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Electromagnetic sources beyond common multipoles
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The complete dynamic multipole expansion of electromagnetic sources contains more types of multipole terms
than is conventionally perceived. The toroidal multipoles are one of the examples of such contributions that have
been widely studied in recent years. Here we inspect more closely the other type of commonly overlooked
terms known as the mean-square radii. In particular, we discuss both quantitative and qualitative aspects of the
mean-square radii and provide a general geometrical framework for their visualization. We also consider the role
of the mean-square radii in expanding the family of nontrivial nonradiating electromagnetic sources.
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I. INTRODUCTION

Multipole expansion is one of the main analytical in-
struments of modern theoretical physics. In electrodynamics
it allows one to describe electromagnetic properties of a
charge-current excitation of any spatial complexity and is
routinely used for simplifying the analysis of a wide range
of electromagnetic systems—from elementary particles and
nuclei to neutron stars and black holes. The dynamic multipole
expansion is commonly derived as a series of terms of two
different types, the so-called electric and magnetic multipoles,
which correspond to elementary sources of electromagnetic
radiation formed by oscillating charges and circulating cur-
rents, respectively. It was indicated by several groups [1–3]
and recently confirmed experimentally [4] that the common
expansion is missing toroidal multipoles—a third independent
family of elementary sources, which is usually overlooked
in the course of the expansion but plays an important role
in metamaterial, plasmonic, and nanophotonic systems [5]. It
is little known, however, that every single multipole in the
expansion (be it an electric, a magnetic, or a toroidal one)
gives rise to a subset of additional higher-order terms, that
are referred to as the mean-square radii (or MSRs), of the
respective multipole and without which the standard multipole
expansion cannot be complete [2]. In this paper we determine
and visualize charge-current distributions corresponding to the
MSRs and identify realistic electromagnetic systems capable
of supporting such excitations. We also show that the MSRs
give rise to three distinct groups of nonradiating (NR) elec-
tromagnetic systems that do not involve the interference of
electrical and toroidal multipoles (as in a dynamic anapole
[1]).

We begin with the charge distribution that can serve as a
faithful representation of the most elementary static MSR and
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will later help us to construct and visualize explicit examples
of other MSRs (see Fig. 1). Here a point charge +q is placed
in the center of a sphere bearing the total charge of −q. It is
easy to see that all the standard multipoles in this system are
absent. Indeed, since there is no current, both magnetic and
toroidal multipoles vanish. Due to the spherical symmetry all
the electric multipoles (dipole, quadrupole, etc.) also vanish.
Correspondingly, the standard multipole expansion of the
system at hand (and, in general, any spherically symmetric
electrostatic system) is reduced to a single quantity—its total
electric charge. Only the total charge affects the electric field
outside a spherically symmetric system, and when it is zero, the
external electric field is absent. At the same time, the system
that looks trivial on the outside may still remain nontrivial
internally, and the standard multipoles fail to capture that. In
our case the total charge Q is zero by construction, which is
expressed mathematically as

Q =
∫

d r ρ(r ) = 0, (1)

with ρ(r ) being the charge density of the system. Although the
result of integration is zero, the charge density clearly does not
vanish everywhere (see Fig. 1). In fact, it could have any radial
distribution so long as it preserved the spherical symmetry
(and total charge). To “encode” the details of this radial profile
the following set of quantities can be used (which have been
derived by introducing weight factors in the expression for the
total charge):

Q(n) =
∫

d r r2nρ(r ). (2)

The form of Eq. (2) implies that Q(n) is the nth-order mean-
square radius of an electric charge. A simple computation
shows that in our case Q(n) = −qR2n, where n is a positive
integer and R is the sphere’s radius. Clearly, in the limit of
vanishing R the internal structure of the above system can
be captured simply by the MSR of the first order or, in other
words, Fig. 1 is a graphical representation of the first MSR of
an electric charge.
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FIG. 1. A model of the static first-order mean-square radius of a
point charge: a point charge (+q) placed in the center of an oppositely
charged sphere bearing the same total charge (−q). Only half of the
sphere is shown explicitly.

