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Abstract: It has been seen recently that when probing a nanoscale object to determine, for
example, size or position via light scattering, a significant advantage in measurement precision
can be gained from exploiting phase singularities in a topologically structured incident light field.
Here, we demonstrate that this advantage, derived from the dependence of scattered intensity
profiles on strong local (subwavelength-scale) intensity and phase variations in the incident field,
can be extended towards imaging applications: analysis of scattering patterns from arbitrary
binary gratings under superoscillatory illumination successfully resolves feature sizes down to
~M6.6 in single-shot measurements (a factor of 1.3x smaller than is achieved with plane wave
illumination), and ~AM10.5 in positionally-displaced few-shot measurements (which yields no
improvement in the plane wave case). Interestingly, there are circumstances in which more
complex objects are better resolved than simple structures, because interference effects increase
the information content of their scattering patterns.
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1. Introduction

Over recent decades, the spatial resolution achievable in far-field optical imaging has advanced
well beyond the classical Abbe diffraction limit of ~ A/2 (where A is the wavelength of light),
through the use of various deterministic, stochastic, and computational signal processing
techniques [1-12]. In positional and dimensional optical metrology, techniques based on
interferometric free-space light and evanescent field scattering or beam deflection have been
developed for tracking isolated (typically optically trapped) nanoparticles with sub-nanometric
precision [13—18], and a range of approaches to linear translation measurement with similar
precision, leveraging light fields structured at sub-wavelength scales (by metasurfaces, plasmonic
nanostructures, and spatial light modulators), have been reported [19-22]. Indeed, precision and
accuracy reaching the atomic scale (100-200 pm; < A/5000) have recently been demonstrated
in single-shot optical measurements based on the deep learning analyses of objects’ diffraction
patterns under illumination by topologically structured light [23—-25]. This is made possible
by: (a) constraining the problem (i.e., the parameter space within which the inverse scattering
problem must be solved, typically using a neural network [26]), e.g., to the retrieval of one,
or not more than a few, dimensional parameters from simple, well-defined objects (e.g., the
widths and separation of a pair of nano-rods [23], or the 1D position of a nanowire [24]); (b)
the fact that the Fisher information content of a nano-object’s diffraction pattern can be orders
of magnitude larger when it is illuminated with a topologically structured light field containing
phase singularities (i.e., high phase and intensity variations with deeply subwavelength scales),
as opposed to a plane wave [27].

Here, we examine the extent to which the advantage of topologically structured illumination
can be retained in the more challenging task of retrieving dimensional parameters from arbitrarily
structured objects, i.e., as the dimensionality of the parameter space grows and feature sizes
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decrease. From single-shot diffraction patterns of random, barcode-like, one-dimensional gratings
under superoscillatory illumination, a trained neural network consistently retrieves features down
to a size of ~A6.6 — a factor of 1.3x smaller than is achieved with plane wave illumination.
This advantage is extended to a factor of 2.2x in three-shot superoscillatory imaging (with
shot-to-shot object translation), whereby feature sizes down to ~A/10.5 are resolved. Somewhat
counterintuitively, it is found that retrieval success rates can be higher for more complex objects,
because interference between light scattered by a greater number of object features increases the
information content of the scattered field.

2. Methods

Measuring the position or displacement of a nanowire as reported in Refs. [24,25] is a task that
can be identically described as retrieving the dimensions of a double slit: i.e., the widths A and
B of slits on either side of the nanowire, under the constraint that A + B is constant. As target
objects for the present computational study, we consider random grating patterns comprising an
arbitrary number of transparent slits in an otherwise perfectly opaque, absorbing, zero-thickness
screen, illuminated with monochromatic light at a wavelength A =488 nm (Fig. 1). We generate a
set of 4096 different grating profiles, each 10 um long with 10 nm pixelation in the x direction and
1 ym wide in y, centered within a 40 um X 40 um illuminated screen area, as follows: In each case,
the first pixel is set as either transparent or opaque with equal probability; Subsequent pixels then
either adopt the same state or change to the opposing state with a probability randomly sampled
from a flat distribution of values from 0.01 to 0.11; After any change from transparent to opaque
or vice versa, a new change probability is selected. This ensures that feature sizes (meaning the
distance between any two changes of state - see Fig. 2(a)) within a single pattern, and across the
whole set of patterns, are uncorrelated but span a range of values of interest around and below
the classical diffraction limit (from ~A/2 down to A/50).

