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We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum
system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-
Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking
out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous
quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation
for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into
stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously
monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be
closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach
to calculate the measurement record of a large multimode quantum system. Numerical simulations of the
continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between
different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence.
Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result
from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned
on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate
and can be tailored to selectively excite collective modes.
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I. INTRODUCTION

Studies of open interacting quantum many-body systems
have recently attracted considerable interest. The coupled
evolution of many-body systems with a large number of
degrees of freedom and the environment leads to an interplay
between the interactions and dissipation. This not only exhibits
rich phenomenology but can also provide a platform for
future applications of quantum technologies. Dissipation
induces decoherence [1-4], influences the correlations and
dynamics [5-17], and engineering dissipative coupling may
be employed in state preparation [18-20].

The backaction due to quantum measurement forms an
essential ingredient of quantum physics. The evolution of a
continuously monitored quantum system represents a coupling
of the system to the environment where the dynamics is
conditioned on the measurement outcome in each experimental
run. Combining unitary quantum evolution with specifically
designed measurements can be used to engineer desired
quantum states; examples in many-atom systems include, e.g.,
preparation of spin-squeezed atomic ensembles [21,22]. The
evolution of quantum states may be further influenced by
implementing control and feedback mechanisms based on the
measurement outcome [23].

The evolution of a continuously monitored open quantum
system may mathematically be expressed in terms of a
master equation. The master equation can then represent
the measurement outcome of ensemble-averaged quantities
without revealing anything about how the measurement record
of an individual experimental realization may behave. In
order to express possible measurement records of individual
experimental runs as a quantum stochastic process, an un-
conditioned master equation can be unraveled into stochastic
quantum trajectories of state vectors (quantum Monte Carlo
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wave functions) [24-26]. Each quantum trajectory is then
conditioned on the measurement record and undergoes a
series of stochastic “quantum jumps,” according to a given
probability distribution. Each quantum trajectory produces a
faithful simulation of an individual experimental realization,
where a sequence of quantum jumps represents a possible
measurement outcome, e.g., a photon count record on a
detector, and the approach can also be extended to other
detection schemes [27].

In practice, solving the dynamics of the entire master
equation is numerically demanding and quantum trajecto-
ries work efficiently only for a small number of particles
and for two to three quantum modes. However, in typical
ultracold atom systems, for example, the interacting atom
clouds form large spatially dependent multimode quantum
fields. In order to describe the quantum measurement-induced
backaction in continuously observed ultracold atomic gases,
one would therefore, in general, require numerically more
efficient approximate approaches. It was recently shown in
Ref. [28] for the case of a strongly interacting two-mode
bosonic atomic gas confined in a double-well potential that
the backaction of a continuous quantum measurement process
can be approximately incorporated in a classical stochastic
description. Furthermore, regarding the observed quantity,
the classical representation of the quantum-mechanical mea-
surement backaction agrees with the full quantum solution:
Even in a parameter regime where the unitary quantum
dynamics in the absence of measurements cannot qualitatively
be approximated by a classical stochastic representation it was
found that whenever continuous measurements are frequent
enough to be able to resolve the dynamics, the measured
observable behaves classically. In this context, we define
classical dynamics as that which can be described by a valid
classical probability distribution in phase space and which
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conforms to classical logic. It is important to emphasize
that many states with considerable quantum fluctuations, e.g.,
spin-squeezed systems, belong to this category.

Here we formulate the notion of classical stochastic
measurement trajectories to spatially varying, interacting,
multimode bosonic atomic systems. We consider a Bose-
condensed atomic gas in a single-mode optical cavity where
the light inside the cavity interacts with the condensate and
the light leaking out of the cavity is continuously monitored.
We construct the approximate Fokker-Planck equation for
the system in the Wigner phase-space representation where
we expand the full dynamical equation in terms of the
interaction parameters that reflect the strength of many-body
quantum fluctuations in the system. Constructing the classical
measurement trajectories then follows the same principle as
the formulation of quantum trajectories from the full quantum-
mechanical master equation: We unravel the evolution of the
Fokker-Planck equation into stochastic dynamical processes.
Each trajectory then corresponds to the dynamics of the system
conditioned on a single measurement record that represents a
possible single, continuously monitored experimental run. The
backaction of the measurement process is included classically
as a dynamical noise term. When we ensemble average over
many such classical trajectories, we can reconstruct, within
statistical uncertainty, the evolution of the Fokker-Planck
equation.

By adiabatically eliminating the cavity photon field in the
equations of motion for the atom-cavity system, we show
that the measurements on the condensate in the classical limit
are represented by a stochastic spatially dependent diffusion
term for the condensate phase profile that is determined by
the cavity-mode shape and pump profile. This results in
phase patterns that considerably fluctuate between different
measurement trajectories. In the ensemble averages over many
such trajectories, we find that the effect of photons leaking
out of the cavity is a spatially varying phase decoherence
rate. We also show that measurement backaction in individual
trajectories can induce self-organization of a Bose-Einstein
condensate (BEC) in an optical lattice. Each stochastic
measurement trajectory leads to a characteristic evolution
dynamics of the condensate phase profile and spatial density
pattern for the atoms that is solely generated by a continuous
quantum measurement process. The emergence of the density
pattern represents a measurement-induced spontaneous sym-
metry breaking. Ensemble averaging over many trajectories
restores the initial uniform unbroken spatial pattern of atomic
density. The randomly produced spatial pattern in a multimode
BEC is related to the quantum-measurement-induced relative
phase between two single-mode BECs in quantum trajectory
simulations [29-32]: A measurement process can establish a
well-defined relative phase between two BECs that initially
possess no phase information; each measurement trajectory
produces a random phase value and ensemble averaging over
many such runs wipes out the phase information, restoring the
broken symmetry.

We show that the measurement process also leads to
mechanical effects on the atoms, and we simulate the resulting
optomechanical dynamics of a multimode condensate due
to the continuous detection of the cavity mode, where the
mechanical degrees of freedom are composed of the coupled
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intrinsic collective excitations of the condensate. In this
limit, where the condensate cannot be reduced to a single-
mode oscillator and subsequently exhibits rich dynamics, we
show that it is nonetheless possible for the measurement
to predominantly excite selected collective modes, such as
the breathing mode. Tailoring the overlap of the condensate
density and the cavity-mode function tunes the nature of
the measured quantity and allows the selective coupling of
a given collective mode. However, the multimode nature of
the condensate can result in significant excitation of additional
modes. For example, attempting to excite the center-of-mass
mode leads to a substantial response of the breathing mode at
later times.

Bose-condensed atomic gases confined in optical cavities
provide ideal systems to study measurement backaction and
the emergence of classicality by means of classical measure-
ment trajectories. Ultracold atoms have proven to be capable
of realizing controllable quantum systems with many degrees
of freedom. Optical cavities, on the other hand, have enabled
much work on the quantum nature of light and are a natural
system to consider the effects of measurement on a single, or
few, quantum modes [27,33]. The union of the two, whereby
an ultracold gas is placed inside an optical cavity, enables
the study of the backaction of measurement on a multimode
coupled quantum system. The cavity enhances the interaction
of the light with the atoms, allowing the strong coupling regime
to be reached [34]. The light imposes an optical potential on
the atoms and the backaction of the continuous measurement
of the cavity output on the dynamics of the atoms has been
experimentally observed [35,36]. The atoms, in turn, affect the
resonance frequency of the cavity, and the motion of the atoms
can then couple to the cavity field through the spatial variation
of the atom-light coupling. The transfer of momentum between
the cavity photons and the atoms also allows the realization
of optomechanical systems, using the motion of BECs as a
mechanical device coupled to the cavity light field [35,37,38].
In the case of atomic BECs, the optomechanical oscillator
formed by the atoms is already in the ground state and
does not need to be cooled by the cavity field; hence, the
general challenge of cooling micromechanical oscillators in
optomechanical applications can be circumvented in atomic
systems.

Theoretical descriptions of these many-atom, many-mode
systems have necessitated approximate treatments [39]. In
the limit that excitations are small, the behavior of BECs
in cavities may be approached by linearizing about a mean-
field steady-state solution [40-44]. Alternatively, the full
multimode atomic field can be restricted to only one or two
modes, allowing a more full quantum treatment [45]. With
regards to measurement backaction, single atoms in optical
cavities have been the subject of many quantum trajectory
calculations [27,39]. Semiclassical [46] and static discrete
approximations [47] have been considered for larger atom
clouds. Recently, an alternative phase-space treatment to the
one presented in this paper was developed for a continuously
monitored system that can incorporate a multimode approach
and is also suitable for cavity systems [48] (for an early
development, see [49]).

In the following section, we introduce the full quan-
tum theory of the cavity-BEC system before discussing a
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phase-space representation suitable to describe our many-
mode system in Sec. III. In Sec. IV we review the treatment
of measurement backaction given by the theory of quantum
trajectories before showing that our classical phase-space
picture can be unraveled to give classical measurement
trajectories. We derive the corresponding classical trajectories
for the coupled cavity-atom system; however, the effect of the
measurement backaction on the atoms can more clearly be
seen when the cavity field is adiabatically eliminated from the
picture, as we show in Sec. V. In this picture, measurement of
the light manifestly leads to stochastic evolution of the BEC
phase profile, spatially modulated by the cavity mode and
transverse pump profile. In Sec. VI we present numerical re-
sults illustrating the phase decoherence for a BEC in an optical
lattice potential in an ensemble average over many stochastic
trajectories and show that the measurement backaction leads
to self-organization or pattern formation. We show how the
measurement backaction may be used in an optomechanical
sense in Sec. VII before discussing how stronger quantum
fluctuations in the initial state can be included in Sec. VIII.
Finally, in the Appendix we give a detailed treatment of the
adiabatic elimination of the light used in Sec. V.