Quite generally, each term in the standard multipole expan-
sion captures only a certain angular projection of the charge-
current distribution and leaves its radial smearing unaccounted
for. To define an electromagnetic source fully, the standard
multipole expansion must be supplemented with a series of
MSRs for every multipole term there is. Although the choice
of MSRs for encoding the radial profile of a charge distribution
may seem arbitrary for static sources (since static MSRs do not
affect the external fields in any way), in the dynamic multipole
expansion, MSRs emerge naturally because most of them
contribute to the electromagnetic radiation just as their parent
multipoles do [2,3] (see also Sec. VI). We now proceed to the
description and analysis of general time-dependent charge-
current sources and their multipole expansion. We will not
denote dependence on time explicitly to lighten the notation.

II. MATHEMATICAL REPRESENTATION
OF MEAN-SQUARE RADII

The nth MSR of the electric multipole Qlm is defined by

Q
(n)
lm = Cn

l

√
4π

2l + 1

∫
d r rl+2nY ∗

lm(r̂ )ρ(r ), (3)

where Cn
l = 2−n(2l+1)!!

(2l+2n+1)!! . For n = 0 this expression reduces to
the standard definition of the multipole moment itself, i.e.,
Q

(0)
lm ≡ Qlm. For n �= 0 the only difference (apart from the

normalization factor Cn
l ) is the additional weight factor r2n

in the integrand. The MSRs of the magnetic M
(n)
lm and toroidal

T
(n)
lm multipoles are defined in exactly the same way.1 Explicit

formulas are relegated to Appendix A.
For each electric multipole there is specific (singular) charge

density which gives rise only to this multipole and no other.
For example, the total charge (i.e., monopole) corresponds
to ρq (r ) = qδ(r ), whereas the electric dipole corresponds to
ρd (r ) = −(d · ∇)δ(r ). In general, the charge density corre-
sponding to the lmth multipole can be written as [2]

ρlm(r ) = D̂lm(∇)δ(r ). (4)

Here D̂lm is a differential operator whose explicit form is not
important for our purposes [clearly, D̂lm is a constant for a
monopole D̂q = q, whereas for a dipole it is D̂d = −(d · ∇)].

Likewise, there are specific charge-densities ρ
(n)
lm (r ) repre-

senting the MSRs of the electric multipoles. They are derived
by simply applying the Laplace operator � = ∇2

x + ∇2
y + ∇2

z

to the respective charge density, namely,

ρ
(n)
lm (r ) = q

(n)
lm �nρlm(r ). (5)

Constants q
(n)
lm determine the exact values of the corresponding

MSRs.2

To illustrate formula (5) let us take a closer look at the charge
density in Fig. 1,

ρ(r ) = qδ(r ) − σ

∫
dn δ(r − Rn). (6)

The integral here runs over the unit vector n, which
parametrizes the surface of the sphere

∫
dn = 4π , whereas

σ = q/4π is the surface charge density. Expanding this ex-
pression in the limit of small R to the leading nonvanishing
order, and making use of the following relations

∫
dn ni =

0,
∫

dn ninj = 4πδij /3 yields

ρ(r ) = qδ(r ) − σ

∫
dn [δ(r ) + Rni∇iδ(r )

+ R2

2
ninj∇i∇j δ(r )] + O(R3)

= −qR2

6
�δ(r ) + O(R3). (7)

We see that, to the leading order in R, this charge density is
given by ρ(r ) ∝ �δ(r ) and, hence, indeed corresponds to the
first MSR of the electric charge.

The formalism outlined above can be generalized to currents
and the respective multipole families. The result is straightfor-
ward. If the current-density j lm represents the lmth multipole
(magnetic Mlm or toroidal Tlm), then the corresponding nth
MSR is generated by (normalization omitted for simplicity)

j (n)
lm (r ) ∝ �n j lm(r ). (8)

1Quantities Q
(n)
lm , M

(n)
lm , and T

(n)
lm without the normalization factor

Cn
l are sometimes denoted by r

(2n)
lm , ρ

(2n)
lm , and R

(2n)
lm [3]. Note that

for simplicity we have defined Q(n) in Eq. (2) without proper
normalization.

