Contact resistance measurement of Ge$_2$Sb$_2$Te$_5$ phase change material to TiN electrode by spacer etched nanowire

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2014 Semicond. Sci. Technol. 29 095003
(http://iopscience.iop.org/0268-1242/29/9/095003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 152.78.38.1
This content was downloaded on 31/01/2017 at 09:20

Please note that terms and conditions apply.

You may also be interested in:

A nano-scale-sized 3D element for phase change memories
Hangbing Lv, Yinyin Lin, Peng Zhou et al.

Ga-doped indium oxide nanowire phase change random access memory cells
Bo Jin, Taekyung Lim, Sanghyun Ju et al.

One dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review
Samit K Ray, Ajit K Katiyar and Arup K Raychaudhuri

Controllable doping and wrap-around contacts to electrolessly etched silicon nanowire arrays
Jyothi S Sadhu, Hongxiang Tian, Timothy Spila et al.

Influence of fabrication steps on optical and electrical properties of InN thin films
Geeta Rani Mutta, Tommaso Brazzini, Laurence Méchin et al.

Volume-producible fabrication of a SiNW via crystalline wet etching of (1 1 0) silicon
Sung-Sik Yun, Sung-Keun Yoo, Sung Yang et al.

Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology
Haiyang Mao, Wengang Wu, Yulong Zhang et al.

Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscope
Fei Yang, Ling Xu, Jing Chen et al.

Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires
Alain Bosseboeuf, Pierre Etienne Allain, Fabien Parrain et al.
Contact resistance measurement of Ge$_2$Sb$_2$Te$_5$ phase change material to TiN electrode by spacer etched nanowire

R Huang1, K Sun1, K S Kiang1, R Chen1, Y Wang1, B Gholipour2, D W Hewak2 and C H De Groot

1Nano Research Group, Electronics and Computer Science, University of Southampton, UK
2Optoelectronics Research Centre, University of Southampton, UK

E-mail: rh3g09@ecs.soton.ac.uk

Received 21 March 2014, revised 29 May 2014
Accepted for publication 17 June 2014
Published 23 July 2014

Abstract

Ge$_2$Sb$_2$Te$_5$ (GST) phase change nanowires have been fabricated using a top-down spacer etch process. This approach enables controls over the dimension and location of the nanowires without affecting the electrical properties. Phase change devices based on these nanowires have been used to systematically investigate the contact resistance between GST phase change material and TiN metal electrodes. The specific contact resistance was found to be $7.96 \times 10^{-5} \, \text{Ω cm}^2$ for crystalline GST and $6.39 \times 10^{-2} \, \text{Ω cm}^2$ for amorphous GST. The results suggest that contact resistance plays a dominant role in the total resistance of GST memory device in both crystalline and amorphous states.

Keywords: contact resistance, phase change, nanowire, spacer etch

(Some figures may appear in colour only in the online journal)

1. Introduction

Phase change materials (PCMs) are characterized by a unique and varied range of properties well suited for data storage and as a result phase change random access memory (PCRAM) has emerged as a leading candidate for the next generation of non-volatile memory [1]. The miniaturization of each memory cell is one of the major driving forces in the development of denser and more power efficient memory devices. However, as the memory size scales down, the relative contribution of the contacts to the total resistance will increase, which can directly affect the memory performance. Although PCMs and memories have been extensively investigated in recent years, only a few studies focus on the contact properties between PCMs and metal electrodes [2, 3]. Hence, a better understanding of the contact resistance in phase change device, especially in nanoscale cells, will be beneficial for the improvement of scaling, power consumption and programming properties of future PCRAM cells.