II. FORMALISM

The Hamiltonian for a BEC in an optical cavity of frequency
. can be derived as a many-body extension of the Jaynes-
Cummings Hamiltonian appropriate for a single two-level
atom of resonance frequency w,. After making a unitary
transformation to the rotating frame of the pump and using
the rotating-wave approximation, one then finds a second
quantized Hamiltonian of the form [50-52]

Hy, = Hy + Hc + Hea, (1)

where

. hv?
HA = /dx\IJ;(x)[— m

U Ny aa N
+E/dxllfé',(x)lllé(x)\llg(x)\l/g(x)

+ vg<x)} P, (x)

2v72
+ /dx\ilj(x)[— hZZ — hA e + Ve(x):| U, (x)
—ih f dx[ W] ()h() P (x) = B )h) T (0], (2)

Hep = —ih / dx ¥l (x)g(x)a'W.(x) + He., (3)
Hy = —hA,d'a +ihn@' — a). 4)

Here ‘ilg(e)(x) annihilates an atom in the ground (excited) state
at position x, while a annihilates a photon from the single
cavity mode of frequency w.. The atoms and the cavity couple
via the mode function

8(x) = go sin(kx), ®)

and the system can be pumped on the cavity axis at a rate 1 or
the atoms pumped directly from a transverse beam of profile
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h(x). Interatomic interactions between atoms in the ground
state are included via the contact interaction strength U; in
three dimensions (3D) this would be Usp = 47 h2a,/m, where
a, is the s-wave scattering length, but we consider here the
case that a tight trap of frequency w, constrains the dynamics
to the single dimension along the cavity axis, leading to a
1D interaction strength U;p = 2hAw, a,. The remaining terms
describe single-particle atom motion in external traps Vi (,)(x)
affecting the ground (excited) state and free evolution of the
cavity field at a rate given by the detuning A ,. = w, — w,.
We note that the detuning between the pump and the atoms
A,y = wp, — w, may, in general, be spatially dependent, but
for brevity we do not normally include this dependence
explicitly unless it is ambiguous.

In the limit that A,, is large, the excited state may be
adiabatically eliminated from the equations of motion. The
resulting effective Hamiltonian is

H, :/dx\iﬁ(x){HoJr Ah [h(x)2+g(x)2afa
pa
+h(x)g(x) @+ af)} }\i/(x)

+% / dx ¥ )W PP ()

—hAped'a —ihn(a — ah, (6)

where Hy = —h?/(2m)V? + V(x), and we drop the subscript
indicating the atomic state since all atoms are assumed to be in
the ground state. This effective Hamiltonian does not include
the dissipative contribution of cavity photons lost through the
cavity mirrors (we ignore spontaneous emission into modes
not trapped in the cavity, which should be suppressed by the
large detuning A ,, we have assumed).

In this work we are interested in a continuous quantum
measurement process on the atom-light cavity system. We
assume that all the photons leaked out of the cavity are
detected on a photocounter of perfect efficiency. The detection
rate is proportional to the cavity-mode damping rate, which
we model as 2«x. The density operator for the coupled BEC
and cavity system py including the detection of the photons
leaked out of the cavity then evolves according to the master
equation

G :
MT() = —%[Hl,pmt(m + Low(), @)

where the Lindblad term [53] incorporating the loss and
measurement backaction is given by the superoperator L,
defined by

Lp =«kQRapat —atap — pata). (8)

However, such a master equation is not conditioned on any
particular measurement record, but represents an ensemble
average over a large number of measurement realizations and,
as such, describes the system when the measurement record is
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discarded. We discuss in Sec. IV how this master equation
may be unraveled into trajectories conditioned on a given
measurement record; however, we first introduce a classical
phase-space description of the many-body problem.

III. CLASSICAL PHASE-SPACE PICTURE

For the case of our many-atom many-mode system, the
solution of the full quantum problem is numerically in-
tractable, so here we turn to a treatment via classical phase-
space techniques, which we later use to describe classical
measurement trajectories. In quantum optics phase-space
representations are a common technique for analyzing single-
and few-mode quantum systems [51,53]. Here we represent
the multimode atom-light system in terms of the Wigner
function W (a,*, {¥/,v*}). The Wigner function has the role of
aquasiprobability distribution, where « is the classical variable
associated with a and ¥ is a classical field representation
of the field operator W that is stochastically sampled from
an ensemble of Wigner distributed classical fields. The
Wigner function has the property that expectation values of

J

&W(a,a Ay })_/dxh81ﬂ<{H0+

pa

d I
—({- NS
—i—aa({ n+(k—i p)a—erpa

+/d iU YW /d
X—— - X
h 4 51//251//*

9 82
_/ . [Za_ SYSY*

If only the terms containing first- and second-order derivatives
appeared in this expression, then they would form the drift
and diffusion terms, respectively, of a Fokker-Planck equation
for W. We require a Fokker-Planck equation in order to argue
that the evolution may be unraveled into individual classical
stochastic trajectories in Sec. IV B. However, the appearance
of the triple-derivative terms in Eq. (10) prevents such an
argument. These terms originate from the nonlinear atom-atom
and atom-photon interaction terms in the master equation,
which also give rise to drift terms. We argue below that, under
appropriate conditions, the triple-derivative terms are small
compared to the drift and diffusion terms and that we can
neglect them.

We analyze the leading-order contributions of the
interacting atom-light system in the limit of weak quantum
fluctuations. The validity of the approximation is intrinsically
linked to the basis representation used to simulate the
system. Here we use a discrete spatial basis, discretized on a
characteristic length scale £, and represent the stochastic field

¥ (x) by

v(x) = Z 9()@ £/2.xi + £/2)a;, 1)
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moments of classical variables correspond to symmetrically
ordered expectation values of the corresponding quantum
operators [51,53].

Multimode Wigner representations have been of great
utility in studies of bosonic ultracold gases in closed sys-
tems [54-60] and can naturally include dissipation in open
systems [51,53], as has been investigated in the context of
three-body losses [60,61]. We derive below the equation of
motion for the ensemble-averaged quasiprobability distribu-
tion, before showing in the subsequent section how individual
classical measurement trajectories emerge from a mathemati-
cal correspondence to stochastic differential equations (SDEs).
The equation of motion for this Wigner function is most
easily obtained from the master equation (7) via the operator
correspondences [51,53] similar to

8 * *
Mw*)W(a,a Av. YD, 9)

leading to

h 1
x [h(xf + g(x)2(|a|2 - 5) + h(x)g(x)(e + a*)} +U(y* - 1)}wW>

/d (h()g(x) + g2(x) ][| ( )|2—1]}w)+£3_2

HAS0) el 2 2 dada*
AL L

pa 490 5y 5y*

16 02 W 0
waaaaa} +c.c. (10)

(

where 6(x;,x;) is a rectangular function of unit amplitude
and nonzero only between x; and x;. The amplitudes a@; can
then be scaled by the number of atoms in the ith element
N; by & = a;/+/N;. The corresponding functional derivative
operators are then

d
81p(x) = Z zN_Q(Xz £/2,x; +€/2)8—ai- (12)

For the interparticle interaction we wish to investigate the
scaling as we keep C; = N;U constant, but take N; — oo.
Following an analogous motivation to treat the atom-photon
interaction terms, we take the limit where the number of
photons 7 in the cavity tends to infinity while the maximum
atom-photon interaction energy x = ﬁ(gg /A pg)n remains
constant. We therefore, in addition to the rescaling of ¥ above,
rescale & = a/+/n and replace hg% /A pa by x/n. In order to
reach this limit of large cavity photon number, we also note
that the direct cavity pumping scales as n — 7j4/n and include
the spatial variation in the cavity coupling strength via g(x) =
808 (x). For the case of a transverse pumped system, motivated
by the form of the transverse term in Eq. (6), we similarly keep
xn = Whogo/A pa)ﬁ constant, while the photon number
increases. For the spatial points where N; is large, the result of
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these substitutions is the equation of motion,
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. _ 2 11 .
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Here J represents the tunneling between neighboring discrete
sites and corresponds to the kinetic energy term in the
continuum limit, and V;,g;,h; are spatially varying functions
averaged over the width of the discrete basis states. We have
also transformed to the dimensionless time scale 7 = ¢ /1, with
= (2mt?*)/h, and so frequencies transform, for example,
as kK = k1y. Several facts are now readily apparent. The
tunneling and interaction energies are comparable when the
width of the discrete basis states approaches the healing length
& = h/+/2mpU, where p is the 1D atomic density. The healing
length represents the characteristic length scale associated
with the nonlinear atom-atom interactions, and we set £ ~ £.
The first derivative (drift) terms can then be seen to all be
independent of both the photon number and the atom site
occupation numbers in this scaling, with the exception of the
constant —1/2,—1 terms introduced by nonlinear terms. Such
constant corrections become negligible in the limit that the
photon number and atom occupation numbers are large.

The diffusion term due to the continuous measurement
of the cavity photon mode scales as 1/n, since fluctuations
become less important as the classical limit n — oo is
approached. However, the problematic triple derivative terms
can all be seen to scale as €7, €2, or €;¢,, where ¢, = 1/N;
and €, = 1/n. Provided atom and photon numbers are large
and so €;, < 1, we are therefore justified in neglecting the
triple-derivative terms, with the remaining drift and diffusion
terms giving a Fokker-Planck equation.

So far we have considered regions where the atom number
N; is large. In those spatial regions where N; is small, the
atom-photon and atom-atom interactions provide negligible
contributions to the system dynamics and these terms may
be neglected in the original master equation. Therefore, no
triple-derivative terms occur for such regions.

Having neglected the triple-derivative terms, we are left
with a Fokker-Planck equation of the form

0 - 0

—W==Y —AxW

97 Xi:a )
1&g 9% . 1& 9% .
- ———W, (14)
n?2daoa* n?2 0a*oa

where the index x; runs over the set {&,&*,{d;,d; }}. The matrix
elements A; are given in the first two lines of Eq. (13), and
these drift terms are responsible for the unitary Hamiltonian

l

1 i 9 3% .
_ Z ToXh [ .
Nin £ 0d& da;oa;

1 22
—-Z ToX 2 9 4 W+ c.c. (13)

n? ¢ ’Ba Yoadar

(

dynamics of the classical fields in the interacting atom-light
cavity system. In contrast, the diffusion terms from the
second line of Eq. (14) can be physically associated with
the continuous measurement of the intensity of light leaking
from the cavity. These terms represent a continuous quantum
measurement process on the coupled atom-light system. For
clarity, we now revert to the continuum limit, with the implicit
assumption that the resulting equations will be solved on a
discrete grid satisfying the above criteria.