2By substituting density (5) in definition (3) one discovers that
Q

(n)
lm = q

(n)
lm Cn

l
(2n+l+1)!

(l+1)! .
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FIG. 2. (a) An electric dipole as a pair of opposite point charges
and (b) its alternative representation involving three charges.

III. VISUALIZATION OF FIRST-ORDER
MEAN-SQUARE RADII

Having formally associated charge-current density with
MSRs of the multipoles of various orders, our next goal is
to find a way of visualizing first MSRs of electric, magnetic,
and toroidal dipoles. But first, it might be instructive to recall
how one arrives at the graphical interpretation of a dipole of
the most simple form, i.e., electric dipole.

An electric dipole is usually pictured as a pair of opposite
charges, see Fig. 2(a). It should be stressed that the configura-
tion in Fig. 2(a) is not an ideal (pure) dipole. It also embodies
an electric quadrupole as well as other higher-order multipoles.
The corresponding charge density is given by

ρ(r ) = qδ(r ) − qδ(r − R) = q(R · ∇)δ(r ) + O(R2). (9)

It reduces to the pure dipole density strictly in the limit of
vanishing R. This example illustrates a general problem: One
cannot accurately represent multipoles (which are pointlike
sources) with a finite resolution figure. Any charge-current
configuration that one can draw for a given multipole will
always contain an admixture of higher-order multipoles. Only
in the limit of vanishing size of the configuration, one of the
multipoles will become dominant, whereas all others can be
neglected. Another side of this problem is that one can draw
many charge-current configurations representing a given mul-
tipole. For instance, a more complex system in Fig. 2(b) can
also serve as an embodiment of the electric dipole, although it is
distinct from the one shown in Fig. 2(a). Although the electric
dipole representation in Fig. 2(a) appears as simple as it can be,
for higher-order multipoles there may not be a single optimal
choice (and we will encounter explicit examples of that later).
Given the above reservations we can say that the configuration
in Fig. 1 faithfully portrays the first MSR of an electric charge
and we may now proceed to rendering first-order MSRs of
various dipoles.

There is a rather simple way of performing this. Any charge-
density ρ(r ) can be thought of as an assembly of point charges.
The first MSR of ρ(r ) then will be generated by first MSRs of
the point charges distributed in exactly the same manner.

Let us prove the validity of this approach. The statement
that ρ(r ) can be represented as an assembly of point charges
is formally written as

ρ(r ) =
∫

d r ′ρ(r ′)δ(r − r ′). (10)

Then, the first mean-square radius of this density �ρ(r ) can
be written as

�ρ(r ) =
∫

d r ′ρ(r ′)�δ(r − r ′). (11)

FIG. 3. A model of the static first-order mean-square radius of an
electric dipole.

So indeed, in order to reproduce �ρ(r ) one needs to distribute
�δ(r ) (which is nothing else but the first MSR of a point
charge) with the same density profile ρ(r ) that originally
described the distribution of point charges.

Using the above recipe, we can immediately draw the
first-order MSR of an electric dipole as a pair of first MSRs
of its point charges (see Fig. 3). Note that, in general, while
replacing each point charge with its first MSR, one has to take
into account a possible overlap between the charged spheres of
adjacent MSRs. Although the resulting picture may not be the
simplest representation of the sought after MSR, it will provide
a good starting point (as in the case of magnetic and toroidal
dipoles below).