Incident

Input: previously-unseen
” scattering pattern
Output: grating profile

[0,0,0,0,1,1 .... 0,1,0,0,1]

Training: 2048
scattering patterns
+ grating profiles

Fig. 1. Dimensional profiles of the central (1 um wide) section of arbitrary, randomly
generated binary gratings are retrieved via a deep learning-enabled analysis of their trans-
mission scattering patterns. N.B. the schematic on the left of this figure is not to scale: in
practice, the incident field and the screen extend to a 40 pm X 40 um area much larger than
the (10 pm X 1 um) gratings. The zoomed section top right shows the central region of the
incident superoscillatory field profile to scale against a representative section of grating.

We assume the gratings are illuminated with an axially symmetric superoscillatory light
field [28,29], as used in a number of recent experimental studies [23-25], described by a
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linear combination of two band-limited, prolate spheroidal wave functions (see Supplement 1):
U(r/2) = [21.6585(r/2) + S3(r/A)], where r is the distance from the beam axis. This gives
an incident field profile with a central intensity peak of 0.3\ half-maximum width, flanked by
a series of phase singularities. Taking this to be centered on the gratings, their transmission
scattering patterns at a distance 2\ beyond the sample are calculated using the angular spectrum
method, assuming a 5.12 um X 1.28 um field of view with 10 nm pixelation (again, in keeping with
achievable magnification, and therefore effective pixel size, in experiments [23-25]). From these
scattering patterns we seek to retrieve the dimensional profile of the central 1 um-long section of
the grating, in the form of a 1 x 100 vector of zeros (=opaque) and ones (=transparent). To this
end, half of the set of 4096 scattering patterns and corresponding grating profiles, selected at
random, are used for training and validation of a convolutional neural network (see Supplement 1
for details of network architecture and training). The other 2048 scattering patterns are then used
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Fig. 2. (a)—(f) Ilustrative examples of perfect and imperfect grating profile retrieval with
superoscillatory illumination, for profiles of varying complexity, containing features of
varying size. Solid black lines are the true grating profiles, pink dashed lines are optically
retrieved profiles. (g) Retrieval success as a function of feature size for plane wave and
superoscillatory illumination. Points and error bars represent respectively the mean and
standard deviation of results from ten independently trained networks each tested on the
same set of 2048 previously unseen scattering patterns. [Line fittings have the form of
shifted Weibull distributions.]


https://doi.org/10.6084/m9.figshare.31033234
https://doi.org/10.6084/m9.figshare.31033234

Research Article Vol. 34, No. 2/26 Jan 2026/ Optics Express 2696 |
Optics EXPRESS A N \\\\\;

for testing, i.e., as unseen patterns for nominally unknown grating profiles. For comparison, the
exercise is repeated for plane wave (i.e., unstructured) illumination, using the same set of gratings
split into the same training/validation and testing subsets. In both cases, results are aggregated
over ten neural network training and testing cycles, whereby the random assignment of scattering
patterns to the training and validation subsets is different each time.

3. Results

Figures 2(a)—(f) show an illustrative selection of retrieved vs. actual grating profiles, including:
relatively simple and sparse profiles (a, b) —i.e., containing a small number of well-separated
feature ‘edges’ (transparent/opaque transitions); profiles containing few but closely-spaced edges
(c, d) —i.e., very narrow features, down to ~A/50 wide; and more complex profiles containing a
higher numbers of features with a variety of dimensions (e, f).

