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Abstract. We theoretically analyse the Bragg spectroscopic interferometer
of two spatially separated atomic Bose–Einstein condensates that was
experimentally realized by Saba et al (2005 Science 307 1945) by continuously
monitoring the relative phase evolution. Even though atoms in the light-
stimulated Bragg scattering interact with intense coherent laser beams, we show
that the phase is created by quantum measurement-induced backaction on the
homodyne photocurrent of the lasers, opening the possibilities for quantum-
enhanced interferometric schemes. We identify two regimes of phase evolution:
a running phase regime observed in the experiment of Saba et al, which is
sensitive to an energy offset and suitable for an interferometer, and a trapped
phase regime, which can be insensitive to the applied forces and detrimental to
interferometric applications.
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1. Introduction

Bragg spectroscopy has become an established spectroscopic tool in ultracold atom
experiments [1–6]. In typical setups an intersecting pair of low-intensity pulsed laser beams
is used to excite atoms to higher momentum states. The momentum kick experienced by the
atoms corresponds to the recoil of a photon upon light-stimulated scattering between the two
laser beams. As the spontaneous scattering for off-resonant lasers is negligible and the photons
are only exchanged between the directed coherent laser beams, the momentum transfer of the
atoms can be measured for specific values of the energy and the momentum. In particular, in a
spectroscopic analysis of the many-particle properties of ultracold atoms it is sufficient in the
scattering process to describe the light beams classically.

In the experiments by Saba et al [7] the relative phase coherence between two
Bose–Einstein condensates (BECs) was measured by Bragg scattering atoms between two
condensate fragments. Previous Bragg spectroscopy experiments based on time of flight had
concentrated on directly detecting the atoms that were transferred to higher momentum states
by the laser beams. In the experiment by Saba et al [7], however, the strength of the Bragg
scattering was measured by monitoring the variations of light intensity in the laser beams
by homodyne detection. Due to the correspondence between the light-stimulated scattering of
photons between the laser beams and the atoms scattered between two momentum states, the
intensity fluctuations are directly proportional to the number of atoms scattered between the
condensate fragments.

Saba et al [7] measured the light intensity variations of the Bragg beams, which revealed
relative phase coherence between the condensates even when the BECs were independently
produced and possessed no a priori phase information. By theoretically analysing a continuous
atom detection process, it has been previously shown that the backaction of quantum
measurement of the atomic correlations [8–15], and analogous photon correlations [16, 17],
can establish a relative phase between two BECs even when they have ‘never seen each
other’ before. It has also been suggested that phase-coherent states of condensates may
naturally emerge as robust state descriptions due to dissipative interaction with the environment
[18, 19]. With regard to the Bragg spectroscopic interferometer of [7], the question we raise is:
how is the phase coherence between the two BECs created, given that the condensates interact
with coherent laser beams that can usually be described classically?

Here we analyse a model of the experimental detection scheme [7], illustrated in figure 1,
and show that the phase coherence can be built up by continuously monitoring the photocurrent
obtained by a homodyne measurement that describes the intensity fluctuations of the laser
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Figure 1. Our model of the Bragg interferometric measurement of the
relative phase between two distant BECs. The two BECs are described by
the macroscopic wavefunctions φb(r) and φc(r), and are illuminated by two
coherent laser beams. Bragg scattering imparts momentum to atoms from the
left condensate, transferring them to the state described by φk(r). After an
appropriate time the outcoupled atoms will overlap with the right condensate,
and the Bragg beams will drive Rabi oscillations between the two atomic clouds.
This establishes an optical weak link between the two BECs, and continuous
monitoring of the intensity fluctuations in the laser beams measures the phase
coherence between the BECs.

beams. We show the rapid establishment of a well-defined relative phase between two
independently produced BECs. We identify two distinct regimes of subsequent phase evolution:
a running phase and a trapped phase regime. In the running phase regime, the relative phase
grows linearly in proportion to the energy offset between the two condensate wells and could
be suitable for a weak force detection in interferometric applications [7]. In the trapped
phase regime, in the case of a very weak energy offset, the measurement process drives the
system close to a dark state where a destructive interference between different scattering paths
suppresses the intensity fluctuations of the lasers. In the trapped phase regime, the effect of the
energy offset on phase evolution is suppressed, potentially to the detriment of interferometric
applications.

