrons with the density of states vanishing at the Dirac point.2 In conjunction with the inherent high values of charge carrier mobility, these properties render graphene an appealing material for applications such as microelectromechanical systems (MEMS),3 flexible touch-screen electrodes,4,5 chemical sensing,6,7 membranes,8 and especially optoelectronic applications,9 including photodetection.10 Graphene has been shown to support strongly confined plasmonic excitations in the terahertz (THz)/infrared spectral (IR) range,11 which allows the realization of miniaturized tunable devices.12–14

The charge transport properties of graphene are typically controlled through chemical doping15 by electrostatic gating15 or by structuring. In the latter case, for example it is possible to create a band gap in graphene nanoribbons by patterning or unzipping of carbon nanotubes16–18 or by combination with other 2D lattices19 such as hexagonal boron nitride (hBN)20 and transition metal dichalcogenides (TMDs).21,22 In the case of electrostatic gating, a field-effect transistor (FET) configuration is usually employed, where graphene is placed on a Si/SiO₂ substrate acting as an insulated electrical backgate; the current transmitted through the device can then be altered by applying a gate voltage, which regulates the number of available charge carriers into graphene, thus modifying the sheet resistivity. However, such doping mechanisms require additional processing steps and/or do not provide substantial control over the spatial distribution of charge carriers. To this end, a number of light-assisted approaches have been put forward including photochemical effects,23–25 where irradiation leads to exchange of dopants between the atmosphere and graphene, and photo-oxidation of organic layers, resulting in nonreversible charge transfer.26 In addition, it has been shown that combining light illumination with an electrostatic gate can lead to charge exchange between graphene and the substrate.27–29 Finally, depositing graphene on substrates with ferroelectric and pyroelectric properties allows control either through local electrostatic fields30,31 or laser heating,32 respectively. Here we present an approach toward spatially resolved control of the charge transport properties of monolayer graphene that is both reversible and nonvolatile, allowing for electrostatic charge distributions to be written or erased in an all-optical fashion.

Our approach is based on an Fe-doped lithium niobate (Fe:LiNbO₃) substrate, an electro-optic photoconductor that has been studied extensively in the past as a holographic storage medium.33 LiNbO₃ is an artificial dielectric crystal that has found a multitude of uses in optoelectronics due to its combination of ferroelectric, pyroelectric, piezoelectric, electro-
optic (Pockels), photovoltaic, and photoelastic effects.34 LiNbO\textsubscript{3} exhibits a photorefraction effect;35 Fe ion impurities in the crystal act as photoexcited charge centers, supplying electrons to the conduction band, which are free to migrate in the lattice. Depending on their valence state, these impurities can act as donors or acceptors; thus by nonuniform illumination of the substrate photoexcited electrons diffuse away from the irradiated area to dark regions, where they become trapped in acceptor Fe3+ sites, creating a nonuniform charge distribution that is stable at room temperature over long periods of time (years).36 This ability to store photoinduced charge distribution locally, combined with the electro-optic effect that is inherent to the material, enabled the use of Fe:LiNbO\textsubscript{3} for the nonvolatile recording of holograms.33 Fe:LiNbO\textsubscript{3} for the nonvolatile recording of holograms,33 optoelectronic tweezers for manipulating nano-objects,37 and optically aligned liquid crystal devices.38 Here, we employ the photorefractive properties of Fe:LiNbO\textsubscript{3} to define the local electrostatic environment at the substrate surface using light. The schematic in Figure 1(a) illustrates the optical doping mechanism; nonuniform illumination of the substrate causes electron migration away from illuminated regions, creating a nonuniform surface charge distribution. This effect is capable of producing nonvolatile charge distributions of arbitrary shape, which can however be erased by uniform illumination or thermal annealing, which redistributes evenly the separated charge carriers. A graphene sheet on the surface of the substrate will experience an injection of charge carriers in response to the electrostatic environment of the Fe:LiNbO\textsubscript{3}; as the charge carriers are injected, the Fermi level of the graphene is significantly altered, modifying its electrical properties. Here, we demonstrate a nonvolatile ~2.6x increase of the sheet resistivity of chemical vapor deposition (CVD)-grown monolayer graphene, which is subjected to the electric field of the substrate’s local charge distributions. We show that the changes in the electrical properties of graphene are reversed by thermal annealing, and in fact literature suggests this behavior of Fe:LiNbO\textsubscript{3} can be repeated indefinitely.33 We propose that the optical doping mechanism demonstrated here will enhance the potential of graphene for remote sensing applications and rewritable electrical interconnects and will allow the realization of plasmonic devices defined by structured illumination, removing the need for lithographic patterning of graphene. Moreover, the doping method demonstrated here is expected to be compatible with a wide range of TMDs and other 2D materials and hence will be of interest for numerous electronics and optoelectronics applications, including light emission and detection, optically controlled FETs, and sensing.39−42