Nanowire-based technology is a powerful approach to assemble memory devices in ultra-small scales for its sub-lithographic size and unique geometry. It provides the potential for highly scaled phase change memory devices and multilevel memory applications. Phase change nanowires based on different materials such as GeTe [4], GeSb [5], Ge$_2$Sb$_2$Te$_5$ (GST) [6–8], and In$_2$Se$_3$ [9] have been previously synthesized and demonstrated a nano-second level switching time at very low powers, suggesting that the nanowires could be ideal for data storage devices. In addition, this one-dimensional phase change nanostructure can also provide a valuable scientific research platform for understanding the material properties at the nanoscale. To date, most of the methods used to synthesize phase change nanowires are based on bottom-up technology such as thermal evaporation method under vapor-liquid-solid mechanism [7, 10] and metal organic chemical vapor deposition [9]. However, this technology suffers from disadvantages such as poor nanowire diameter/position control, non-CMOS-compatibility and poor reproducibility. On the contrary, a top-down technology offers better control over the fabrication process and is highly reproducible and CMOS-compatible. The conventional way for top-down nanowire fabrication is by e-beam lithography,
however, this introduces a high cost with low writing speeds compared with other lithographic techniques.

In this work, we use a spacer etch process to fabricate GST phase change nanowires. This spacer etch technique can be used as a low-cost alternative to e-beam lithography for sub-hundred nanometer nanowire fabrication [11]. Unlike bottom-up technology, it is compatible with current CMOS process and the geometry and location of the nanowires can be precisely controlled. Most importantly, it provides a feasible and systematic approach to study the contact resistance between the nanoscale GST material and the metal contact.

2. Experimental details

2.1. Fabrication of spacer etched nanowire

The overall fabrication process is described in figure 1. A 400 nm thermal SiO$_2$ was grown on a pre-cleaned Si wafer (figure 1(a)). This layer was patterned with a photolithography process using a pre-designed mask (figure 1(b)), followed by a reactive ion etching of the SiO$_2$ to create a trench with a depth of 100 nm (figure 1(c)). The photolithography was carried out using an EVG620TB with a positive resist Shipley 1813. The etching was performed by an OIPT Plasmalab 80+ with CHF$_3$ and Ar. After resist stripping, an amorphous GST layer with a thickness of 100 nm was deposited on the etched SiO$_2$ by RF sputtering in a Nano 38 system (Kurt J. Lesker, USA) from a target of the composition Ge$_2$Sb$_2$Te$_5$ at a power of 45 W (figure 1(d)). The SiO$_2$ trenches created in the previous process serve as a step for the following spacer etch. The GST nanowire can then be formed by an anisotropic etching process. Ion beam etching was chosen in this work to etch the GST as it provides high uniformity and reproducibility with limited overetch damage due to its physical etch process. The nature of the process and its non-selectivity results in the GST at the SiO$_2$ step forming the desired nanowire (figure 1(e)). In this work, the nanowires were formed using Ionfab ion beam etcher by Oxford Instrument Plasma Technology. The etch condition was set to a RF power of 700 W, a beam current of 300 mA, beam voltage of 500 V and an acceleration voltage of 400 V. Extra care has been given to control process temperature by setting the sample chuck to 5 °C and applying a helium flow for the heat transfer to avoid GST crystallization during the etch process.

2.2. Fabrication and characterization of nanowire devices

The nanowire-to-TiN structure devices were fabricated by depositing and patterning TiN electrodes on two ends of the SiO$_2$ trench by photolithography and lift-off processes. A negative nLOF AZ2070 resist was used in this photolithography process. This is followed by the deposition of the electrode film. Immediately before TiN film deposition, an Argon plasma treatment was given in the chamber to remove any native oxide and surface contamination on GST surface. Subsequently, 125 nm TiN film electrodes were deposited using medium frequency plasma assisted magnetron sputtering (Leybold Optics HELIOS Pro XL) at room temperature.
This process combines reactive middle frequency sputtering with an additional RF plasma source. During each rotation of the plate holding the substrate, a thin layer of Ti was deposited from dual magnetron metal targets (99.99% purity) using a power of 3000 W in an Ar atmosphere. The thin film was then transformed into a nitride layer by passing the substrate underneath the N₂ plasma of the RF source. The N₂ and Ar flow rates were maintained at 30 and 35 sccm, respectively, and a high drive speed of 180 rpm was applied to enhance the film uniformity. The TiN electrodes were then fabricated using an acetone lift-off process.