Our analysis demonstrates how Bragg spectroscopy can be sensitive to subtle quantum
features of ultracold atom systems. Quantum measurement-induced backaction of photocurrent
detection on the relative phase coherence of BECs represents a spatially nonlocal entanglement
of the laser beams and the relative many-particle state of the atoms. Indeed, the location of
the photocurrent detection can be far away from the region of interaction between the coherent
laser beams and the atoms. Moreover, one Bragg pulse can be used to entangle the two spatially
isolated BECs. A second pulse may then be employed in optical readout of the subsequent
evolution dynamics of the measurement-established relative phase coherence between the
condensates. An energy offset between the two condensate wells between the subsequent pulses
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would result in a detectable phase shift providing potential interferometric applications [7].
Here the phase is determined by a continuous quantum measurement process opening the
possibilities for quantum feedback and control methods, e.g. in the generation of sub-shot-noise
phase-squeezed states [20, 21]. Such states may be useful in quantum-enhanced metrology for
the realization of a high-precision quantum interferometer overcoming the standard quantum
limit of classical interferometers [22–25]. Probe field response was also measured recently
in the Bragg spectroscopy of condensate excitations in a heterodyne-based detection system,
which was able to reach the shot-noise limit [26]. Previous theoretical studies of the effects of
continuous monitoring on light scattered from BECs have considered photon counting [16, 17],
e.g. in the preparation of macroscopic superposition states [17], and dispersive phase-contrast
imaging [27, 28], e.g. in the suppression of heating [28].

This paper is organized as follows. In section 2, we give a short review of the experimental
setup of Saba et al [7] and the relevant results for this work. We then introduce our basic
theoretical model. In section 3, we derive a stochastic differential equation which describes
the evolution of the system under the continuous measurement of the scattered light intensity.
In section 4, we present our numerical results with a physical interpretation. Finally, some
concluding remarks are made in section 5.

2. The model and the effective Hamiltonian

An interferometric scheme between two spatially isolated BECs was experimentally realized
in [7] without the need for splitting or recombining the two condensate atom clouds. The
method was based on the stimulated light scattering of a small fraction of the atoms, only weakly
perturbing the condensates and therefore representing an almost nondestructive measurement.
Two isolated BECs were prepared in the sites of an unbalanced double-well potential, and
illuminated by the same pair of Bragg beams. These beams outcoupled atoms from each
well, and the interference between such atoms provided a coupling between the BECs. When
outcoupled atoms from one condensate spatially overlapped the second, measurement of the
Bragg beam intensity was shown to be sensitive to the relative phase8 between the condensates.
In addition, the potential offset between the two wells gave rise to a difference in energies
δµ, which in turn led to a relative phase evolution 8(t)=8(0)+ δµ t/h̄. This was observed
as oscillations in the Bragg beam intensity of frequency ωosc = δµ/h̄, demonstrating that
monitoring the Bragg beam intensity directly measured the dynamical evolution of the relative
phase between the macroscopic wavefunctions.

In the experiment, a single Bragg pulse established a random relative phase between the
two independently produced BECs. If two successive Bragg pulses were applied to the same
BEC pair, the relative phase measured by the second pulse was correlated with that detected
by the first pulse, indicating that the interaction of the first Bragg beam with the atoms had
projected the system into a state with a well-defined relative phase between the condensates.