For direct imaging methods, the Rayleigh criterion is used to define resolution [30]. However,
this is not appropriate for a probabilistic multi-parameter retrieval problem, since retrieving a
feature of a certain size in one case does not imply that features of that size will be retrieved
in all cases (e.g., compare Figs. 2(c), (d)). As such, we quantify resolving power in terms of
the mean rate at which pixels are correctly retrieved, as a function of the size of the feature
within which they are located (Fig. 2(g)). Retrieval is all but perfect for feature sizes above the
classical ~A/2 diffraction limit, with both plane wave and superoscillatory illumination. Below
this, smaller features can be resolved in both cases because interference between light scattered
by different object features translates information about short length-scale structure into that
part of the angular spectrum which propagates into the far-field, and the neural network training
process provides a deconvolution mechanism to access that information. A retrieval success rate
>95% is maintained with plane wave illumination down to feature sizes of 95 nm (~A\/5.1), and
with superoscillatory illumination down to 74 nm (A/6.6).

The enhancement of resolution in the superoscillatory case, by a factor of ~1.3, is explained by
the greater Fisher information [31,32] content of the more complex scattered field, arising from
the presence of high local (subwavelength scale) intensity and phase variations in the incident
field interacting with the object, particularly in the vicinity of phase singularities [27]. The
increased complexity of the scattering pattern does however also make the retrieval problem
more challenging, and this is reflected in neural network learning rates: With superoscillatory
illumination, the network takes more epochs to converge but does so to a lower mean squared
error (see Supplement 1), thereby ultimately yielding higher retrieval success rates for smaller
feature sizes.

Greater superoscillatory advantage can be gained from the fact that diffraction patterns of
topologically structured light are highly sensitive to changes in the mutual positions of object
features (e.g., grating slit edges) and incident field features (esp. phase singularities). Indeed,
it has been demonstrated that this sensitivity can provide for optical localization of a known
single nano-object with picometric (i.e., atomic scale) precision at visible wavelengths [24,25].
Thus, for the purposes of parameter retrieval from arbitrary objects, scanning or multi-shot
recording of diffraction patterns (i.e., with known shot-to-shot translation between the incident
superoscillatory beam and the object) will provide additional information for neural network
training and subsequent retrieval of grating profiles from unseen scattering patterns. Figure 3
shows how retrieval performance is enhanced through the use of just two additional diffraction
patterns, recorded for incident beam displacements of +Ax (where Ax is equal to the distance
between the beam axis and the first singularity in the radial profile, 160 nm in the present case,
~M3 — see Fig. 1). In this case, the 95% threshold for successfully resolving grating features
extends down to ~A/10.5 (47 nm). No such enhancement of performance is possible under plane
wave illumination because scattering patterns in that case are invariant with respect to translation
of the incident field.


https://doi.org/10.6084/m9.figshare.31033234

Research Article Vol. 34, No. 2/26 Jan 2026/ Optics Express 2697 |

Optics EXPRESS N

100 - ' - T
X 1 3 I T 5 _lam==—== 1
] _ :
] 1
@ 95 - I
% --<2-= Single-shot superoscillatory !
E 90 A —e— 3-shot superoscillatory i
2 Plane wave :
E / /1.’_4 ,1,72

0 100 200

Feature size, nm

Fig. 3. Retrieval success as a function of feature size for single- and 3-shot superoscillatory
illumination of gratings. In the single-shot case, the incident beam is centered at (0,0). In the
3-shot case, additional diffraction patterns are recorded at beam positions +4x ~A/3. Points
and error bars represent respectively the mean and standard deviation of results from ten
independently trained networks. (Line fittings have the form of shifted Weibull distributions.
The trend line for plane wave illumination from Fig. 2 is overlaid for reference.)

Thus far, we have considered retrieval performance only as a function of feature size, regardless
to the complexity of the grating, i.e., the number of features within the 1 um retrieval window.
Interestingly, single-shot retrieval performance is found to be better — meaning smaller features
are retrieved with greater success — for more complex objects (Fig. 4).