3. Results and discussions

3.1. Spacer etch nanowire

Figure 2(a) shows a cross-section scanning electron microscope (SEM) image of a sample after GST film deposition over the SiO₂ step. The GST layer can be identified on top of the thermal oxide layer and is about 110 nm in thickness. The GST film thickness on the sidewall was measured to be 50 nm and is reduced due to the non-conformity of the sputtering process. This region of the GST will eventually form the spacer nanowire after etching.

Figure 2(b) shows a cross-section SEM image of the sample after a 30 s etch. A clear decrease of the GST layer thickness from 100 nm to 55 nm can be observed. Additional etching of 20 s further decreased the film thickness while the GST along the sidewall remained untouched as shown in figure 2(c). After another 30 s etch, the GST on the planar surface has been completely removed (figure 2(d)), leaving a GST nanowire along the SiO₂ step. The dimensions of the nanowire was measured to be 50 nm × 100 nm (width × height) which match the GST film thickness on the sidewall and the SiO₂ trench depth, respectively, indicating that the nanowire dimensions can be precisely controlled by the fabrication process. The nanowire height is determined by the height of SiO₂ step and can be controlled during the RIE process. The nanowire width is tuneable through the thickness of the deposited GST layer. The nanowire length is determined by the length of SiO₂ trench.

The continuity of the nanowires was investigated by observation under optical microscope using differential interference contrast mode. Figure 3(a) shows a Nomarski micrograph of spacer etched GST nanowires. A clear contrast can be observed between the SiO₂ trenches and the GST nanowires adjacent to their boundaries. All nanowires appear to be continuous with no evidence of discontinuities. A high magnification SEM image of a single GST nanowire is shown figure 3(b). The width of the nanowire is measured to be 48 nm which matches the data obtained from the cross-section SEM. It is worth mentioning that the nanowire shows some roughness which is attributed to the sidewall line edge roughness of the SiO₂ trench. This could be further improved through a higher resolution photolithography process.
3.2. Contact resistance

3.2.1. Phase change property. Two-terminal devices were fabricated in order to study the electrical properties of the nanowires and contact resistances. Figure 4 shows a fabricated nanowire device with several parallel nanowires obtained from SiO2 trenches. It is obvious that two identical nanowires are formed within each SiO2 trench. Two ends of the nanowires were covered by TiN electrodes, leaving an active nanowire length of 20 μm. Different contact areas can be obtained by incorporating several SiO2 trenches into one device. It is worth mentioning that the contact area of this device cannot be calculated directly from the total surface area of all nanowires covered underneath the TiN electrodes as the distribution of current density is not uniform within this area and additional care has to be taken in calculating the actual contact area for this device. Here we used COMSOL to simulate the current distribution between the TiN electrodes and GST nanowires to determine the effective contact area. The results revealed that for each single nanowire, current flow from TiN electrodes to the nanowires were within an area of 75 nm × 150 nm away from the edge of the TiN electrodes. The actual contact area for one device can then be calculated from this effective contact area of each nanowire and the number of nanowires.

The current-voltage (I–V) characteristics of the devices were measured using a DC sweep on the two TiN electrodes by an Agilent B1500A semiconductor device analyzer attached to a Cascade probe station. The phase change property of the nanowires was characterized first to evaluate the potential degradation of the GST material during the ion beam etching process. A DC sweep from 0 to 10 V was carried out on amorphous (as-deposited) devices with a length of 20 μm. It is worth mentioning that this voltage is much lower than the threshold voltage and will not induce any switching behavior [12]. The same devices were then annealed in N2 ambient at 200 °C (above the crystalline temperature of GST) for 5 min to crystallize the GST nanowire. The annealed devices were subsequently characterized under the same DC sweep condition.