The key to the method is the weak link established between the BECs by the Bragg laser
beams that couple out small atomic samples from the condensates [29]. The coherently driven
population dynamics between the BECs is influenced by the relative phase coherence [30, 31],
and Bragg scattering may be understood as an interference in momentum space [32]. The
specific advantage of the Bragg spectroscopic interference scheme [7] is the nondestructive
nature of the detection process, potentially constituting a major advance for interferometric
applications since it allows one to probe the evolution of the phase coherence in time by a
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continuous measurement process [33–35]. It has also been argued that this setup can be viewed
as an analogue of homodyne detection for matter waves [36].

In order to analyse the continuous measurement process of Bragg spectroscopy, we
consider the system depicted in figure 1, which is analogous to the experimental setup of
Saba et al [7]. We assume that the two condensates are initially uncorrelated and that there
is no tunnelling between the two spatial regions. As in the experiment, an offset in the trapping
potential between the two condensates is accounted for by a difference in chemical potential,
δµ. The condensates are illuminated by two Bragg beams, which impart momentum, kicking
atoms out of the traps. The outcoupled atoms propagate from the left condensate to the right
and establish an optical weak link between the two macroscopic wavefunctions [29].

For simplicity, in the theoretical analysis we use a single-mode approximation for the
condensates and assume that all atoms in the left (right) condensate are in the state |b〉 (|c〉). The
atoms in the left (right) condensate are then described by the second quantized field operators
ψ̂L(r)= φb(r)b̂ (ψ̂R(r)= φc(r)ĉ), which fulfil the usual bosonic commutation relations. Here, b̂
(ĉ) annihilates an atom in the state |b〉 (|c〉) and φb,c(r) obey the Gross–Pitaevskii equation [37].

Atoms from the BEC in the left well in the state |b〉 are transferred by the Bragg beams
to the momentum state k = k1 − k2, where k j are the wavevectors of the Bragg beams. The
outcoupled atoms propagate with momentum k towards the right BEC in the state |c〉. We
take the wavefunction of the outcoupled atoms φk(r) to be the momentum shifted original
wavefunction

φk(r)= φb(r − rL)e
ik·(r−rL), (1)

where rL (rR) gives the position of the centre of the left (right) trap. We assume that the
momentum kick of the atoms is sufficiently strong, so that the essential characteristics of the
continuous quantum measurement process are not obscured by collisions with the remaining
trapped atoms, collisions among the outcoupled atoms, and the effect of the trapping potential.
We assume that enough time has passed such that the outcoupled atom cloud from the left
condensate completely overlaps the right condensate. We therefore neglect the time evolution
of the outcoupled cloud while flying from the left to the right trap. In our model, this evolution
leads to an additional phase factor which is inconsequential to our findings. We also take the
same functional form of the trapping potential for the atoms in the left and right condensates
such that φb(r − l)= φc(r)≡ φ(r), where l = rR − rL is the distance vector between the two
potential minima. With these assumptions we find for the effective Hamiltonian

Heff = HA + HAL + HEM, (2)

where

HA =

[
δµ+

h̄�2
1

1

]
ĉ†ĉ +

h̄�2
2

1
b̂†

k b̂k +
h̄�1�2

1
(ĉ†b̂k + b̂†

k ĉ) (3)

describes the Rabi oscillations between the outcoupled atoms and the atoms in the right
condensate due to the Bragg beams. Here � j are the Rabi frequencies of the Bragg beams,1 is
the detuning from the excited state |e〉 which couples the two-photon Raman transition between
|bk〉 ↔ |c〉 and the operator b̂k annihilates an outcoupled atom in the momentum shifted state
|bk〉 with wavefunction φk(r). Hamiltonian (2) is written in the reference frame of the Bragg
beams where we assume the two laser frequencies to be equal ω1 ≈ ω2 = ωL. The term

HEM = h̄
∑
λ

1λâ
†
λâλ (4)
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takes into account the electromagnetic (EM) vacuum energy, where we have used the standard
plane wave decomposition for the EM-field modes. Specifically, the positive frequency
component of the vacuum electric field amplitude reads