In order to derive a Fokker-Planck equation for the atom-
light system, we have kept the leading-order terms in the
limit of weak quantum fluctuations. The expansion is done
with respect to both the nonlinear interparticle interaction
and the atom-light coupling strength. In the case of the
nonlinear s-wave interaction U the requirement of weak
quantum fluctuations becomes clear when we observe that the
condition N; >> 1 can be related to the 1D Tonks parameter
y = mU/(R*n). The Tonks parameter measures the ratio of
the nonlinear s-wave interaction to kinetic energies for atoms
spaced at the mean interatomic distance, and the number of
atoms found in a length ¢ >~ & is Nz >~ 1/4/2y. [In contrast, in
3D the resultis Ny = 1/(2y3p)¥/2, where ysp = mpily Usp/h?
is again the ratio of interaction energy to kinetic energy.] The
expansion therefore is strictly valid in the y < 1 regime, that
of a weakly interacting bosonic gas, although, especially in
1D systems, short-time behavior can be qualitatively described
even for more strongly fluctuating cases [62]. In the classical
weakly fluctuating limit N — oo, U — 0, with NU = C kept
constant, the Bogoliubov approximation becomes accurate
and eventually one recovers the Gross-Pitaevskii mean-field
theory [62]. However, as we argue in Sec. IV, in a contin-
uously monitored system, when an observable is sufficiently
accurately resolved in a detection process, it starts behaving
classically even deep in the quantum regime. Therefore,
regarding the dynamics of a frequently measured observable,
the classical phase-space theory is expected to describe
approximately even cases with strong quantum fluctuations.

The derivation of a Fokker-Planck equation is reminiscent
of dropping the triple-derivative terms that arise from the
s-wave interactions in the truncated Wigner approximation
[54-60,63] for a closed bosonic atomic system. While we
have used a discrete spatial basis argument here, similar
arguments for truncating the interparticle interactions have
been made using spectral basis decompositions [60,63]. When
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using the truncated Wigner method it is common to neglect
the constant term introduced by the interparticle interactions,
letting (]]*> — 1) — |¥|%, since it leads only to a spatially
constant phase rotation. We note that here [see Eq. (13)] the
comparable terms introduced by the atom-light couplings are
spatially varying and cannot trivially be neglected.

Equation (14) describes the evolution of the phase-space
distribution W (v, ™, {4,%*}) unconditioned on any particular
measurement trajectory. As such, it corresponds to an approx-
imation to the evolution given in a full quantum treatment by
the master equation (7), ensemble averaged over all possible
measurement outcomes. We wish to study the backaction
due to a particular measurement record, and so turn to a
decomposition of the problem into classical measurement
trajectories representing individual experimental runs. In the
following section, we first discuss the case in the fully quantum
limit, before showing that our Fokker-Planck equations can
be unraveled to give classical descriptions for a continuously
monitored atom-cavity system.

IV. CONDITIONED MEASUREMENT TRAJECTORIES

A. Quantum trajectories

For a system with Hamiltonian H, the quantum-mechanical
evolution of the density matrix is given by the master equation

/>=—%[H,p]+.cp. (15)

Here we assume that the system is continuously monitored
and the generic measurement process is represented by the
coupling to the environment that exhibits the Lindblad form

Lp =2ApAt — ATAp — pATA. (16)
The ensemble-averaged behavior of the density matrix can
be unraveled into stochastic quantum trajectories of state
vectors (quantum Monte Carlo wave functions) [24-26]. Each
trajectory then corresponds to the dynamics of the system
conditioned on a single measurement record and represents
a stochastic process. Averaging over many such trajectories
reproduces the results of the unconditioned master equation,
complete with the correct statistics for the measured quantity,
within statistical uncertainty.

In the limit that individual measurement events (such as
photon emissions) can be resolved, the trajectories have the
form of a series of quantum jumps [24-26], with individual
counting events occurring at discrete random times which
conform to the relevant probability distribution. The above
Lindblad term represents a system in which the density
operator changes by p — 2ApAf when a measurement

J

9 h2
ih—y(x,t) = ——V>+V Uly|?
i 8tl/f(x t) { o + V@) + Uyl +Apa

da = {n—/cot—i—i |:Apc— AL/dng(x)|1ﬁ(x)|2i|a

pa

where dW, , are two independent Wiener increments satis-

fying (dW;) = 0, (dW?) = dt, and (dW;dW;) = 0. We have
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(a “jump”) is made. So, for a system in a pure state, when a
measurement occurs during a given small time step, the wave
function changes by

[Weys(t + AD) = V2A[Pys(1)), (17)

and the wave function must then be renormalized.

In contrast, between jumps the absence of measurement
clicks on a detector also conveys information about the system,
and this backaction can be included by evolving the wave
function with the nonunitary Hamiltonian H — ihAtA. The
times at which jumps occur are given by comparing the
loss of norm due to the nonunitary evolution with a number
chosen randomly from a uniform distribution between 0 and
1, which ensures that the correct measurement statistics are
reproduced. For a system which is sufficiently small that
such an evolution is computationally feasible, a quantum
trajectory can be simulated that includes the backaction due
to a particular measurement record. That record is given by
the set of discrete times at which the quantum jumps have
occurred. In the limit of a large rate of photon emissions
such that individual emissions are not resolved, but that the
measurement is instead of a continuous flow of photons, the
quantum stochastic trajectories become SDEs for the state
vector of the system [23,27,33].

Such quantum trajectories are beyond our current ability
to numerically simulate when the number of modes becomes
large. Fortunately, as we show in the following section, the
classical phase-space picture we developed (Sec. III) can be
unraveled in an analogous manner, and provides a natural
approximate description for single experimental runs subject
to cavity light measured outside the cavity.

B. Measurement trajectories in a classical phase-space picture

In Sec. III we derived an approximate representation for the
continuously monitored atom-cavity system in the form of a
Fokker-Planck equation. In the resulting description (14) the
nonlinear atom-light dynamics is incorporated in the drift term
and the backaction of the continuous quantum measurement
process, whereby photons leak out of the cavity and are
continuously monitored by light intensity measurements,
constitutes the diffusion part of the equation. This Fokker-
Planck equation for the ensemble-averaged quasiprobability
distribution W(a,a*,{y/,v/*}) can then be mathematically
mapped onto systems of SDEs [53,64].

For our coupled BEC and cavity system, in the weakly
fluctuating limit, the resulting coupled Ito SDEs that follow
from the Fokker-Planck equation read

[h(xf + g(x>2<|a|2 - 1) + h(x)g(x) (e + a*)} }w, (18)

2

i

/dxh(x)g(x)hﬁ(x)lz}dt—i-\/g(dWx+idWy), (19)

pa

(

neglected here terms in Eq. (18) which lead merely to overall
phase rotation of the stochastic field ¥ (x,?).
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According to this mapping, the diffusion term in the
Fokker-Planck equation represents a dynamical noise term
in the corresponding SDE. The noise term has a physical
origin resulting from the backaction of a continuous quantum
measurement process in which the intensity of light leaking
out of the cavity is monitored. For simplicity, we assume a
perfect photon detection process where every photon escaping
the cavity is measured. In each individual realization of the
stochastic dynamics, determined by Eqs. (18) and (19), the
evolution is therefore conditioned on a particular continuous
measurement record that directly corresponds to the classical
approximation of an individual experimental run. The mea-
surement backaction on atomic BECs becomes even more
evident in the next section when we adiabatically eliminate
the cavity field and the continuously observed quantity is
expressed in terms of the atomic fields.

We have constructed the classical stochastic measurement
trajectories by unraveling the evolution of the Fokker-Planck
equation into stochastic dynamical processes in such a way that
the stochastic noise term in each realization corresponds to a
particular measurement record on a detector. The method uses
a similar principle to the formulation of quantum trajectories
of stochastic state vectors from the full quantum-mechanical
master equation. Each individual classical trajectory is a
faithful representation of a possible single experimental run
of a continuous detection record. The behavior of the Fokker-
Planck equation, unconditioned on any particular measure-
ment record, and quantum-mechanical ensemble averages
of the observed quantities can be reconstructed from an
ensemble average over many individual trajectories. In this
classical approximation individual discrete counting events of
the photons can no longer be resolved in the noise contribution
that approximates a continuous stream of photons.

For a given trajectory solution, the corresponding measure-
ment record is that of photon counts occurring at the rate
Fmeas(t) = 2k [|a(t)|> — 1/2]. The remaining terms in Eq. (19)
give the Hamiltonian evolution of the cavity mode variable,
which couples to the atoms through a transverse pumping term
and through a density-dependent resonance shift. Similarly, the
terms in Eq. (18) represent the Hamiltonian evolution of the
atoms, with familiar terms for the dynamics of a BEC in a
trap, extra terms due the dipole potential from the cavity and
transverse pump light fields, proportional to g2(x) and A%(x),
respectively, and a term describing the scattering process
whereby an atom absorbs a photon from the transverse beam
and emits into the cavity mode.

We emphasize here that in this paper we use “classical”
dynamics to mean that which can be described by a valid
classical probability distribution in phase space and which
conforms to classical logic. Several interacting many-body
systems with significant quantum fluctuations belong to this
category, e.g., spin-squeezed states [65,60].

To accurately represent a single experimental realization the
initial conditions must be chosen with care. In practice, they
can be sampled stochastically from the quasiprobability den-
sity W(a,o*,{y,¥*},t = 0) in a manner to reproduce as accu-
rately as possible or desirable the correct quantum statistical
correlations for the system. We address this further in Sec. VIII.