Figure 5 shows current/voltage measurement of devices with nanowires in parallel of 20, 50 and 100 before and after annealing, all with an effective length of 20 μm. Devices before the annealing (figure 5, solid lines) give low currents and the resistance are extracted to be about 200 MΩ for device with 20 NWs. Devices after the annealing (figure 5, dashed lines) give significantly high current and the extracted resistances was found to be about 130 MΩ for the same device, significantly lower than results before annealing. This gives a resistance ratio of around 10^3 between the as-deposited and annealed devices which is similar to that for other memory cells with similar architectures fabricated from these PCM [13]. This suggests that the phase change property was well retained during the etching process.

3.2.2. Contact resistance for crystalline GST. In order to study the GST-TiN interface property, the I–V characteristics are re-plotted on a linear scale. I–V curves of crystalline GST nanowires are shown in figure 6(a) and display a linear density distribution between the TiN electrodes and GST nanowires was used to determine the effective contact area. The results revealed that for each single nanowire, current flow from TiN electrodes to the nanowires were within an area of 75 nm × 150 nm away from the edge of the TiN electrodes. The actual contact area for one device can then be calculated from this effective contact area of each nanowire and the number of nanowires.

The current-voltage (I–V) characteristics of the devices were measured using a DC sweep on the two TiN electrodes by an Agilent B1500A semiconductor device analyzer attached to a Cascade probe station. The phase change property of the nanowires was characterized first to evaluate the potential degradation of the GST material during the ion beam etching process. A DC sweep from 0 to 10 V was carried out on amorphous (as-deposited) devices with a length of 20 μm. It is worth mentioning that this voltage is much lower than the threshold voltage and will not induce any switching behavior [12]. The same devices were then annealed in N2 ambient at 200 °C (above the crystalline temperature of GST) for 5 min to crystallize the GST nanowire. The annealed devices were subsequently characterized under the same DC sweep condition.

Figure 5 shows current/voltage measurement of devices with nanowires in parallel of 20, 50 and 100 before and after annealing, all with an effective length of 20 μm. Devices before the annealing (figure 5, solid lines) give low currents and the resistance are extracted to be about 200 MΩ for device with 20 NWs. Devices after the annealing (figure 5, dashed lines) give significantly high current and the extracted resistances was found to be about 130 MΩ for the same device, significantly lower than results before annealing. This gives a resistance ratio of around 10^3 between the as-deposited and annealed devices which is similar to that for other memory cells with similar architectures fabricated from these PCM [13]. This suggests that the phase change property was well retained during the etching process.
relation for all three different contact areas. This linear I–V curve indicates an Ohmic contact between crystalline GST nanowire and the TiN electrodes and hence can be analyzed using a modified transmission line model (TLM) method [14]. The TLM method is a well-known simple and reliable technique for measuring both the contact resistance at a metal/semiconductor Ohmic interface and the resistivity of the semiconductor. The traditional TLM measures the resistance of a thin film semiconductor, while in this work we modified this model to adapt to our nanowire devices. We assume that the other parasitic resistances such as the TiN layer to be negligible as the used TiN is much more conductive ($\rho_{\text{TiN}} = 85 \, \mu\Omega \, \text{cm}$ in this work) than both crystalline and amorphous GST. The total resistance (R_T) then only consists of the resistance of nanowire (R_{NW}) and the two GST-TiN electrode contacts (R_C) and can be written as:

$$R_T = R_{\text{NW}} + 2R_C = \frac{\rho_{\text{NW}}}{A_{\text{NW}}} \cdot l + 2 \cdot \frac{\rho_C}{A_C}, \quad (1)$$

where ρ_{NW} is the resistivity of GST in crystalline state; A_{NW} is the cross-section area of the nanowire devices which can be calculated from the cross-section of each nanowire and the number of nanowires, l is the length of nanowires which is determined by the distance between two TiN contacts as discussed above, R_C accounts for the specific contact resistance between GST nanowire and TiN electrode and A_C is the contact area.