δÊ+(r, t)=

∑
λ

√
h̄ωλ
2ε0V

êλâλ(t)eikλ·r. (5)

Here λ labels a mode of the EM field at wavevector kλ, polarization êλ ⊥ kλ and frequency
ωλ = c|kλ|. The velocity of light is denoted by c, the quantization volume by V , the vacuum
permittivity is ε0 and 1λ = ωλ −ωL. The operator âλ annihilates a photon in mode λ. The
total electric field is the sum of the coherent Bragg laser fields E+

in, j(r) and the vacuum fields

δÊ+(r). The coherent part is responsible for the driving terms in (3), while δÊ+(r) provides the
coupling of the vacuum modes with the atomic dipoles. We consider off-resonant scattering
where the scattering rates for sufficiently large condensates are proportional to the amplitudes
of the macroscopically occupied modes due to Bose enhancement, and we neglect scattering to
other motional states of the atoms. The coupling between the vacuum modes and the atoms is
then given by

HAL = h̄
∑
λ

(â†
λ B̂λ + B̂†

λ âλ), (6)

where we have introduced the operator

B̂λ = [(Aλ1)
∗σ̂1 + (Aλ2)

∗σ̂2], (7)

with

σ̂1 = ĉ†ê, σ̂2 = b̂†
k ê , (8)

and, after adiabatic elimination, the excited state annihilation operator can be written as

ê =

(
�1

1
ĉ +

�2

1
b̂k

)
. (9)

We have defined

Aλj =

√
h̄ωλ
2ε0V

(
d−

j · êλ
) ∫

dr|φ(r)|2 e−i(k j −kλ)·r, (10)

where the factor outside the integral is the coupling strength between the atomic dipoles and
the EM-field mode λ [38]. Here the matrix elements of the dipole moment operator d̂ for the
transition are denoted by d−

1 = 〈c|d̂|e〉,d−

2 = 〈bk|d̂|e〉.

3. Continuous homodyne measurement

We consider the condensate and the outcoupled atomic cloud together with the driving fields as
an open quantum system and eliminate the vacuum EM-field modes. The aim of our treatment
is to compute the evolution of the reduced system under continuous measurement of the light
intensity of the Bragg beams. The intensity of the beam j is given by

I j = 2cε0〈Ê−

j (r, t)Ê+
j (r, t)〉. (11)
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Here the total electric field amplitude of each Bragg beam is given by the sum of the coherent
driving laser field and the field δÊ+

j (r, t) due to scattering in the direction of the beam j

Ê+
j (r, t)= E+

in, j(r)+ δÊ+
j (r, t). (12)

Assuming that the amplitude of the scattered field is small compared to the applied laser field,
the measured intensity is approximately

I j ' 2cε0(〈E−

in, j E
+
in, j〉 + 〈E−

in, jδÊ
+
j 〉 + 〈δÊ−

j E+
in, j〉), (13)

where the last two terms give rise to fluctuations in the intensity incident on the detector j .
We may now solve the intensity fluctuations by calculating the scattered field amplitude

from the effective system Hamiltonian. From the Heisenberg equation of motion for âλ, one
finds that

âλ(t)= âλ(0)e
−i1λt

− i
∫ t

0
dt ′ e−i1λ(t−t ′)

(
(Aλ1)

∗σ̂1(t
′)+ (Aλ2)

∗σ̂2(t
′)
)
, (14)

with 〈âλ(0)〉 = 0. Inserting (14) into (5) and defining q j = kLn − k j as the change of the
wavevector of light upon scattering with kL = ωL/c [39], we then obtain two contributions from
the vacuum field, one for each beam

δÊ+
j (r, t)'

k2
LeikLrD

4πε0rD
n × (n × d−

j )σ̂ j(t)
∫

dr′
|φ(r′)|2eiq j ·r′

. (15)