In the stochastic representation W (c,a*, {1, *},t = 0) is
chosen as a valid classical probability distribution for the initial
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state, even though quantum fluctuations (such as mode squeez-
ing) are approximately included. The approximate Fokker-
Planck equation (14) for the atom-light system preserves the
validity of the classical probabilistic description. Equation (14)
also includes the quantum measurement backaction into the
evolution of the quasiprobability density. The decomposition
of the Fokker-Planck equation into SDEs then incorporates
measurements into our classical trajectories.

For a continuously monitored strongly interacting two-
mode system of bosonic atoms in a double-well potential,
it was shown that such classical measurement trajectories
agreed with the exact quantum solutions even in the limit of
strong quantum fluctuations for observables whose dynamics
were well resolved by the measurement [28]. By using two
detectors to measure the photons coherently scattered from an
off-resonant source by atoms in each well, the populations of
the two wells were continuously monitored and the population
difference z(¢) between the wells could be inferred. When the
measurement rate was high enough to allow the resolution
of the dynamics of z(#)—a measurement rate as low as ten
photons per characteristic oscillation period of z(#)—it was
shown that the classical trajectories agreed with the quantum
trajectories. This agreement held even for systems with as few
as ten atoms, deep in what would normally be considered a
quantum regime. The example demonstrates more generally
how classical physics emerges from quantum mechanics as a
result of the backaction of a continuous quantum measurement
process. We may conjecture that in few- or many-body systems
any continuously measured observable whose dynamics is
resolved by a sufficiently frequent measurement rate can be
closely approximated by classical dynamics. In other words,
although the mathematical derivation of the approximate
Fokker-Planck equation (14) relies on the assumption of
weak quantum fluctuations, the dynamics could therefore
be approximately predicted by the classical formalism for
any continuously measured observable that is resolved by a
sufficiently frequent detection rate, even when the system is
strongly fluctuating. It was argued in Ref. [28] that this emer-
gent classicality via continuous measurement is a consequence
of the suppression of quantum interference effects that results
from measurement backaction [3].

V. MEASUREMENT BACKACTION ON ATOMS:
ADIABATICALLY ELIMINATING THE CAVITY MODE

While Egs. (18) and (19) are numerically tractable and
can be solved directly, if we wish to consider the effect of
the measurement on the atoms, we can gain some insight by
adiabatically eliminating the cavity light mode.

We give here a heuristic explanation of the derivation and
leave a more rigorous derivation to the Appendix. The equation
of motion for a obtained from Eq. (6) is

% = {il:ApC — Alpa /@T(x)\il(x)gz(x)dx} —K}&

i
+n—

/ U)W (x0)h(x)g(x)dx, (20)

pa
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and in the bad cavity limit (x > go) we eliminate the field by
setting

1 i A A
L ]
a p i~pc |:17 ” /W (x)\I'(x)h(x)g(x)dxi| . (21

Here A, = A, — (1/A,,) [ Wi(x)¥(x)g?(x)dx incorpo-
rates the atomic density resonance shift into the detuning.
In order to make the transformation to the Wigner function
picture tractable, we remove the atom contribution from the
denominator by expanding in terms of the small parameter
A pe/x, leading to

@zl[n_ " / @T(xmx)h(x)g(x)dx}
K Apa

A A3,
x[1~|—i K”C+0(K’2 )] (22)

To further reduce the complexity of the equations, we now
specialize below to the case of a cavity pumped solely on axis.
Later we consider the case of the transversely pumped system.

A. Axially pumped cavity

If there is no transverse pumping of the atoms [A(x) = 0],
then eliminating the cavity field operator leads to a master
equation for the atoms

904(1)
ot

To the lowest order in our expansion parameter, the Hamilto-
nian part is

- —%[Hz, Pa(t)] + Lpa(1). (23)

o w_,
H2 = /dx\IJ (X)[—%V +V(X)

Inl* g°(x)
k2 Apg

+ %\iﬁ(x)@(x) +h }\i/(x). (24)

Similarly, the Lindblad term becomes to this order

In|*

Lp, = Fm?paff — XXpy — paXX), (25)

where the operator X is used to represent

2
A X) a A
£ = /dxg O g o). (26)
Apa
In contrast to the earlier results, now the measurement observ-
able depends solely on atomic operators. From a quantum
trajectory viewpoint, each photon measurement causes a
change in the density matrix due to the jump operator,

2P,
\7:011: 3 XpaX. (27

The measurement of the intensity of light lost from the cavity
can then be seen to give a measure of the squared integrated
density of the atoms, modulated by the cavity-mode shape
and any spatial dependence of the detuning. The probability
for such a loss event in a short time &7 is Tr{J p,6t}, and
so the rate of scattered photons counted by the measurement

PHYSICAL REVIEW A 90, 023628 (2014)

apparatus is

2P o
Fmeas() = K_3<XX> (28)

In this adiabatic eliminated formalism, the measurement
operator involves an integral over a nonuniform multimode
quantum field ¥ (x) combined with a spatially varying cavity
coupling strength. The motivation for our classical measure-
ment trajectories is particularly clear in this picture, since
the full quantum trajectory approach for such a measurement
operator is not numerically feasible, with the exception of
limiting cases where the atoms may be simplified to very
few modes. In the following numerical examples we simulate
measurement backaction on a spatial grid of the order of
1000 points. Therefore, we again use a classical Wigner
representation, but having eliminated the cavity field we
can now use a representation in terms solely of the atomic
variables W({y(x),¥(x)*}). However, before we give the
full expression for the resulting classical trajectories, the
effect of the measurement terms can be more transparently
demonstrated by using a density and phase basis. Defining
Y(x) = f(x)exp[iP(x)], such that f 2(x) corresponds to the
density of the atoms and ®(x) the phase, we express the
Wigner function equation of motion for W({f(x),®(x)}).
Momentarily concerning ourselves solely with the contribution
from the measurement terms in the master equation, the
following terms appear in the Fokker-Planck equation:

%W({f(xm(x)})

meas.

_ > g*(x) &8 1 Il
= /dx [27 A ) 80() | 2 / X2y
g2 (x)g*(x") 8? W
A pa (A pa () 5B()SD(x)

(29)

The measurement part of this Fokker-Planck equation has a
positive semidefinite diffusion matrix and can be mapped onto
the SDEs,

df(x) —0 30)
dt meas. B ’
2
4D s, = V2T 87Dy 31)

K32 A pa(x)

where dW is a single Wiener increment with (dW) = 0,
(dW?) = dt. The measurement can be seen not to cause
any direct dynamics of the density of the atoms, but instead
to lead to a stochastic evolution of the phase profile that
can considerably fluctuate between different measurement
trajectories. This phase noise is spatially dependent, due to the
cavity-mode shape and any variation in the detuning. When we
ensemble average over many such measurement trajectories,
the fluctuating phase in different trajectories results in phase
decoherence. The ensemble-averaged evolution is no longer
conditioned on any particular measurement record and, within
statistical uncertainty, approximates the evolution of the
corresponding Fokker-Planck equation.

Including the Hamiltonian terms from Eq. (24), and revert-
ing to the ¥ (x) representation, the Fokker-Planck equation for
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the atomic Wigner function can be unraveled into classical
trajectories obeying

o Inl g’ )
dwx)—{ [Ho+ Uy P =i =0 F
P gt i | Inl g2 (x)
3 A2 (x )}W( )dt — Al )1/f(x)dW~

(32)

The first term corresponds to the normal nonlinear evolution
of the atoms in the absence of light or the cavity. For the
lowest-order expansion in our small parameter, we have F ~
1+ 0(A pe/k), and so the second term includes the effects
of the optical potential due to a standing wave of light in the
cavity. The more rigorous derivation given in the Appendix
provides a higher-order term

~ gz(x/) N2 ’ A17(‘ ?
F”[ Ay V) dx]“)[( K )]

(33)
which includes interactions between atoms mediated by cavity
photon exchange and can be understood as a change in the
cavity resonance frequency due to the distribution of the atoms.
The two terms on the second line (32) both arise from the
measurement process, and together result in the stochastic
phase evolution of Eq. (31). Note that while neither of the
measurement terms appear to conserve particle number in
this representation, the sum of the two terms does do so, as
indicated by Eq. (30).

B. Transversely pumped atoms

In contrast, if the cavity is pumped solely by a transverse
beam of profile A (x) incident on the atoms, then the expansion
of Eq. (22) gives

NI RV R ¢
a~—i—|(1+i——i—|, (34)
K K K

where ¥ represents the off-resonant excitation of the atoms via
the transverse pump

. h N .
Y= /dxww(x)\p(x). (35)
Apy
Similarly to the previous section, we assume that

A pc//c,f( /k < 1; then the lowest-order expansion leads to
a master equation

0p4(1) i 1 o~ & an A
= ——[Hz,0.(0)] + —2Yp, Y —YYp, — pa YY),
ot h K
(36)
with
o PP h? .
H; = fdeT(x)[Ho + E\I’T(x)\IJ(x) +h (x)i|lIJ(x).
2 Apa
(37)

The jump operator associated with a measurement in this
case is

2, A
TPa = ;Y:OaY’ (38)
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and so the rate of measurement is

A

Fieas(t) = §<?Y> = 2in, (39)
which we have expressed in terms of the number of photons in
the cavity n = (afa) = ((f’//c)z). Note that in this case, since
all cavity photons appear from interactions of the transverse
beam with atoms, the rate of measurement events which affect
the atoms 7pe,s 1S simply that of the number of photons leaving
the cavity. In contrast, for the directly pumped cavity, only the
detection of photons which have interacted with atoms leads
to a measurement backaction on the atoms.

Following the derivation in the previous section, we obtain
classical measurement trajectories for the stochastic field 1 (x)
governed by the SDE,

h2
Ay (x) = {—[Ho + U @R Sl
A (%)
1 h2(x)g(x) . \F (x)g(x)
_;W}wu)m—z A Y(x)dW. (40)

The first term proportional to A%(x) incorporates the light
shift due to the transverse pump beam. The continuous
measurement leads to the last line of Eq. (40) and has the
direct effect of a spatially dependent stochastic evolution of

the phase
_ [2gho)
dP(X)|meas. = B Apa(x) dw, (41)

whose spatial distribution now also depends on the pump
profile A(x). In contrast to the cavity pumped case where the
noise term has the same sign at all spatial points due to the
appearance of the g?(x) term, here it is able to alter sign with
g(x) (for simplicity we assume that the large |A ,,| does not
change sign in the atomic sample). Similarly to the previous
results, the measurement only has a direct effect on the phase
profile of the system and the atom density is only affected
indirectly via nonlinear dynamics.