TLM analyses were carried out using nine different combinations of the devices geometries with three different nanowire lengths (20 μm, 25 μm and 30 μm) and three different contact areas (20 NWs, 50 NWs and 100 NWs). For each combination, DC sweep measurements were made on several copies of identical devices. The total resistances were calculated from the linear fit of the I–V curve of each device. The average result for each combination is plotted in figure 6(b) with resistance against nanowire length. For three sets of devices with different contact areas, resistances obtained from three different nanowire lengths all display linear $R_T - l$ relations with pronouncedly positive slopes which further prove the validation of the TLM for this work. The interception of each linear trend line corresponds to the contact resistance for each contact area. It is evident that the contact resistance plays an important part in the total resistance and its contribution to R_T increases with an increasing nanowire numbers. The resulting relation of contact resistance and contact area is shown in figure 6(c). A linear relation between R_C and $1/A_C$ is observed which matches the relations indicated in equation (1). The specific contact resistance is $7.96 \times 10^{-5} \, \Omega \, \text{cm}^2$ from the linear fit. The resistances originating from the nanowires are extracted from the gradients of the linear fitted lines in figure 6(b) where each gradient accounts for the nanowire resistance per length. By plotting R_{NW}/l against $1/A_{\text{NW}}$ as shown in figure 6(d), another linear fit was observed and the GST resistivity was found to be $3.37 \times 10^{-2} \, \Omega \, \text{cm}$.

3.2.3. Contact resistance for amorphous GST. Unlike in the crystalline state, the I–V characteristics of the GST nanowire device in amorphous indicate nonlinear conductive behavior of amorphous GST with TiN electrode as shown in figure 7(a). Good linear fits are obtained for all devices with different contact areas in a $\ln(I) - V^{1/2}$ plot (not shown), which is explained well with the following equation of Schottky emission conduction mechanism [15]:

$$I = I_0 e^{\frac{qV}{kT} - \frac{\Phi}{kT}}, \quad (2)$$

where E is electrical field, q is the electronic charge, k is the Boltzmann’s constant, and T is absolute temperature. I_0 is known as the thermal stimulated current when no voltage is applied. The value of I_0 can be calculated from the intercept of each fitted line and has an expression of

$$I_0 = A^* A^* e^{-\Phi_B/kT}, \quad (3)$$

in which A is the contact area, A^* is Richardson’s constant and Φ_B is Schottky Barrier Height. Schottky barrier between crystalline and amorphous GeSb PCM has been suggested before [16]. Here this work proves the existence of Schottky barrier between the amorphous GST and TiN electrode. The value of Φ_B can be derived by linear fitting I_0 as a function of contact area A as shown in the inset of figure 7(a). A good fit was observed and the Schottky Barrier Height Φ_B was calculated to be $\sim 0.6 \, \text{eV}$. This suggests a noticeable contribution of the Schottky barrier at the amorphous GST/TiN interfaces to the overall resistance. Similar behavior has also been observed in other metal/semiconductor memory device [17]. The disappearance of the Schottky barrier upon annealing could be due to the annealing process which is believed to improve the Schottky contacts between metal and semiconductor contacts [18], or due to the band gap reduction from amorphous state to crystalline state [19].

In order to calculate the specific contact resistance between amorphous GST and TiN, we measured the total
resistance R_T under an applied voltage of 2 V. This voltage is small enough not to induce any switching or heating effect. The resultant R_T of different devices are plotted in figure 7(b). Good linear fittings against the nanowire length are observed for all three sets of devices. This suggests that TLM method is still valid and could be used in calculating the specific contact resistance and resistivity for amorphous GST under a small applied voltage. The specific contact resistance R_C versus contact area; the gradient is the specific contact resistance between TiN and crystalline GST; (d) nanowire resistance per length versus nanowire cross-section; the gradient is the resistivity of crystalline GST.