A magnetic dipole is usually visualized as a current loop,
see Fig. 4(a). We start building its first MSR by replacing
every point charge in the current loop with the respective
mean-square radius construct. This will result in a complex
current source where the current loop threads through the
middle of a torus that sustains current in its volume in the
opposite direction. Fortunately, it is possible to simplify this
picture by replacing the volumetric current inside the torus
with a current flowing on its surface, which we denote as
j ′. The simplest replacement prescription requires that the
local density of surface current j ′ decreases linearly with the
distance from the torus axis and that the torus major radius will
need to become slightly larger than the radius of the current
loop, see Fig. 4(b).3 The exact relation is

R2 = R′2 − ρ ′2/2, (12)

where R is the radius of the current loop whereas R′ and
ρ ′ are the major and minor radii respectively, of the torus
[radius ρ is not to be confused with the charge density ρ(r )].
The calculations detailing the origin of this relation can be

3Heuristically, overlaps between the imaginary charged spheres
circling along the loop are greater towards the center of the loop,
so the resulting volumetric current will be radially inhomogeneous.
It is this inhomogeneity that is accounted for by the increase in
the torus major radius R′ and by the variation of surface current
density j ′.
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FIG. 4. Visualizing the first-order mean-square radius of a magnetic dipole. (a) Current distribution representing a magnetic dipole (current
circulates in a loop). (b) A cross section of the current distribution representing the first-order MSR of the magnetic dipole. Currents are confined
to the red loop ( j ) and the surface of the (imaginary) blue torus ( j ′) and circulate in the opposite directions. The dashed blue circle shows the
centerline of the torus. The dashed yellow line is the axis of the torus. (c) A current-carrying supertoroidal wire coil of the third order. In the
limit of tight winding, when helicity of the coil vanishes, it represents a source of the first-order MSR of a magnetic dipole.

found in Appendix B. We should stress that fine-tuning of
the MSR geometry according to Eq. (12) is only needed to
completely eliminate all usual multipoles of the same order
as the constructed MSR. As such, this is rather an academic
exercise. For any similar configuration (e.g., when the major
radius of the torus coincides with the radius of the inner current
loop) the first-order MSR of the magnetic dipole would still
dominate the contributions of the usual multipoles and, hence,
could not be neglected.

Finally, let us draw the first MSR of a toroidal dipole.
The dipole itself is usually represented by poloidal currents
flowing on the surface of an imaginary torus, see Fig. 5(a).
Replacing charges in these currents with their first MSRs
will render a larger thick torus, which encloses the original
torus with poloidal currents and contains a volumetric current
circulating in the opposite direction. As in the previous case,
it is possible to simplify this picture by replacing volumetric
currents with surface ones. Although, in general, the described
procedure yields three nested tori, it is always possible to
shrink the innermost torus to a ring so that the contribution
of its surface currents vanishes. The result is two nested tori
with surface currents circulating in the opposite directions,
see Fig. 5(b). The price to pay for this simplification is a

mismatch between surface current densities and major radii
of the two tori.4 The exact relation between the radii, which
makes Fig. 5(b) a faithful representation of the first MSR of
the toroidal dipole, has the form

R2 − ρ2/4 = R′2 − ρ ′2/4, (13)

with R and ρ being the major and minor radii, respectively, of
the inner torus (and R′ and ρ ′ for the outer torus). This formula
is obtained in Appendix C.

To briefly summarize this section, just as the first-order
MSR of a point charge is obtained by placing the charge inside
an oppositely charged sphere, the first-order MSR of both
magnetic and toroidal dipoles can be obtained by placing the
corresponding current distribution inside a torus with surface
currents circulating in the opposite direction.

4Note that the local surface density of currents j and j ′ is forced
to decrease linearly away from the symmetry axis by the current
conservation.

FIG. 5. Visualizing the first-order mean-square radius of a toroidal dipole. (a) The current distribution representing a toroidal dipole (currents
circulate on a surface of an imaginary torus along its meridians). (b) A cross section of the current distribution representing the first-order MSR
of the toroidal dipole. Currents j and j ′ are confined to the surfaces of nested (imaginary) red and blue tori and circulate along their meridians
in the opposite directions. The dashed blue and red circles show the centerlines of blue and red tori, respectively. The dashed yellow line is the
axis of both tori. (c) A current-carrying supertoroidal wire coil of the fourth order. In the limit of tight winding, when the helicity of the coil
vanishes, it represents a source of the first-order MSR of a toroidal dipole.
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FIG. 6. (a) An electric quadrupole as a set of four point charges
and (b) its first-order MSR given by a set of four first MSRs of the
point charges.