The spatial integral over the wavefunction φ(r′) enforces an approximate momentum
conservation, so that the photons are dominantly scattered into a cone centred at q j = 0 in the
direction of the laser beam j . In deriving (15) we made the expansion |r − r′

| = rD − n · r′, with
n being the unit vector that points from the scattering region to the detector, rD is the distance
between the detector and a representative point at the origin of the scattering region. Due to
the normalization of the wavefunction we finally find for the scattered electric field in the two
outgoing beams

δÊ+
j (r, t)=

k2
LeikLrD

4πε0rD
n × (n × d−

j )σ̂ j(t). (16)

The atomic operator associated with the spontaneous emission of a photon into beam j in (16)
is given by σ̂ j . The master equation which describes the evolution of the reduced density matrix
after elimination of the vacuum field modes then reads [40]

˙̂ρ(t)=
i

h̄
[ρ̂, ĤA] −

∑
j=1,2

γ j

2
(σ̂

†
j σ̂ j ρ̂ + ρ̂σ̂ †

j σ̂ j − 2σ̂ j ρ̂σ̂
†
j ). (17)

Here γ j is the rate of spontaneously scattered photons, and is related to the total spontaneously
scattered light intensity δ I = 2cε0〈δÊ−

j (r, t)δÊ+
j (r, t)〉 via [17]

1

h̄kLc

∫
d�r 2

Dδ I j = γ j〈σ̂
†
j σ̂ j〉, (18)

where the angular integral is over the scattering cone of beam j . The operators associated with
the light field amplitude of the beam j read

Ĉ j =
√
γ j(α j + σ̂ j), (19)
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where α j is proportional to the amplitude of the coherent laser beam with wavevector k j . The
intensity is then proportional to 〈Ĉ†

j Ĉ j〉. The leading contribution comes from the coherent
intensity ∝ γ j |α j |

2 (corresponding to the first term in (13)) and the intensity fluctuations are
dominated by the terms γ j(α j〈σ̂ j〉 + c.c.) (corresponding to the second and the third term
in (13)). Extending the treatment of Wiseman and Milburn [41] to our setup, one finds that
the evolution of the system under the continuous monitoring of light intensity can be described
by the stochastic differential equation

|ψ(t + dt)〉 =

1 −
i

h̄
ĤAdt +

∑
j

[γ j

2
σ̂

†
j σ̂ j dt + 2γ j X j dt + σ̂ j

√
γ j dW j

] |ψ(t)〉, (20)

where

X j =
1
2(σ̂ j + σ̂ †

j ). (21)

Here, dW j is a Wiener increment with zero mean 〈dW j〉 = 0 and 〈(dW j)
2
〉 = dt , which appears

as a result of the continuous measurement process. Keeping terms to lowest order in the
fluctuations, one finds an expression for the photocurrent in essence equivalent to (13)

iphot
j (t)= γ jα

2
j +α j(2γ j〈X j〉 +

√
γ j ξ j(t)). (22)

Here,

ξ j(t)=
dW j

dt
(23)

represents Gaussian white noise [41] and arises from the open nature of our quantum system.

4. Numerical results

In order to study the effect of the homodyne photocurrent measurements on the system, we
numerically integrate (20) using the Milstein algorithm [42]. As the initial state in the numerical
simulations we take a pure number state in each condensate, with no well-defined phase
between them, and the incident Bragg laser beams are taken to be classical coherent states.
The relative phase between the condensates as a function of time may then be calculated as
8(t)= arg(〈ĉ†b̂〉). We define a measure for the strength of the phase coherence between the
condensates by the absolute value of the normalized phase coherence

g(t)=
|〈ĉ†b̂〉|√

〈ĉ†ĉ〉〈b̂†b̂〉

. (24)

A value of g(t) close to 1 indicates a high degree of relative phase coherence, while condensates
with no relative phase information have g(t)' 0.