All values obtained from this work are summarized and compared with reported values in table 1. It should be mentioned that the data from this works are from nanowire devices whilst those in literature are from thin film devices. For the resistivity of c-GST, this work gives a consistent result with that in [3] and [20] and much lower than [19]. The discrepancy could be due to growth of GST under different conditions. In addition, the electrical conductance of nanowires is expected to be different from those of thin films and this could also play a role in the discrepancy. The resistivity of amorphous GST has a wide range. Lower values of a-GST resistivity have also been reported ranging from \sim100 to 300 Ω cm [21–23].

3.2.4. Proportion of R_C in R_T. The proportion of contact resistance to the total resistance can then be calculated using the values obtained in this work. It is worth mentioning that in this work the contact area A_C is not as same as the cross-
section area A of nanowires allowing for an independent extraction of both values. For a conventional vertical phase change memory structure where the two areas are identical, proportion of R_C to R_T can be calculated at different GST film thicknesses using values obtained in our work. Note that here the GST thickness in vertical structure corresponds to the nanowire length in lateral structure. The proportion of contact resistance to the total resistance in such device is displayed in figure 8 as a function of different GST film thicknesses. It is evident that contact resistance dominates the total resistance for film thicknesses that are smaller than 1 μm in both crystalline and amorphous states. This indicates that in actual memory devices, the change in resistance between two phases is predominately an interfacial effect.

Figure 7. (a) I–V curves of amorphous GST nanowire devices with 20, 50 and 100 nanowires; the inset is a linear fit of the thermal stimulated current as a function of contact area A; (b) total resistance R_T as a function of nanowire length under a 2 V applied voltage; the gradient and intercept of each linear fit represent nanowire resistance per length and contact resistance R_C, respectively; (c) contact resistance R_C versus contact area; the gradient is the specific contact resistance between TiN and amorphous GST; (d) nanowire resistance per length versus nanowire cross-section; the gradient is the resistivity of amorphous GST.

Table 1. Resistivity ρ of GST and specific contact resistance ρ_C of GST-TiN in both crystalline and amorphous phases, compared with previous reports.

<table>
<thead>
<tr>
<th>Reference</th>
<th>ρ (c-GST) (mΩ cm)</th>
<th>ρ (a-GST) (Ω cm)</th>
<th>ρ_C (c-GST) (μΩ cm2)</th>
<th>ρ_C (a-GST) (mΩ cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work (GST-TiN)</td>
<td>34</td>
<td>54.5</td>
<td>80</td>
<td>64 (at 2 V)</td>
</tr>
<tr>
<td>Roy et al (GST-TiW) [3]</td>
<td>20</td>
<td>805</td>
<td>3.8</td>
<td>95</td>
</tr>
<tr>
<td>Kato et al [19]</td>
<td>500</td>
<td>3000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Lee et al [20]</td>
<td>20</td>
<td>2000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A: not available.
4. Conclusions

A novel e-beam free, top-down fabrication process for a PCM nanowire is demonstrated using a spacer etch approach. According to the method, the dimensions and locations of the nanowires can be precisely controlled. It can be easily applied to other PCM and materials related to nanoelectronics. In addition, the contact resistance properties between nanowires and TiN metal contacts have been investigated. In amorphous state, a Schottky barrier of 0.6 eV between the interface of GST and TiN electrode is the main contributing factor to the total resistance of the devices. The specific contact resistance between GST and TiN electrode was found to be 7.96 × 10⁻⁸ Ω cm² in the crystalline state and 6.39 × 10⁻⁸ Ω cm² in the amorphous state under an applied voltage of 2 V. These values are similar to those between GST and TiW electrodes. This work suggested that the contact resistance plays a dominant role in the total resistance of GST memory device in both crystalline and amorphous states.

References