In the following section we present a comparatively simple
system confined within an optical lattice which demonstrates
clearly via classical trajectories the stochastic phase evolution
and decoherence, while in Sec. VII we consider the quantum
measurement-induced optomechanical dynamics of a multi-
mode BEC in a cavity.

VI. QUANTUM MEASUREMENT-INDUCED PHASE
FLUCTUATIONS AND PATTERN FORMATION

A. Uniformly driven system

The backaction of a continuous quantum measurement
process can have a dramatic effect on large quantum systems.
The question of how two superfluids that have never seen each
other can possess a relative phase [67] has led to speculation
on the role of quantum measurement backaction on large
superfluid systems [4]. Quantum trajectory simulations on
idealized two-mode atomic BEC systems have demonstrated
how the relative phase between two BECs can be established
in a continuous quantum measurement process, even though
the condensates initially have no relative phase information
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[29-32]. In this case an interference experiment on con-
densates builds up in each probabilistic detection event
the correlations and the phase coherence between the two
BECs. Each subsequent detection event is conditioned on the
outcome of the previous measurements and the correlations
become further enhanced. Although the phase can be initially
entirely random, a continuous measurement process eventually
establishes a well-defined value for the phase. Since in each
stochastic run this value emerges randomly, ensemble averag-
ing over many realizations results in a flat phase distribution
[0,27[ and no relative phase information between the BECs.

In this and the following sections we apply the classical
stochastic measurement trajectories to atomic BECs confined
in an optical cavity to study the effect of a continuous quantum
measurement process on large spatially varying multimode
quantum fields. In order to accommodate the spatial features
of the multimode effects, we consider in the numerical
simulations up to 1024 spatial grid points. This number of
spatial degrees of freedom in the dynamics greatly exceeds
the computational possibilities for the number of modes in the
exact quantum trajectory simulations.

As a first example we show how continuous monitoring
of the intensity of light leaked out of the cavity results in
phase fluctuations and pattern formation of the atoms. Each
stochastic realization of the classical measurement trajectory
leads to a characteristic stochastic evolution of the condensate
phase profile and spatial density pattern of the atoms that
is a sole consequence of the backaction of the continuous
measurement process and is conditioned on the particular
measurement record. The emergence of the density pattern
[Fig. 3(a)] represents a quantum measurement-induced spon-
taneous symmetry breaking, a multimode effect, reminiscent
of the measurement-induced relative phase in the interference
simulations of a two-mode BEC. Ensemble averaging over
many such realizations of atom-cavity measurement trajecto-
ries restores the initial uniform unbroken spatial pattern of the
atomic density [Fig. 3(c)].

We here numerically simulate a BEC of N atoms, assuming
that the system is confined in an elongated 1D trap, and we
ignore any density fluctuations of the atoms along the radial
direction. The system we consider is illustrated in Fig. 1. In
the axial dimension, atoms are subject to a combined potential
of a harmonic trap and a static optical lattice commensurate
with the cavity mode,

V(x) = imaw’x* + sEg cos®(kx). (42)

Atoms are therefore trapped at the antinodes of g(x) and
we choose a lattice height of s = 10, where Ex = h?k*/2m
is the recoil energy of a photon. The harmonic potential
confines the system and defines the dimensionless length
X0 = +/h/mw and time #) = 1/w scales that we use to
present the results in this and the following section. As the
initial state we consider atoms in the ground state of the
combined trapping potential in the absence of any pump
field, with k ~ 8.1x, ! such that approximately 22 sites of
the lattice have significant population. For simplicity, we
assume that the quantum and thermal fluctuations in the
initial state are sufficiently small that they can be ignored.
As a consequence, any difference in behavior for individual
trajectories stems directly from the backaction of different
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FIG. 1. (Color online) The system of interest in Sec. VI. A
condensate confined by the static external potential of Eq. (42)
is placed inside an optical cavity with coupling function g(x) =
go sin(kx). The initial condensate density is shown as the blue solid
line, and since the optical lattice potential is commensurate with the
cavity mode, peaks of density correspond to maxima of |g(x)|. The
atoms are pumped transversely by the spatially constant h(x) = hy,
and photons lost through the cavity mirrors at a rate « are detected by
a photon counter. Lattice sites are numbered from left to right, with
the centermost sites being numbered 12 and 13.

measurement records. The system is pumped for times ¢ > 0
by a transverse beam h(x) = hy, illuminating all sites equally.
The remaining parameters defining the system are NU ~
38hwxy, and h(z)gg/KAfm ~ 2.6 x 1073w. We evolve the sys-
tem for a number of independent measurement trajectories by
numerically solving Eq. (40) using the Milstein algorithm [68].
We analyze the results at the end of the simulations by
decomposing the numerically calculated classical field ¥ (x) at
different times into a lattice site basis [56,66], also taking into
account that the Wigner distribution returns symmetrically (in-
stead of normally) ordered quantum-mechanical expectation
values.

In this configuration, the measurement operator of Eq. (35)
has a value (¥) which is approximately proportional to the
population imbalance Nogd — Neven, Where Nodd(even) 18 the total
population in the odd (even) sites of the lattice. Monitoring
the intensity of light leaking from the cavity therefore
approximately measures (Nogq — Neven)?. Consequently, from
Eq. (41) we expect that the continuous quantum measurement
process will lead to relative stochastic phase evolution of
the atom field between different sites. Figure 2(a) shows the
relative matter wave phase between the two central sites for
two distinct measurement trajectories, each conditioned on
a different measurement record. The fluctuations in relative
phase differ between realizations, but in both cases an increase
with time in the amplitude of the fluctuations in relative phase
can be seen. Ensemble averaging over many realizations,
Fig. 2(b) shows that the unconditioned dynamics leads to a
phase decoherence between sites due to dissipation, with a
rate depending upon the separation of the sites. Sites separated
by an even number experience the same sign of g(x) and so
remain more phase coherent.

Since we start with a symmetric gas of atoms, the initial
expectation value of the light intensity inside the cavity
vanishes due to destructive interference between the odd and
even sites. For a single measurement trajectory, the stochastic
phase fluctuations between odd and even sites due to photon
detection lead to small population fluctuations between sites
and allow a nonvanishing intracavity light intensity. These
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FIG. 2. (Color online) Quantum measurement-induced phase evolution of the atomic field inside a cavity and the resulting phase
decoherence in ensemble-averaged dynamics. (a) Relative phase variation between the atomic field in the two central lattice sites for two
distinct measurement trajectories. (b) Ensemble-averaged cosine of the phase between atoms in different lattice sites, averaged over 400
measurement realizations, showing dissipation-induced decoherence. The phases are plotted between site i = 12 and sites differing in number
by i—j=2,-2,-7,3,—1,1 (upper to lower curves, respectively). The shaded region for the i — j = 1 curve represents one standard
deviation of the sampling error in the results. A frequency analysis of the rapid oscillations evident in the curves reveals an interplay of several

excited collective modes, supporting the need for a multimode treatment such as we present in this paper.

population differences build and we see the atoms self-
organize into an odd or even site pattern. The density variation
for a single measurement trajectory is shown in Fig. 3(a).
Self-organization initially becomes pronounced at the outer
sites where the density is low, before propagating inwards
to the high-density region. The onset of self-organization
throughout the system increases the value of (¥) and therefore
increases the measurement backaction. This is evident in the
increase in phase fluctuations after about 0.5 trap periods
in Fig. 2(a). Ensemble averaging over many trajectories, the
enhanced phase fluctuations after that time lead in turn to
an enhanced rate of phase decoherence in the unconditioned
results of Fig. 2(b).

Since neither pattern is energetically preferred, different
measurement trajectories spontaneously break the symmetry
into either pattern without favor. This example demonstrates
the substantial effect that a continuous quantum measurement
process can impart on a BEC. We do not see the atoms stabilize
into a constant pattern. In fact, we see the pattern oscillate
between odd and even sites, similar to a Josephson-like

oscillation. The extent of self-organization and the oscillations
between patterns show up in the rate of measured photons
[Fig. 3(b)], with peaks corresponding to significant population
imbalance between odd and even sites.

Steady-state spontaneous self-organization has been much
studied for thermal gases [39,69,70] and BECs [42] in
optical cavities and experimentally observed, e.g., in 2D
systems [71,72]. However, as Fig. 4 shows, our parameter
regime is well below the pump power threshold for the
onset of steady-state self-organization. The self-organization
we observe here is therefore qualitatively different from the
well-studied steady-state phenomenon, in that it exists only as
a dynamical effect, resulting in oscillations between the two
patterns.

We emphasize that the phase fluctuations and the self-
organization in our model of the far-detuned transversely
pumped atom-cavity case comes solely from the measure-
ment backaction. The stochastic noise associated with the
intensity measurement of light leaked from the cavity in
each individual run of the classical trajectory conditions the
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FIG. 3. (Color online) Quantum measurement-induced symmetry breaking in atomic density evolution, conditioned on a measurement

record. (a) Time dependence of the stochastic field density |1 (x,t)|* for a single measurement trajectory, conditioned on a single measurement
record. This trajectory corresponds to the phase evolution shown in Fig. 2(a) (blue, solid line). (b) The measurement rate of photons at the
detector for the single trajectory shown in (a). Ensemble-averaged time dependence of the stochastic field density |y (x,t)|?, averaged over 400
realizations, which restores the unbroken spatial pattern.
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FIG. 4. (Color online) Steady-state self-organization: steady-
state relative population imbalance due to self-organization as a
function of pumping strength, i in the units of kg, the pumping
strength used for the classical measurement trajectories in this
section and highlighted by the red circle in the figure (h5g5/k A%, ~
2.6 x 1073w). We solve the steady-state problem using the classical
Gross-Pitaevskii equation approach as detailed in Ref. [42], but
calculated for our finite system in the harmonic potential trap.
Self-organization is seen to occur for factors g/ hy > 10.

dynamical evolution of the atoms inside the cavity and the
subsequent measurement record. The measurements lead to the
spontaneous breaking of the symmetry in the spatial density
pattern of the atom cloud. If we ensemble average over many
independent stochastic realizations, the broken symmetry in
the atomic density is restored and we can recover the uniform
density pattern, as illustrated in Fig. 3(c).