![Figure 1](image-url)

Figure 1. (a) Schematic illustration of the electrostatic environment in a graphene/Fe:LiNbO\textsubscript{3} composite under illumination. In the substrate, electrons photoexcited from Fe2+ centers to the conduction band are free to migrate in the lattice until being trapped by Fe3+ centers in the dark regions. This results in a nonuniform charge distribution in the substrate and subsequently in a spatially inhomogeneous electrostatic environment for the graphene layer, which in turn leads to inhomogeneous doping of the graphene layer. (b) Raman spectrum of graphene on a Fe:LiNbO\textsubscript{3} substrate exhibiting the graphene G peak at \(\sim 1580\) cm\(^{-1}\) corresponding to an in-plane vibrational mode, the 2D peak at \(\sim 2670\) cm\(^{-1}\) attributed to an overtone of the defect activated D peak (not pictured here), and the 2E lithium niobate peak at \(\sim 1750\) cm\(^{-1}\). Inset: Reflection mode optical microscopy image of the sample surface with deposited metallic electrodes. The dark regions between the electrodes correspond to the exposed parts of the (nonreflecting) graphene layer.

RESULTS AND DISCUSSION

For the purpose of our investigation we fabricated devices that consist of a uniform monolayer of CVD graphene, transferred to one of the polar surfaces (−z) of Fe:LiNbO\textsubscript{3} substrates. An array of gold metallic electrode pairs with varying spacing between them (see Methods) was fabricated on the graphene film. An optical microscopy image of the electrode arrangement is shown in the inset of Figure 1(b). Raman spectroscopy was used to characterize the graphene layer. The (\(\sim 2:1\)) 2D/G peak ratio, observed in a Raman spectrum (Figure 1(b)), which has been obtained in a position between the electrodes, indicates the presence of a single graphene monolayer.

To illustrate the optical gating of graphene on Fe:LiNbO\textsubscript{3}, the device was illuminated intermittently with alternating “bright” and “dark” periods (corresponding to “on” and “off” intervals in Figure 2, respectively). The resistance was measured at the end of each “bright” period and was monitored continuously during “dark” periods. The graphene-on-Fe:LiNbO\textsubscript{3} devices were illuminated uniformly using a low-intensity broadband light source (1 mW/cm\(^2\)). However, the metallic electrodes are opaque, leading to a nonuniform irradiation of the Fe:LiNbO\textsubscript{3} substrate. Here the area between electrodes was irradiated while the area under the electrodes remained dark. Current was not measured during illumination periods to avoid the applied potential voltage difference from influencing the migration of photoexcited electrons in the substrate (see Figure 2). During the measurement, a voltage of 0.1 V was applied across the electrodes and the current was recorded over a 300 s period while the device was kept in a light-proof box. The shaded areas of the graph correspond to the “bright” irradiation periods, while the clear sections correspond to “dark” periods. The graph shows that the resistance increases after each illumination period, and eventually, the effect reaches saturation with additional illumination producing negligible changes in the resistance as the photoelectron donor sites in Fe:LiNbO\textsubscript{3} are being depleted. Over the “dark” periods we observe negligible resistance changes (<1% or 2 Ω). After saturation the device is
thermally annealed in a convection oven at 100 °C for 4 h to reset it to its initial state.