IV. FURTHER EXAMPLES OF MEAN-SQUARE RADII

In the previous section we gave a general prescription
for constructing a first-order MSR of any charge-current
configuration and illustrated it using the examples of electric,
magnetic, and toroidal dipoles. Here we will show how the
procedure can be generalized for higher-order multipoles. An
electric quadrupole is usually pictured as four pairwise oppo-
site charges, see Figs. 6(b) and 6(a). To obtain its first-order
MSR one just needs to replace each constituent point charge
with the corresponding first MSR, see Fig. 6(b). Alternatively,
one may view an electric quadrupole as a combination of
two oppositely directed electric dipoles. The first MSR of the
electric quadrupole is then given simply by a combination of
two first MSRs of these electric dipoles. This approach equally
applies to magnetic and toroidal quadrupoles, which may be
viewed as pairs of the corresponding dipoles. Understanding
of how to construct the first MSRs of dipoles and quadrupoles
allows one to effortlessly imagine their forms in the case of
other higher-order multipoles.

Another direction of generalization is constructing the
second- (and higher-) order MSRs. One can show that the
configuration depicted in Fig. 7 corresponds to the second MSR
of an electric charge if the following two conditions are met

q + q1 + q2 = 0, (14)

q1R
2
1 + q2R

2
2 = 0. (15)

Here R1 and R2 are the radii of the spheres bearing charges q1

and q2, respectively. Equation (14) simply means that the total
charge is zero whereas Eq. (15) ensures that the first MSR is
zero. In particular, it implies that charges q1 and q2 must have
opposite signs. In other words, to obtain the second-order MSR
of a point charge, the latter needs to be screened not by one but
by two charged spheres, and the charges they bear must have
opposite signs.

The procedure for constructing the second-order MSR of
a magnetic (and toroidal) dipole is also straightforward. One
needs to place the corresponding first-order MSR fully inside

FIG. 7. A model of the static second-order mean-square radius of
a point charge.

another (larger) imaginary torus where the surface currents
are reversed with respect to those on the outer torus of the first
MSR. If the current densities and geometrical parameters of the
tori are chosen such that the dipole moment and its first-order
MSR are zero, then the resulting configuration will represent
the second-order MSR of the dipole.

V. PHYSICAL REALIZATIONS OF MEAN-SQUARE RADII

Let us now identify possible physical realizations of radi-
ating MSR sources. Although this may seem a very daunting
task (given the extreme three-dimensional complexity of the
underlying current configurations), the realization of such
sources is fairly trivial if one recalls the so-called supertoroidal
currents. They represent a curious class of fractal current
configurations where each iteration replaces every current loop
from the previous iteration with a toroidal solenoid formed
by smaller loops [6,7]. The supertoroidal current density of
nth order with its symmetry axis oriented along the z axis is
given by the following formula (the normalization constant is
omitted):

jn(r ) = rotn ẑδ(r ). (16)

It is easy to see that for n = 1 and n = 2 the above current den-
sity corresponds to magnetic and toroidal dipoles, respectively:
j0(r ) ∝ jμ = rot ẑδ(r ), j1(r ) ∝ j τ = rot2 ẑδ(r ). Although
in practice the magnetic dipole is produced by a current
loop, the toroidal dipole can be generated by currents flowing
through a wire solenoid bent into a torus, i.e., toroidal solenoid
(see Fig. 8).