In figure 2, we plot the time evolution of the coherence and the relative phase for two
different values of the detuning 1. No well-defined relative phase exists at early times, the
coherence starts at zero and8(t) shows large random fluctuations with time. As the continuous
measurement proceeds the coherence builds rapidly, leading to a well-defined relative phase
with a stable value. Once established, we then see two different regimes of behaviour at
longer times. For large values of the detuning 1= 100γ1 we see a running phase behaviour:
once well established with a value which is random for each individual run, the phase grows
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Figure 2. Coherence g(t) as a function of time t in units of t0 = 2π h̄/δµ. The
simulation is done for a total of N = 100 atoms which are initially distributed
equally between the states |bk〉 and |c〉. Parameters were chosen to be c1 = c2 =

105/t0 and
√
�1�2 = 103/t0. The black solid line corresponds to1= 100c1 and

the red dashed line to 1= 10c1. In the inset we show the evolution of the phase
8(t) as a function of time t in units of t0.

linearly in time with a rate proportional to the difference in energies between the condensates
8(t)∼ δµ t/h̄. From (22) we note that the measured photocurrent from the two Bragg beams
is essentially proportional to the quadrature 〈X j〉 after subtracting the background current, and
the corresponding time evolution of 〈X j〉 is shown in figure 3. In the running phase regime, the
quadrature exhibits well-defined oscillations with frequency ωosc = δµ/h̄, and this corresponds
to the experimental measurements obtained by Saba et al [7]. Such oscillations thus give an
interferometric measurement of the relative phase evolution, sensitive to any accumulated phase
shift due to an energy offset between the distant condensates. An interferometer of this type
could be used, for example, to detect a weak force applied to one of the condensates.

Choosing a smaller value for the detuning 1= 10γ1, we find a very different long-time
behaviour. Once again the phase fluctuates as coherence is established, although this occurs on
a much faster timescale. This can be understood from the fact that the phase is established as
a result of the intensity fluctuations in the laser beams, which are enhanced by decreasing the
detuning 1. Unlike the running phase case, once firmly established the phase now locks to an
almost constant value near π . This trapped phase state has the two condensates almost entirely
out of phase, leading to destructive interference in the oscillations between the states |bk〉 and |c〉
and resulting in a state analogous to a dark state. The corresponding quadrature 〈X1〉 therefore
exhibits merely random fluctuations which would not be suited to an interferometric type
experiment. Note that although one would expect the amplitude of these random fluctuations
to be suppressed compared to the coherent oscillations of the running phase regime, and this
is indeed the case, the two different values of detunings used here do not allow such a direct
comparison in figure 3.
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Figure 3. Mean value of the quadrature 〈X1〉 as a function of time t . The black
solid line corresponds to 1= 100γ1 and the red dashed line to 1= 10γ1. The
other parameters are the same as in figure 3. The inset shows a magnified view
of the initial behaviour.

The two different regimes of behaviour resemble the ac-Josephson and self-trapping
behaviours seen in double-well condensates [43–45], although we emphasize that here coupling
occurs due to the nonlocal measurement process induced by the Bragg beams. The trapped
phase behaviour is more akin to a dark state however, due to the lack of any nonlinearity in
the Hamiltonian which is required for macroscopic self-trapping. The different regimes may be
understood if we assume that a well-defined phase and population can be associated with each
condensate, and neglect any processes other than those included in HA, leaving a two-mode
model similar to that considered in [43]. The trapped phase regime then occurs with a stable
relative phase difference of π when

δµ= 2h̄
�1�2

1

|z|
√

1 − z2
, (25)

where z = (Nk − Nc)/(Nk + Nc) is the relative population difference, where Nk(c) is the
population in state |bk〉(|c〉). The trapped phase regime therefore requires either δµ/h̄ ∼

�1�2/1 or a large population imbalance. This is in agreement with our results, where the
larger value of detuning has δµ/h̄ ��1�2/1, and the initial population balance is not extreme.
The trapped phase condition is then not satisfied and we observe a running phase behaviour akin
to the ac-Josephson effect. Note, however, that dissipation is vital for establishing the relative
phase in the first place, and has the effect of shifting the relative phase in the trapped regime
away from π in figure 2. The model (25) does not specify the role of spontaneous scattering
which determines the rate at which the system is driven towards the trapped phase state.