B. Spatially nonuniform transverse pump

Owing to the multimode nature of the classical stochastic
measurement trajectories, we can also investigate the back-
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action of a continuous quantum measurement process on
spatially selective regions of the multimode atomic field. In
the present case the measurement can be constructed to be
spatially selective by employing a nonuniform profile for the
driving field i(x) and so directly cause phase noise in only a
limited number of sites. For the same initial state as previously,
we illuminate the system by a transverse beam with a Gaussian
profile tailored to principally illuminate only a handful of sites
in the lattice, illustrated in Fig. 5(a). In addition, to show
only the dynamics due to the continuous measurement, we
include an additional potential chosen to exactly compensate
the light shift term in Eq. (40) arising from the spatially varying
transverse beam.

Ensemble averaging over many realizations, the spread
of the decoherence with time through the system can be
seen in Figs. 5(b) and 5(c). The sites illuminated by the
transverse beam accrue relative phase fluctuations due to the
measurement, as seen in the constant illumination results. In
contrast, atoms in sites which are not measured remain in phase
at short times. At longer times, the tunneling between lattice
sites then allows the phase evolution to propagate through
to sites which are not illuminated, and a more complicated
many-body dynamics is set up. Averaging over many inde-
pendent trajectories exhibiting these phase fluctuations results
in spatially varying phase decoherence corresponding to the
dynamics of the unconditioned master equation (36) due to
dissipation from the open system, as illustrated in Figs. 5(b)
and 5(c).

VII. QUANTUM MEASUREMENT IN AN
OPTOMECHANICAL MULTIMODE SYSTEM

Due to the position sensitivity of the coupling of cavity
light to the atoms, the dynamics of the cavity mode can
couple to the mechanical motion of the BEC, a realization
of an optomechanical system. When the atom cloud occupies
a larger spatial region or the amplitude of the mechanical
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FIG. 5. (Color online) Ensemble-averaged phase decoherence of the atomic field inside a cavity, when the stochastic phase evolution for a
single trajectory is proportional to the spatially varying strength of the quantum measurement backaction. We show Gaussian transverse pump
results for a BEC in an optical lattice potential. (a) Initial-state ¥ (x,# = 0) (solid line) and transverse pump beam profile 4 (x) (red dashed
line). The circles indicate the pair of sites most illuminated (16,17) and the corresponding pair on the other side of the condensate which is not
illuminated (8,9). (b) Ensemble-averaged cosine of the relative phase between different sites. Lower to upper curves correspond to the following
pairs of sites: pair of most illuminated sites (16,17) (blue solid line); sites (16,13) (black dashed line); sites (16,12) (green dash-dotted line);
sites (8,9) (red dashed line). (c) Ensemble-averaged cosine of the phase relative to site 16 for all other sites at different times, showing the
spread of the phase decoherence with time. From the upper to the lower lines, the corresponding times are (0.025,0.5,1.0,1.5,2.0,2.5)2x ¢,
respectively. Parameters as given in Sec. VI A and ensemble averaged over 200 realizations.
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oscillations is not small, a simple linear optomechanical
treatment is no longer valid. Incorporating the backaction of
a continuous quantum measurement process, when the light
leaking out of the cavity is monitored, provides an additional
challenge.

In this section we show how a continuous monitoring of the
intensity of the cavity output generates multimode optome-
chanical dynamics of a condensate in a cavity. The intrinsic
multimode excitations of the BEC are solely the consequence
of the conditioned measurement record of a single stochastic
realization, and ensemble-averaging over a large number of
realizations cancels out any overall optomechanical motion in
the atomic density. Using classical measurement trajectories,
we show that the measurement can be tailored to preferentially
excite selected intrinsic excitations. The optomechanical con-
densate dynamics with interacting collective mode excitations
cannot be adequately represented by a single- or few-mode
model; furthermore, inclusion of a sufficient number of modes
is infeasible for quantum trajectory simulations.

Cavity optomechanics [73-76] provides a useful tool to
study the interface between quantum and classical regimes,
coupling a quantized light field to a meso- or macroscopic
mechanical system, such as a mirror that is free to oscillate
or a gas of atoms within the cavity. The sensitivity of such
systems to the position of the oscillator has several potential
applications in quantum sensing [77,78], and the coupling with
the light can be used to control the mechanical system, for
example, cooling of the macroscopic motional state [79,80].
Nanomechanical resonators have now been cooled to the
quantum regime [81-83]. In contrast, ultracold atomic gases
can routinely be cooled to the quantum degenerate regime, and
the technical challenges of cooling optomechanical systems
that are commonplace for most mechanical oscillators can
be circumvented. For ultracold gases in a cavity, we have
an optomechanical system where a quantized light field is
coupled to a many-body multimode optomechanical system
that is already in its ground state, allowing a variety of
optomechanical responses [84—88].

In the following section we briefly review the more
commonly discussed linear optomechanical regime, before
returning to focus on the multimode problem in the subsequent
section.

A. Linear optomechanical regime

Current experiments on cavity optomechanics with ultra-
cold atoms have generally operated in the linear optome-
chanical regime, where the cavity light strongly couples only
with a single excitation mode of the atoms. Such a regime
can be reached by having a cavity wavelength much smaller
than the extent of the atom cloud, such that it predominantly
Bragg diffracts the atoms between the states with momentum
0 and %Ak [37]. The linear regime is reached provided that
higher momentum states play a negligible role. Alternatively,
atoms can be tightly trapped via a strong external optical
lattice. Provided that each atom cloud can move only a small
amplitude from the lattice site minimum, the linear regime
is again reached with the dominant dynamics being due to a
single collective mode [35,89]. In this regime, the system is
well described by the coupled Hamiltonian for the cavity light
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mode and the single motional mode b,
Hyin = hwpb'h + holata + hg'(b + bha'a, (43)

where w/, includes the shift to the cavity resonance frequency
from the atoms and g’ is a generalized coupling strength
between the atomic mode and the cavity photons. We can
recover this form of Hamiltonian from our Eq. (6) by, for
example, assuming a tightly confined condensate with a spatial
extent smaller than the cavity wavelength pumped on the
cavity axis. This could also represent a single site of an
optical lattice where the atoms occupy more than one site with
negligible tunneling between the sites, provided the system
can be approximated as translationally invariant. Under the
approximations that the condensate center of mass undergoes
small displacements of §x, centered at x,, but without exciting
any other perturbations in the shape of the condensate density,
then the spatial integral in the coupling term of Eq. (6) becomes

/@T(x)gz(x)\fl(x)dx&% R~ g(z) sin(kxg)dxata.
pa pa

(44)

Quantization of the center-of-mass motion, such that éx =
(b+bh / /2, then leads to the linear optomechanical Hamil-
tonian. Similar Hamiltonians can be derived in the transversely
pumped case, but the essential approximation is that the
integral fgz(x)|1ﬂ(x)|2dx o« bx [f h(x)g ()| (x)2dx o 8x
for the transversely pumped case]. These are the same integrals
which appear in the measurement operators (X) and (¥) of
Egs. (26) and (35), and hence photon detection implies a
backaction on the atoms which couples to the single mode
b in this regime.

B. Multimode optomechanical system

In contrast to the linear optomechanical regime, we study
here the case where the measurement can cause density
perturbations of the condensate which are not insignificant and
center-of-mass displacement which is not restricted to be small
and where the interactions between atoms in the condensate
can couple together different quasiparticle excitations. The
single-mode model commonly used to describe the condensate
in the linear optomechanical regime is therefore insufficient to
describe this many-mode problem and the richer physics we
expect to result. Our classical treatment of the continuous
quantum measurement process is particularly suitable for
such a problem. The computational efficiency of the classical
trajectories allows us to simulate a condensate on a spatial grid
with upwards of 1024 points, a problem whose full quantum
trajectory calculation is not numerically feasible.

1. The system

In this section we are interested in the atom dynamics in a
single potential well, and therefore simulate a BEC confined
within an optical cavity by the harmonic external potential,

V(x) = imw’x?, (45)

where we assume the wavelength of the cavity to be of the same
order as the radius of the BEC. This system also represents
the translationally invariant case of many BECs in a periodic
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potential with negligible tunneling, with each BEC coupled
identically.

The atoms are pumped transversely with a uniform driving
field h(x) = hg on resonance with the cavity-mode frequency,
and we study the dynamics in the limit of an adiabatically
eliminated cavity field presented in Sec. V B. In this limit, we
emphasize that the sole dynamical contribution from the cavity
mode is due to measurement backaction. Since we begin in an
eigenstate of the atomic Hamiltonian, all dynamics studied
in this section are therefore purely measurement induced.
Detection of the light leaking out of the cavity represents a
combined measurement of many of the collective excitation
modes of the atoms; these describe the intrinsic dynamical
degrees of freedom for a BEC in a multimode picture. The
quantum measurement can lead to complex dynamics by
exciting several of the interacting modes. Nonetheless, we
show that a suitable tailoring of the cavity-mode shape can
be used to selectively excite particular collective modes of the
atom cloud.

We calculate the classical measurement trajectories using
Eq. (40), which has two free parameters. We set the interac-
tion nonlinearity NU =~ 64hwx and the ratio h%gé /K Afm ~
0.042w. In order to make the role of measurement backaction
more transparent, we operate in the weakly fluctuating limit
where the quantum and thermal fluctuations in the initial state
are assumed to be negligible. In this limit the only difference
between trajectories comes from the distinct backaction of the
continuous quantum measurement process; the dynamics of
the system generated by Eq. (40) for different trajectories arise
directly from a given measurement record for an individual
experimental run. The quantum fluctuations of the initial
state may be ignored provided the depletion of the BEC is
small, which for our nonlinearity requires N >> 14 at zero
temperature. More strongly fluctuating cases could be studied
using the approaches discussed in Sec. VIII.