The current configuration corresponding to n = 3 can be
realized with a wire solenoid wrapped around a torus, see
Fig. 4(c). Intriguingly, in the limit of vanishing helicity and size
of the windings, both magnetic and toroidal (and, naturally,
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FIG. 8. A current-carrying supertoroidal wire coil of the second
order (toroidal solenoid). In the limit of tight winding, when helicity
of the coil vanishes, it represents a source of a toroidal dipole.

electric) dipole moments of such a source are zero, yet the
supertoroidal current will give off electromagnetic radiation
of the dipole type [6,7]. What defines its radiation properties
then? The easiest way to find this out is to employ the following
transformation for the underlying current density:

j3 = rot3 ẑδ(r ) = (∇ div −�) rot ẑδ(r )

= −� rot ẑδ(r ). (17)

It is now clear that the supertoroidal current of the third order
is nothing else but the first MSR of the magnetic dipole. Also,
one can also deduce directly from Fig. 4(c) that in the limit of
small overlapping loops the current distribution imposed by the
supertoroidal coil will transform into the current distribution in
Fig. 4(b), which visualizes exactly the first MSR of a magnetic
dipole.

One can show in a similar way that the current in a su-
pertoroidal coil of the fourth-order j4 = −� rot2 ẑδ(r ) yields
the first MSR of a toroidal dipole [Fig. 5(c)], whereas the
fifth-order current coil j5 = �2 rot ẑδ(r ) corresponds to the
second MSR of a magnetic dipole [Fig. 9]. In general, jn in

FIG. 9. A current-carrying supertoroidal wire coil of the fifth
order. In the limit of tight winding, when helicity of the coil vanishes,
it represents a source of the second-order MSR of a magnetic dipole.

Eq. (16) will generate the (n − 2)th MSR of a magnetic dipole
for even n and the (n − 3)th MSR of a toroidal dipole for odd
n.

VI. ELECTROMAGNETIC PROPERTIES
OF MEAN-SQUARE RADII

Every multipole moment of a charge-current source
contributes to the radiated electromagnetic field. A crucial
yet often underestimated fact is that different multipoles can
provide the same contributions to the far-field radiation. The
most celebrated illustration of this fact is the radiation patterns
of toroidal and electric dipoles, which are identical. The
same holds for the higher-order multipoles of electric and
toroidal families: The radiation of a toroidal quadrupole is
indistinguishable from the radiation of an electric quadrupole,
etc. Mean-square radii further expand the library of examples,
illustrating the above fact. Indeed, the full radiation intensity
of a charge-current source described in terms of its multipole
moments has the following form [3]:

I = c

∞∑
l=1

l∑
m=−l

(l + 1)

l(2l − 1)!!(2l + 1)!!
k2l+2

×
⎛⎝∣∣∣∣∣Q(0)

lm + ik

∞∑
n=0

(−1)nk2n

n!
T

(n)
lm

∣∣∣∣∣
2

+
∣∣∣∣∣

∞∑
n=0

(−1)nk2n

n!
M

(n)
lm

∣∣∣∣∣
2
⎞⎠. (18)

We assumed harmonic time dependence with frequency ω and
denoted k = ω/c. Formula (18) concisely summarizes many
important features of the complete multipole expansion. For
example, it shows that the radiation of a toroidal multipole
T

(0)
lm can cancel the radiation of a charge multipole Q

(0)
lm if the

relation Q
(0)
lm + ikT

(0)
lm = 0 is satisfied. At l = 1 it gives the

familiar anapole condition d + ikτ = 0 [6].
Moreover, the formula implies that MSRs of magnetic and

toroidal multipoles not only radiate, but also have exactly
the same radiation pattern as their parent multipoles. For
example, the fields radiated by the first MSR of a magnetic
dipole are indistinguishable from those radiated by the dipole
itself. This, of course, assumes that the magnitudes and phases
of the corresponding moments are adjusted properly. Note
also that the fields of MSRs scale differently with k and so
for a source with fixed geometry the relative contributions
of different MSRs will change as the wavelength changes.
However, in the most common regime of electrodynamics (i.e.,
in the long-wavelength limit) all higher-order multipoles and
MSRs generically become negligible. Tables I and II place
the first few MSRs in the hierarchy of the complete multipole
expansion.