Here, neural networks are trained and validated as before, using half of the full set of 4096
scattering patterns (encompassing all feature sizes and gratings of all complexity levels), then
tested separately on gratings defined as either ‘simple’ — presenting between one and three
features of any size within the retrieval window (i.e., 2-4 opaque/transparent transitions), or
‘complex’ — presenting four or more features (only ~6% of gratings present >8 features; none
present >12 features). This divides the test set into approximately equal numbers of unseen
scattering patterns for simple and complex gratings, enabling a statistically fair comparison
(~20% of grating profiles contain only a single edge or none, i.e., do not include a complete
‘feature’, and are therefore excluded from this comparison). We attribute the simple vs. complex
performance differential, which is greater for plane wave than for superoscillatory illumination,
to the fact that the flow of Fisher information from the object (grating) plane to the detection
plane is controlled by interference (as of course is optical power flow, but the two do not generally
coincide because their sources do not coincide [32,33]): Information from a given feature in
the object plane is better projected onto the detected intensity field (over a finite aperture in the
detection plane) when there are other features nearby [34]. The improvement in retrieval success
with grating complexity obviously cannot continue indefinitely: with finite detector resolution
and finite dataset size, and where increasing complexity equates to decreasing feature size (within
a finite retrieval window), there must come a point where the deconvolution mechanism fails.
Indeed, as shown in Fig. 2(g), retrieval success falls rapidly (regardless of grating complexity)
for feature sizes <\/10.
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Fig. 4. Retrieval success as a function of feature size for simple gratings [presenting 1-3
features within the 1 um retrieval window — orange points and trend lines] and complex
gratings [ >4 features — purple points and trend lines] for (a) single-shot plane wave, (b) single-
shot superoscillatory, (c) 3-shot superoscillatory illumination. Points and error bars represent
respectively the mean and standard deviation of results from ten independently trained
networks. Line fittings have the form of shifted Weibull distributions.

4. Conclusion

In summary, we have shown here that the advantages of topologically structured illumination
(over plane wave illumination), previously seen in scattering-based optical metrology, can be
maintained when the dimensional parameter space expands from that of a tightly-constrained
single value retrieval task to that of retrieving an unspecified number of parameters from a complex
object. Despite the increased complexity of the parameter estimation problem, neural networks
can establish a deconvolution algorithm which leverages an enhancement of information content
in scattering patterns derived from the interaction of strong local intensity and phase variations
in the incident field with nanometric features of the scattering object. Single-shot resolution
down to M6.6 is achieved in retrieval of random binary grating profiles under superoscillatory
illumination, improving to A/10.5 in few-shot imaging (beating plane wave illumination by a factor
of 2.2x). These results open a path to the use of topologically structured light for increasingly
complex nanoscale optical measurement and basic (e.g., binary object) imaging tasks.

The practical constraints on realizing this ‘superoscillatory advantage’, for gratings or any
other nanostructure, will lie in the accuracy of fabrication and ground truth dimensional labelling
of training samples (i.e., in the fidelity of lithographic manufacturing and resolution of electron
microscopic imaging), the accuracy and reproducibility of alignment between samples and the
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incident structured light field, and in detector shot noise. It has been shown experimentally
that forms of systematic noise manifesting at the image-to-image level (e.g., instrumental
thermomechanical fluctuation, even at scales much larger than the dimensions or displacements
being measured) can be very effectively excluded by suitable iteration of training data collection
[25], but shot noise occurs at the pixel-to-pixel level within each scattering pattern. Robustness
against the latter can be assessed by adding Poissonian noise to simulated scattering patterns
(normalized to a specified whole-dataset single-pixel maximum photon count - see Supplement 1):
in the presence of noise, the network converges to a mean squared error matching the ideal (noise-
free) case when said brightest-pixel photon count is greater than ~10° — a level commensurate
with the full well capacity of mid-range imaging sensors.
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