The observed light-induced resistance changes can be associated with changes in the graphene layer, but also to changes in the contact resistance between the electrode pads and the measurement probe tips. To evaluate the effect of illumination on the graphene resistivity and decouple it from the contact resistance, we employed the transmission line method (TLM)43−45 where measurements are taken between electrodes with varying interelectrode spacing (see Methods). The measured resistance is plotted against the interelectrode spacing, and a straight line is fitted to the data, as shown in Figure 3(a). The slope of each line is used to calculate the resistivity of graphene, while the intercept with the vertical axis corresponds to the contact resistance. The TLM measurements were performed in the dark following irradiation. Successive irradiation/measurement steps were taken to generate a family of lines, as shown in Figure 3(a), each corresponding to a specific illumination fluence. The graph shows that with each successive illumination period the gradient of the line is increased, which suggests an increase of graphene resistivity, while the vertical axis intercept is close to the zero point for each fitted line, suggesting the contact resistance is small and unchanged by illumination. The average contact resistance is determined to be 1.7 Ω. Thermal annealing of the device (100 °C for 4 h) resets the device to its initial state, and the resistivity measurement sequence can be performed again. We repeated the illumination/annealing cycle three times.

The resistivity change as a function of the illumination fluence is shown in the plot of Figure 3(b). The sheet resistivity values in Figure 3 were calculated from the slope of the linear fits, shown in Figure 3(a), where the standard error of the linear fitting is used to calculate the errors in resistivity values. Data from all three cycles showed similar behavior, and each time resistivity returned to initial preillumination values after annealing (see Supporting Information Figure S1, where three individual cycles are shown). Average resistivity of the three illumination cycles is taken for each fluence dose and the errors propagated forward as shown by the error bars in Figure 3(b). The resistivity, ρ, follows an exponential increase as a function of illumination fluence, \(F \), which can be fitted by \(ρ = a(1 − \exp\left(\frac{−F}{F_0}\right)) + c \), where \(a = 373 \ Ω/\text{sq} \), \(F_0 = 6318 \ \text{mJ/cm}^2 \), and \(c = 231 \ Ω/\text{sq} \). This dependence suggests that the effect saturates to a resistivity value of 604 Ω/sq (2.6-fold increase from initial preillumination values), reaching \(e^{−1} \) of saturation value at a fluence of 6318 mJ/cm\(^2\). The secondary vertical axis, to the right, in the plot of Figure 3(b) provides the

Figure 3. (a) Resistance measured across electrode pairs with varying interelectrode distance \(d \), for four different values of irradiation fluence. Red squares: nonilluminated; blue triangles: 1800 mJ/cm\(^2\); black diamonds: 3600 mJ/cm\(^2\); green circles: 5400 mJ/cm\(^2\). Error bars are omitted because the standard error was 4 orders of magnitude smaller than the resistance. The straight lines in the plot correspond to linear regression fits. The slope of the lines is used to calculate the sheet resistivity, while the vertical axis intercept corresponds to 2 times the contact resistance. Standard error of the gradient is used to quantify the error in the calculated resistivity value. (b) Graphene sheet resistivity is measured via the TLM method as a function of illumination fluence for three independent illumination cycles. Each illumination cycle provides the device with a total fluence dose of 18 000 mJ/cm\(^2\), at which point further changes in resistivity are negligible. The sample is then reset via the thermal annealing process. The average resistivities of the three cycles are plotted against fluence, showing an inverse exponential trend. An inverse exponential curve is fitted via a regression method, revealing the effect saturates at a final resistivity of 604 Ω/sq, reaching \(e^{−1} \) of saturation value after a fluence dose of 6318 mJ/cm\(^2\). Errors in resistivity at each fluence value are calculated using the standard error of the fitted gradient, as illustrated in (a) for each illumination cycle and propagated forward to account for averaging between the three illumination cycles.
corresponding values for charge carrier density calculated from the measured resistivity values, electron charge, and using a mobility value of 3760 cm² V⁻¹ s⁻¹, as characterized by the supplier of the graphene monolayer. The graph indicates that the carrier density decreases by a factor of ~3 (corresponding to a modulation of carrier density 5.5 × 10¹² cm⁻²) with increasing illumination. A control device consisting of graphene on a Si/SiO₂ substrate with an identical (to the Fe:LiNbO₃ sample) electrode array was used to confirm that the changes in graphene resistivity are substrate-specific (see Supporting Information Figure S3), as a negligible increase of the resistivity was observed in the control sample as a function of irradiating fluence.