In the experiment by Saba et al [7], the system typically contained of the order of 106 atoms,
although the numbers outcoupled would be only a small fraction of this. Numerical simulations
in our basis for such large numbers are prohibitively slow, so here we have typically used a total
atom number of 100. Our results show no significant dependence on atom number however,
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and we expect our results to give a good qualitative comparison with the physics exhibited in
the experiment. We have so far discussed our results in dimensionless units; in order to give a
specific example we may take γ1,2 to be of the order of 2π × 10 MHz, for instance. Our results
then correspond to the values δµ/h̄ ∼ 2π × 630 Hz and

√
�1�2 ∼ 2π × 0.45 MHz.

Parameters used in the experiment by Saba et al [7] were δµ/h̄ ∼ 2π × 1 kHz, 1=

2π × 1 GHz,
√
�1�2 ∼ 2π × 0.45 MHz. This yields a ratio η ≡ 2h̄�1�2/(1δµ)∼ 0.4. In order

for the trapped phase regime to be observed the population imbalance would then be required
to satisfy z ≈ 0.92. In the experiment, the actual population in the momentum-shifted state
(|bk〉) that overlapped the second condensate (|c〉) was of the order of 2 × 104 atoms during the
coupling. The corresponding population imbalance was in excess of 0.96, and hence did not
satisfy condition (25) for the trapped phase behaviour. The observed running phase behaviour
in the experiment is therefore consistent with our model.

5. Concluding remarks

Bragg spectroscopy was used in [7] to measure the relative phase between two initially
uncorrelated BECs. By studying a simplified model containing the essential ingredients of
the experiment, we have demonstrated how the homodyne measurement process builds up
a coherent relative phase between the two condensates. This quantum measurement-induced
backaction entangles the two macroscopic many-body states even though the measurement
location can be far away from the region of interactions.

Following the establishment of a coherent phase, we have identified two distinct behaviours
under continual subsequent measurement. With a larger atom–laser detuning1 or a large initial
energy imbalance δµ, we reproduce the experimental findings of [7], with the measured photon
flux exhibiting oscillations at a frequency corresponding to the energy offset of the separated
condensates. In this case, once the coherence and a random-valued phase are established it
evolves linearly in time 8(t)∼ δµt/h̄. Measurable oscillations in the laser beam intensity
mean that this state has applications in quantum-enhanced interferometry, and the measurement
backaction could potentially be used further to implement feedback mechanisms [21]. By
choosing a smaller atom–laser detuning, we found instead that the system stabilized to a trapped
phase state with the condensate relative phase fixed at almost π , while the scattered light
intensity showed only random fluctuations. A semiclassical model can qualitatively describe the
difference between these two regimes, with the trapped phase behaviour occurring when (25)
was satisfied.

When atoms from two initially uncorrelated condensates overlap, we have shown that
Bragg coupling and continuous homodyne measurement can rapidly establish a well-defined
relative phase. A closely related experiment [46] has been performed using ultra-slow light
pulses, in which optical information was coherently transported between two spatially separated
condensates by a travelling matter wave. An ultra-slow light pulse was stopped in the first
condensate, creating a dark-state superposition between two atomic internal states. Upon
stopping the pulse, one of the internal states received a momentum kick, and outcoupled atoms
in this state passed through a second distant condensate. By illuminating the second condensate
with a coupling laser it was possible to revive the initial light pulse even when the BECs were
independently produced. In the case when the condensates had been prepared separately, the
rapid establishment of a coherent phase in a manner similar to that described in this paper
explains the recovery of the light pulse.
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