All quantities can be rescaled for an atom number N,
given the fixed nonlinearity, and the measurement rate then
scales as rmeas() < N2. However, in addition to the classical
limit above, the atom number must satisfy two constraints.
First, the measurement rate must be sufficiently high if we
expect to resolve the dynamics of the atoms inside the cavity;
this requires a significant number of measurement events
during the characteristic time of the excitation to be observed.
Second, the small parameter in our adiabatic expansion
f(gz(x)/A,m)|1//(x)|2dx//c must remain much less than unity.
As an example, choosing ¥ = 100w, go/\/Aps = 0.16w'/2,
and ho/\/A . = 12.8w'/?, we find that an atom number in the
range 500-1000 adequately satisfies these various constraints
for the dominant excitations that we study below.

2. Decomposition into Bogoliubov-de Gennes modes

We simulate the effect of continuous quantum measurement
on the optomechanical motion of a BEC inside the cavity. Start-
ing from the ground state of the BEC, we begin to transversely
pump the atoms on resonance with the cavity at + = 0 with
an aim to excite collective motion of the condensate via the
measurement process. Collective motion of the condensate
can be decomposed, for weak excitations, into the intrinsic
excitation modes of the system: the linearized Bogoliubov—de
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Gennes (BdG) quasiparticle modes. A semiclassical treatment
of cavity cooling for the unconditioned case using such a
decomposition was presented in Ref. [41]. The quasiparticle
modes u;(x) and v;(x) are the solutions to the BdG equations

L (x) — NUYE(x)vi(x) = g;ui(x),
(46)
L(x)v;(x) — NU Y OPui(x) = —ev;i(x),

in the subspace orthogonal to the stationary initial state of the
condensate ¥y(x), where

L(x) = Hy — p + 2NU [yro(x)|*. 47)

We can now define quasiparticle mode amplitudes o; [90],
such that

Yx,1) = e—"“’/h{aouwo(x) + ) Lo (tui(x)
i#0

_ af(t)vf(x)]}, (48)

where |ag|? is the number of particles in the state o(x) which
is normalized to f dx|yo(x)|> = 1. Projecting the results of
our classical measurement trajectory onto the BdG modes then
gives the time-dependent mode amplitudes

o = / dx[uf ()Y (e 4 vy (e M. (49)

We can now use the BAG mode decomposition to express the
measurement operator ¥ from Eq. (35). Detection of a photon
lost from the cavity represents a combined measurement of
many of the collective modes of the condensate, dictated by the
functional form of ¥, and corresponds to the jump operator of
Eq. (38). When the stochastic field 1 (x,#) is close to the initial
configuration—assuming that o is macroscopically occupied,
but the remaining excitation modes have low population—then
(Y) is approximately

ho
A

(¥) = {|ozo|2 / g(0)|Yo(x)|Pdx

pa

+ ) o / 8OOV (0)letiui(x) — a:‘vmx)]dx}. (50)
i#0

We can therefore attempt to couple the measurement back-

action to a chosen mode by maximizing the corresponding

overlap integral

0; = /g(x)llfé‘(X)[ui(X) —vi(x)]dx. (S

3. Center-of-mass excitation

As a first example, we study how the continuous mea-
surement can induce an optomechanical coupling of the
center-of-mass mode, and for a BEC in a harmonic potential
this corresponds to exciting the lowest-energy BdG collective
mode, the Kohn mode. We choose the wavelength of the cavity
mode such that the overlap integral for the Kohn mode, O,
from Eq. (51) is maximized. Figure 6(a) shows the form of the
resulting cavity coupling function g(x), along with the initial
state of the atoms, and the Kohn mode quasiparticle functions
ui(x) and vi(x).
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FIG. 6. (Color online) A selective excitation of collective modes of a BEC as a result of quantum measurement backaction. (a) Comparison
of the shapes of the Kohn mode quasiparticle functions u,(x) (blue dashed line) and v, (x) (black dash-dotted line) with the cavity mode function
g(x) (red dotted line) and the initial stochastic field for the condensate ¥ (x) (green solid line) for the case where the overlap of the cavity
mode and the Kohn mode is maximal. The differing quantities have been scaled into arbitrary units to enable a comparison of their functional
form. (b)—(f) The dynamics for a single stochastic realization of a measurement record when maximizing the overlap of the cavity mode with
the Kohn mode. (b),(c) The stochastic field density |1/ (x,)|? as a function of time for two different classical measurement trajectories. The
transverse pump beam is applied at # = 0 and remains at a constant strength throughout the simulation. (d) The center-of-mass position of the
condensate for the two trajectories shown in (b) (solid line) and (c) (dashed line). (¢) The measurement rate of photons at the photodetector
T'meas TOT the two trajectories, directly proportional to the measured photocurrent. (f) The variation of Ag for the two trajectories.

For this geometry, Figs. 6(b)—6(f) demonstrate the measure-
ment backaction for two distinct realizations of single mea-
surement trajectories. As anticipated, the condensate acquires
a pronounced center-of-mass oscillation. The oscillations are
revealed as pulses in the measured rate of photocounts, since
the overlap of the stochastic field ¥ (x,t) with the cavity mode
g(x) varies with time and consequently affects the number
of photons pumped into the cavity mode. For notational
simplicity, we use the variable g to represent moments
of x for individual realizations, i.e., q; = fle(x)|2dx,

g = f x| (x)|’dx, and use the brackets () to represent
quantum averages, obtained by ensemble averaging normal
ordered operators over many single trajectories [53,58].

Due to the stochastic nature of the continuous measure-
ment process, different realizations corresponding to distinct
measurement records display different trajectories for the
evolution of the atomic density. BAG mode amplitudes and
phases also vary between realizations. This measurement-
induced symmetry breaking of the dynamics of the atoms
is similar to that seen in the density patterns of Sec. VI
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FIG. 7. (Color online) Condensate response to the transverse pump unconditioned on any particular measurement trajectory, formed by
ensemble averaging 400 single trajectories such as are shown in Fig. 6. (a) Ensemble-averaged stochastic field density |1 (x,t)|2. (b) Dissipation-
induced loss of coherence between x = 0 and x’ = 3x,. The figure shows |g;(x,x")| = [(UT(x)¥(x"))|; the initial condensate is phase coherent

with |g;(x,x")] = 1.

The initial unbroken symmetry in the atomic density is
restored on ensemble averaging over a large number of
independent trajectories, so as to generate the dynamics from
the unconditioned master equation (36). Figure 7 shows that
the unconditioned dynamics lead to no overall motion of the
condensate density; instead, the condensate stochastic field
decoheres due to dissipation induced by the open nature of the
system.

Nonetheless, ensemble averaging quantities extracted from
single trajectories, such as the populations of BdG modes and
center-of-mass coordinates as presented in Fig. 8, illuminate
the average response of single realizations. As intended,
the BdAG mode decomposition shows that the predominant
excitation at short times is the Kohn mode. However, several
other low-energy modes also respond to the measurement,
confirming that we are not in the linear optomechanical
regime with only a single mechanical mode. Most notably, the
second BdG mode becomes dominant at later times; this is the
breathing mode which corresponds to a collective excitation

of Ag =~qr — qlz. Since the breathing mode has a different
parity with respect to the trap center than the cavity mode g(x),

2
t (units of 2nt0)

we would not naively expect it to respond to the measurement
backaction. At early times, the breathing mode occupation is
indeed small, but once the center-of-mass oscillations move
the condensate off center, the breathing mode can become
excited. Of course, the BAG mode decomposition is only valid
while the condensate is not significantly perturbed from the
initial state and so should not be relied upon at later times.
However, confirmation of the qualitative behavior indicated
by the BdG modes is given by Fig. 8(b), showing that the
average center-of-mass displacement continues to grow slowly
at large times, and Fig. 6(f), showing that Ag does begin
to oscillate at the time that the breathing mode population
becomes significant.

Even though other modes are excited, at short times the
Kohn mode is the dominant excitation. To verify the above
argument that the overlap between the Kohn mode and the
cavity-mode function governs the degree of excitation, Fig. 9
shows the Kohn mode excitation and the center-of-mass
displacement after a short time as a function of the cavity mode
wavelength. The response agrees well with the behavior of the
overlap integral (51). Away from the peak overlap the Kohn

o
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©
=
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FIG. 8. (Color online) Quantum measurement-induced excitation of the Kohn mode, simulations with a maximum overlap between g(x)
and the Kohn mode. (a) Decomposition into BdG linearized collective excitations; mode occupation numbers are shown averaged over 400
individual measurement trajectories. (b) Ensemble average of (|g;|) over 400 realizations. Note that the absolute value must be taken since the
measurement backaction generates oscillations with a random phase for different realizations.
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FIG. 9. (Color online) Varying the wavelength of the light in the cavity compared to the Kohn mode wavelength. (a) The Kohn mode
population and (b) the center-of-mass displacement (|q;|) after a short time (0.1627#)) as a function of the cavity-mode wavelength.
Error bars represent the quantum-mechanical uncertainty. The results have been ensemble averaged over 400 realizations for each cavity

wavelength.

mode response reduces substantially, becoming particularly
weak at k = 1.03x, !, This point closely corresponds to the
peak overlap of the third BAG mode, which Fig. 10 shows is
strongly excited. In contrast to the Kohn mode results, this
mode remains the dominant excitation throughout the length
of our simulation.

4. Breathing mode excitation

Moving the trap center to a cavity antinode means that
the measurement can be tailored to couple to a mode of
different parity. Tuning the cavity wavelength to maximize
the overlap with the breathing mode leads to the results
in Fig. 11. The response to the measurement backaction
differs significantly from the previous results, as clearly seen
by the stochastic field density |1 (x)|?>. The center-of-mass
displacement is negligible at all times, while both the the
BdG mode decomposition and the behavior of (Ag) show
the breathing mode to be strongly excited. The oscillations
set up by the breathing mode are easily identifiable in the
observed measurement rate. Note that in contrast to the
previous results, here the initial state is not orthogonal to g(x),
and so the initial measurement rate is significantly greater.