The experimental errors in resistivity values as plotted in Figure 3(b) are due in part to the TLM method, which combines measurements across different pairs of electrodes in different areas of the sample and therefore assumes identical contact resistance across the whole array of contacts and a uniform graphene sheet resistivity. However, we expect that both factors are subjected to spatial variation across the substrate, especially with polycrystalline CVD graphene. Furthermore, the deposition of electrodes and electrical probing can be detrimental to the graphene layer. Literature suggests accurate measurements of graphene sheet resistivity and charge carrier mobility can be obtained via terahertz time domain spectroscopy, and the process is noncontact and therefore nondestructive to the sample.

The observed change in the resistance as a function of nonuniform illumination is attributed to photoexcited electrons in Fe:LiNbO₃, which diffuse and become trapped in the dark, nonilluminated, regions (see schematic illustration of Figure 1(a)). This charge migration effect is well documented in Fe:LiNbO₃ and can produce space charge distributions that are stable in the dark for long periods of time (years). The response time of charge migration is a function of illumination intensity and can reach sub-picosecond time scales under pulsed illumination. Furthermore, the charge migration effect can create charge distributions of sub-micrometer dimensions. In particular, as we illuminate the Fe:LiNbO₃ crystal, we are moving electrons away from the illuminated area and under the electrodes where they become trapped. When the illumination stops, this process creates a positive region underneath graphene, which due to its metallic behavior draws electrons from the electrodes. Because CVD graphene generally exhibits residual hole doping due to the fabrication process, the injection of electrons due to the illumination will result in a net decrease in charge carrier density, and therefore the resistivity is expected to increase with increasing fluence. Assuming the graphene sheet follows a typical behavior where resistivity reaches a maximal value when charge carrier concentration is zero and decreases as carriers are injected; then starting with hole-doped graphene and a sufficiently strong optical doping effect, it may be possible to pass over the point of maximum resistivity and therefore begin to decrease the resistivity. The experimental results presented here suggest the optical doping method was not of sufficient strength to shift the graphene entirely from the hole to the electron-doped region. Practically this may be achieved by the use of an electrical top-gate as an additional method to control the charge carrier density of the device and bring the graphene sheet closer to its charge neutrality point. A top-gate could also be used to bring the graphene to the point of maximum rate of change of resistivity with respect to charge carrier concentration, thereby allowing the optical gating effect on resistivity to exhibit maximum responsivity. The photorefractive sensitivity of Fe:LiNbO₃ increases in blue and green regions of the visible spectrum, so it is reasonable to assume that if repeated with blue laser irradiation the experiment would achieve lower values than with broadband white light. Furthermore, the response time of the effect could be reduced by increasing the intensity of the irradiation, i.e., using a pulsed source.

The optical method to locally control the graphene doping that is introduced in this work can be readily extended to the control of graphene plasmons. Indeed, our results indicate that illumination can be employed to change the charge carrier concentration of graphene by a factor of 5.5 × 10¹² cm⁻², which in the absence of intrinsic doping corresponds to a change in the graphene Fermi level of 0.3 eV. Such effects are sufficient to practically switch “on” and “off” plasmonic excitations in graphene microstructures over the microwave and THz spectral ranges. Moreover, the optical control of the graphene spatial doping profile could allow the definition of graphene plasmonic resonators simply through nonuniform illumination of continuous graphene layers, alleviating the requirement for patterning.

We propose that the optical doping mechanism presented here is not limited to application with only graphene and would be a versatile tool for investigating doping effects in a wide range of emerging 2D materials. Since the initial identification of graphene by Geim and Novoselov, the study of 2D materials has grown rapidly into its own field, yielding materials with unique properties especially of interest in optoelectronics such as molybdenum disulfide, silicene, and black phosphorus, where a primary motivation for moving to 2D materials beyond graphene is to find materials that exhibit a band gap while still maintaining high values of charge carrier mobility. We expect that our approach will enable sensing applications, rewritable electrical interconnects, and the possibility of reconfigurable plasmonic structures defined by structured illumination.