Note that Eq. (18) is missing MSRs of charge multipoles
since they do not radiate. This can be appreciated by revisiting
the first static MSR of a point charge shown in Fig. 1. For
this charge configuration to remain the first mean-square
radius in the dynamic case the oscillations of the shell must
preserve spherical symmetry of the configuration. This will be
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TABLE I. Multipole terms (up to order 6) that make up the charge-
current distribution in an electromagnetic source, organized by their
origin. Notation X(n)

m means the nth MSR of the mth multipole type
X. For example, M2 is the magnetic dipole whereas Q

(1)
8 is the first

MSR of the electric octupole.

Expansion order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Electric type Q1 Q2 Q4 Q8 Q16 Q32

Q
(1)
1 Q

(1)
2 Q

(1)
4 Q

(1)
8

Q
(2)
1 Q

(2)
2

Magnetic type M2 M4 M8 M16

M
(1)
2 M

(1)
4

Toroidal type T2 T4 T8

T
(1)

2

possible only for radial oscillations, which naturally produce
no electromagnetic waves.

VII. NONRADIATING SOURCES

A NR source is a nontrivial charge-current configuration,
which creates no electromagnetic fields outside the volume it
physically occupies. Perhaps, the most well-known example is
that of the elementary dynamic anapole [5], which consists of
electric d and toroidal dipoles τ whose complex amplitudes are
related to each other as d = −ikτ . The multipole expansion
of nonradiating sources contains some peculiarities, which
we would like to outline with the help of Eq. (18). The
necessary and sufficient conditions for the absence of radiated
electromagnetic fields are met when the total radiation intensity
equals zero [8]. The trivial solution for I = 0 is obtained when
all multipole moments and their MSRs vanish, implying that
space is empty. Nontrivial solutions correspond to destructive
interference between different multipole modes. It seems ten-
able to introduce four types of nontrivial nonradiating sources
based on the type of destructive interference involved.

(1) Anapole type. It arises from the interference between
charge (i.e., electrical) and toroidal multipoles. A familiar
example is the anapole.

(2) Electric type. This type comes into play when the mul-
tipole expansion contains only the MSRs of an electric charge.

TABLE II. Multipole terms (up to order 6) that contribute to
radiation from an electromagnetic source, organized by the radiation
type. Notation X(n)

m means the nth MSR of the mth multipole type X.
For example, T2 is the toroidal dipole whereas M

(1)
4 is the first MSR

of the magnetic quadrupole.

Degree of spherical harmonic l = 1 l = 2 l = 3 l = 4 l = 5
(radiation pattern)

Electric type Q2 Q4 Q8 Q16 Q32

T2 T4 T8

T
(1)

2

Magnetic type M2 M4 M8 M16

M
(1)
2 M

(1)
4

Since they do not contribute to radiation, the corresponding
source can be regarded as NR.

(3) Magnetic type. It arises from the interference between
magnetic multipoles and their own MSRs. The condition for
destructive interference is met when the second squared term
in Eq. (18) vanishes. For example, for the lowest-order NR
source of this type, which is formed by a magnetic dipole and
its first MSR, the nonradiating condition is μ = k2μ(1).5

(4) Toroidal type. Toroidal multipoles can interfere with
their own MSRs (just as magnetic multipoles do) and form
NR sources even in the absence of electric multipoles. The
lowest-order NR source of this type is formed by a toroidal
dipole and its first MSR when τ = k2τ (1).

Consequently, any combination of the NR sources of the
above types will also lead to a NR source. An important
remark is in order. Recall that the multipole moments generally
depend on the choice of the coordinate origin. Only the leading
multipole moment (or moments if there are several of the same
level) is invariant upon coordinate shift. Since in a NR source
the interference occurs between a lower-order multipole term
and a higher-order one (which is not invariant with respect
to coordinate shift), the classification above is to a certain
extent inaccurate. Take, for example, an NR source of electric
type formed only by charge MSRs. A change in the origin
(and for a real source no point can be preferred as the origin)
will inevitably introduce an admixture of other multipole
modes. The source will remain nonradiative, but from the new
viewpoint it can no longer be regarded (at least formally) as a
NR source of purely electric type. Nevertheless, it still makes
sense to define NR sources based on their leading moment,
which preserves the above classification.