0
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no
Density (arb. units)

X (units of Xo)

Once again, a number of low-energy collective modes are
substantially occupied. However, in contrast to the Kohn mode
results, since the breathing mode excitation preserves the
parity of the stochastic field ¥ (x), all the modes populated
have the same parity as the breathing mode, even at long
times.

VIII. INITIAL CONFIGURATIONS WITH ENHANCED
FLUCTUATIONS

We may also consider situations where the initially stable
equilibrium configuration exhibits notable quantum or thermal
fluctuations. In order to model more accurately the resulting
dynamics of the atom-light cavity system, we may apply many-
body theories for the calculation of the initial phase-space
quasiprobability distribution. Stochastic sampling of the initial
states for the time evolution of SDEs can then synthesize
the quantum-statistical correlations of the initial state. For
simplicity, we consider the initial configuration of the atoms
in the ground state inside the cavity in the absence of the
light. The simplest approach that includes the spatial variation
of the density and phase fluctuations of the atoms [56] is to
sample the initial noise according to the Bogoliubov theory.

t (units of 2nt0)

FIG. 10. (Color online) Response for a cavity wavelength of k = 1.03x; !, corresponding to the point second from the right in Fig. 9.
(a) Density response stochastic field | (x,#)|? for a single stochastic realization of a measurement record. (b) BAG mode populations, ensemble

averaged over 400 realizations.
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FIG. 11. (Color online) Quantum measurement-induced excitation of the breathing mode: maximal breathing mode overlap results.
(a) Density of the stochastic field |y(x,t)|> as a function of time for a single stochastic realization of a measurement record.
(b) Ensemble average over 400 realizations of BdG mode populations. (c) Measurement rate for the same single realization as that
shown in (a). (d) Ensemble average of Ag = /g, — ¢7. The shaded gray area corresponds to the width of the standard deviation in the

result.

We expand the initial state for the stochastic representation of
the bosonic field operator in terms of the Bogoliubov modes
uj(x)and v;(x) as

Y(x) = Yoag + Y _[u;(x)e; — via;],
J#0

(52)

where ¥(x) denotes the ground-state solution and the total
number of ground-state atoms N, = (&g&o). The stochastic
mode amplitudes «; and o are sampled from the corre-
sponding Wigner distribution for harmonic oscillators [53] in
order to synthesize the fluctuations of an ideal Bose-Einstein
distribution for the phonons (&;& i) = lexp(e;/kpT) — 1711
The normal mode frequencies &; and the quasiparticle
amplitudes #; and v; in the initial trapping potential can
be solved numerically. In a more strongly fluctuating case
the quasiparticle modes and the ground-state condensate
profile may be solved self-consistently using the Hartree-Fock-
Bogoliubov theory [65,66]. A strongly confined 1D system
may also exhibit enhanced phase fluctuations that can be
incorporated using a quasicondensate representation [58].

IX. CONCLUDING REMARKS

The backaction of measurement on a quantum system is
an intrinsic feature of quantum mechanics. However, when
the system has a large number of particles and modes, it is

not computationally feasible to obtain a numerical solution
to the nonlinear dynamics that incorporates the backaction of
the continuous quantum measurement process within a full
quantum picture. Here we have presented an unraveling of the
classical quasiprobability amplitude for a many-mode system,
namely, a BEC in an optical cavity, into classical measure-
ment trajectories which approximate a continuous quantum
measurement process, conditioned on a given measurement
record.

We have derived a Fokker-Planck equation for the evolution
of the ensemble-averaged quasiprobability distribution given
by the Wigner function, in the limit of weak quantum
fluctuations. The Fokker-Planck equation is then mapped onto
SDEs, where the dynamical noise in each stochastic realization
is generated by the measurement record on a photon detector.
Each stochastic trajectory is therefore conditioned on a
particular probabilistic measurement record that represents
a classical approximation of the backaction of a continuous
quantum measurement process. Each stochastic measurement
trajectory corresponds to the measurement record of a
potential individual experimental run. Since a continuously
measured observable in few- or many-body systems is
expected to be closely approximated by classical dynamics
whenever the measurements are frequent enough to be able
to resolve the dynamics [28], the method can predict the
dynamics of the observed quantity even deep in the quantum
regime.
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We have then numerically studied the continuous mea-
surement of a large multimode atomic BEC consisting of
up to 1024 spatial grid points inside an optical cavity. The
intensity of light leaking out of the cavity is continuously
monitored and this has a direct effect on the cavity photon
amplitude, which in turn couples to the atoms inside the
cavity. In the limit that the cavity field may be adiabatically
eliminated, the measurement of the light intensity outside
the cavity can be directly related to the spatial profile of the
atomic field. We find that the atoms inside the cavity undergo
local stochastic phase evolution that solely results from the
backaction of the measurement process. The phase noise is
proportional to the spatially varying strength of the quantum
measurement. We have shown how this local phase evolution
can lead to quantum measurement-induced pattern formation
for a BEC. The continuous quantum measurement process
spontaneously breaks the symmetry of the spatial profile of the
multimode BEC. The pattern emerges randomly, conditioned
on the detection record of the photons. Ensemble averaging
over many stochastic measurement trajectories restores the
initial uniform unbroken spatial condensate density profile
and demonstrates the loss of coherence between sites due to
dissipation from the open system.

In the absence of an additional optical lattice, we have
studied the effects of a continuous quantum measurement on
the optomechanical motion of a BEC inside the cavity. In
a multimode representation a BEC exhibits a large number
of intrinsic dynamical degrees of freedom in terms of its
collective excitations that couple to the cavity mode. We have
shown how the measurement can be tailored to selectively
excite particular collective modes of a BEC, considering
examples of Kohn and breathing modes. The interaction
between the modes leads to spreading of the excitations
between different modes and eventually to a more complex
internal dynamics.

We have limited ourselves in this paper to approximate
classical theories that are severely restricted by the com-
putational demands of large realistic multimode systems. It
would be particularly interesting to explore how classical ap-
proximations make dynamical trajectories more objective than
their fully-quantum mechanical counterparts and whether our
classical measurement trajectories are affected by the choice
of measurement scheme, such as photon counting, homodyne
or heterodyne measurements [27,91]. The backaction of ho-
modyne measurements has been studied for simplified models
of BECs in cavities [92], in dispersive imaging [49,93], and in
an interferometric context [94] (related to the experiments of
Ref. [95]); the photon counting of scattered light was simulated
in Refs. [8,32]. Experimentally, the backaction of a continuous
quantum measurement process has been confirmed for BECs
in heterodyne measurements of the cavity output [35,36].
In addition, the results of the measurement can be used
to construct feedback mechanisms [23]. For condensates
feedback has been studied in the context of reducing heating
due to measurement backaction [48].
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APPENDIX: ADIABATIC ELIMINATION OF LIGHT MODE

As a more rigorous adiabatic elimination of the light mode,
we outline here a derivation which follows closely in spirit a
procedure explained in greater detail in Ref. [33]. Without the
presence of atoms, the cavity mode would be well represented
by a coherent state of amplitude ap = n/(k —iA,.); we
therefore use a displacement operator D[] to shift away
this contribution, by defining the displaced density matrix,

pp = DlaglpD ). (A1)

Performing this transformation on the master equation, we can
conveniently write the result

pp = (Sa + Sa + Sua)pps (A2)
in terms of the superoperators
Sap = iApcldta,pl +«Qapa’ — pata —alap),  (A3)
i
Sup = _7_1[H4”0], (A4)

2
Siap = —i / dx (x){[ Piatad ). pl

A
t "\
|:\IJ (x)( A p +iAPEa>\IJ(x),/0]}.

(A5)

These define, respectively, the evolution of the the atomic
and displaced cavity-mode subsystems and that due to the
interaction, and we have defined

2
H, = /dx\iﬁ(x){—zh—mvz + V(x)}\if(x)

+%/dx\iﬁ(x)xiﬁ(x)\if(x)\ff(x)

2 2
Ll /d D Grdbe).  (A6)

2 2
K2+ Ay, Apg
We have therefore shifted the dominant coherent contribution
from the interaction of the atoms with the cavity mode
into an effective potential in the atomic operator subspace
Hamiltonian. With the further transformation
pp = e~ SitSt (A7)

the master equation simplifies to

Pp(t) = Saa()pp (1), (A8)
where
Sda(t) — e*(SdJrSu)tSdae(SdJrSa)t. (A9)
Formal integration of Eq. (A8) leads to
t
pp(t) = pp(0) + / Saa(t)pp(t)dt'. (A10)
0

We may now eliminate our displaced cavity mode, which we
assume to be well approximated by the vacuum state since
the predominant contribution to the cavity mode was shifted
away by our earlier displacement. We therefore substitute on
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the right-hand side of Eq. (A10)
pp(1) % pa(t) & (10)aa (0D,

where |0); is the vacuum-state vector for the displaced
cavity field. Upon tracing over the displaced cavity field,

J

(Al1)

In|*

(k2 + Af,c)

muw=—§Hw%my4Am

If we assume that A,. <« k and expand in the small
parameters X /K, Apc /K, then we obtain the same result at
lowest order as the simpler treatment given in Sec. V A, leading
to the classical measurement trajectories given by Eq. (32).

SIXX, pa(D)] +

PHYSICAL REVIEW A 90, 023628 (2014)

the first term of Eq. (A10) can be seen to vanish. The
remaining term, after some superoperator algebra [33], and
reversal of the transformation of Eq. (A7), gives the adi-
abatically eliminated master equation for the atomic field
only,

In|? o o o9 o0
%[ZX/%(I)X—XXPEJ(I)—pa(t)XX]- (Al12)

K2+ Ay,

(

The advantage of the method presented in this appendix is
the ability to consistently go beyond the lowest order. The
next-highest-order contribution is due to the second term of
Eq. (A12) and gives rise to the second term of Eq. (33).
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