CONCLUSIONS

We have demonstrated nonvolatile control of graphene electrical resistivity by virtue of optically driven charge redistribution in iron-doped lithium niobate. Graphene on Fe:LiNbO₃ was illuminated via a broadband white light source, achieving a maximum increase in resistivity of 370 Ω/sq (~2.6-fold increase), while a control sample of graphene on Si/SiO₂ showed a negligible change in electrical properties after illumination. For graphene on Fe:LiNbO₃ we calculated that the charge migration within the substrate can induce charge carrier density modulation on the order of 5.5 × 10¹²/cm² in the graphene sheet. We have conducted our experiments using broadband white light illumination; however the writing speed could be improved using blue or green laser light. The ability to optically control the electrical resistivity of graphene in a spatially resolved, nonvolatile, reversible manner will enable the investigation of the electronic properties of graphene and other emerging 2D materials.

METHODS

Fabrication. Monolayer CVD graphene grown on a copper substrate (obtained commercially from Graphenea) was transferred via a sacrificial polymer layer onto 2 cut Fe:LiNbO₃ (0.1 wt %). Metallic electrodes were created via thermal resistance evaporation of a Cr/Au layer (5/100 nm) with a shadow mask to partially obscure sections of
the substrate to create an array of electrode pads. The metallic electrodes were patterned with a varying interelectrode distance as required by TLM to decouple the contact and sheet resistivities. A similar procedure was followed for the fabrication of a control sample consisting of a graphene monolayer deposited on a Si/SiO₂ substrate.

Raman Characterization. Raman spectroscopy is used to characterize the graphene layer after deposition onto the substrate, using a 632 nm laser source to probe the graphene with a 50X objective lens. The Raman spectrum is shown in Figure 1(b), where the high ratio of heights of the 2D-G peak is a characteristic sign of monolayer graphene.⁵⁹ The broad peak centered around 1750 cm⁻¹ is due to luminescence of the Fe:LiNbO₃ substrate.

Electrical Characterization. An Agilent 4155c electrical parameter analyzer is used in a two-probe configuration to pass a voltage (sweeping from −0.1 V to +0.1 V with a step of 1 mV) while measuring the current passing through the circuit. The transition line method is used to determine sheet resistivity; the method requires an array of electrodes with varying interelectrode spacing, and each is assumed to have identical contact resistance. By measuring resistance across a pair of electrodes the total resistance is the sum of two contact resistances and a graphene resistance equal to the sheet resistivity across a pair of electrodes the total resistance is the sum of two contact resistances and a graphene resistance equal to the sheet resistivity multiplied by electrode width divided by electrode gap. By plotting the resistances and a graphene resistance equal to the sheet resistivity across a pair of electrodes the total resistance is the sum of two contact resistances and a graphene resistance equal to the sheet resistivity multiplied by electrode width divided by electrode gap. By plotting the total resistance against electrode gap the sheet and contact resistances can be decoupled, where contact resistance is half the value of the y axis intercept and sheet resistivity is the gradient multiplied by channel width divided by electrode length. A linear regression analysis is used to calculate the line of best fit; the standard error of the gradient is used as an estimate of the error in the sheet resistivity. All measurements are performed in a cleanroom environment to ensure stable control over temperature and humidity conditions. A broadband white light source is used for illumination of the substrate, delivering a power of 1 mW/cm² as measured at the surface of the sample, in the wavelength range 400–800 nm.

Thermal Annealing. After illumination devices are thermally annealed in a convection oven (100 °C for 4 h) to restore the Fe:LiNbO₃ substrate to a state of uniform charge distribution.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b02161.

Sheet resistivity measurements for three independent illumination cycles, contact resistance characterization, and control device measurements (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: j.gorecki@soton.ac.uk.

ORCID

Jon Gorecki: 0000-0001-9205-2294
Jun-Yu Ou: 0000-0001-8028-6130

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank F. Javier García de Abajo for stimulating discussions. We acknowledge financial support from the UK’s Engineering and Physical Sciences Council through the Teranet network (grant EP/M00306X/1). All data supporting this study are openly available from the University of Southampton repository at https://doi.org/10.5258/SOTON/D0521.

REFERENCES