VIII. CONCLUSION

This paper makes an attempt to emphasize the physical
significance of a relatively unknown class of terms in the
complete multipole expansion, named as MSRs. We have iden-
tified the charge-current configurations that represent MSRs
and attempted to give a general recipe for their geometric
interpretation, presenting several concrete examples. The fate
of MSRs in classical electrodynamics is likely to be similar to
that of toroidal multipoles, which themselves came to the scene
only recently (although they have been known theoretically for
a long time). There are two main reasons for that. First, just as
toroidal multipoles, MSRs represent higher-order terms in the
multipole expansion and can be neglected in most situations.
Second, the radiation pattern of a MSR resembles the radiation
pattern of its parent multipole, just as the radiation pattern
of a toroidal multipole is indistinguishable from that of the
corresponding charge multipole. Hence the presence of the
MSR cannot be revealed by studying its radiation only but
requires an investigation of the source as well. On the other
hand, this means that the notion of MSRs is as important as
that of toroidal multipoles, and the current trend shows an
increasing level of interest attracted by the latter [11–20].

5This possibility was recently investigated in high-index dielectric
particles [9,10].
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APPENDIX A: COMPLETE MULTIPOLE EXPANSION

Here, for the sake of completeness, we present complete
formulas expressing multipole moments and their MSRs via
the charge-current density following conventions of [3]:

Q
(n)
lm = Cn

l

√
4π

2l + 1

∫
d r rl+2nY ∗

lm(r̂ )ρ(r ), (A1)

M
(n)
lm = Cn

l

ic

√
4πl

(l + 1)(2l + 1)

∫
d r r2n+lY ∗

llm(r̂ ) j (r ), (A2)

T
(n)
lm = −Cn

l

c(2l + 1)

√
4πl

l + 1

×
∫

d r r2n+l+1

( √
l

2l + 2n + 3
Y ∗

ll+1m(r̂ )

+
√

l + 1

2n + 2
Y ∗

ll−1m(r̂ )

)
j (r ). (A3)

Here Cn
l = 2−n(2l+1)!!

(2l+2n+1)!! is a common combinatorial factor for all
multipole families, and Ylm and Y ll′m are standard scalar and
vector spherical harmonics, respectively [3]. In definitions of
magnetic and toroidal multipoles the scalar product between
vector harmonics and current density is implied. The origin of
these formulas is clearly explained in Ref. [2].

APPENDIX B: FIRST-ORDER MEAN-SQUARE
RADIUS OF MAGNETIC DIPOLE

Let us parametrize a torus of outer radius R and inner
radius ρ by two angles φ and θ , see Fig. 10. Then, the current
distributed on the surface of the torus and circulating parallel
to the torus’ equator, i.e., along the direction of vector φ̂ at
every point (toroidal current) has the following density:

j (r ) = j0

∫
dφ dθ φ̂ δ(r − rφ,θ ), (B1)

where

rφ,θ =
⎛⎝R cos φ + ρ cos φ cos θ

R sin φ + ρ sin φ cos θ

ρ sin θ

⎞⎠, (B2)

in Cartesian coordinates. Normalization constant j0 is related

to the total current I as j0 = I

√
R2−ρ2

2π
. One can expand (B1)

x
y

z

R
ρ

θ

φ

FIG. 10. Parametrization of a torus.

in the limit of large r as follows:

j (r ) = j0

∫
dφ dθ φ̂

[
1 − ai∇i + aiaj∇i∇j

2

− aiajak∇i∇j∇k

6

]
δ(r ) + O(r−4). (B3)

Here, for brevity, we have denoted rφ,θ as a. Using the explicit

Cartesian form of φ̂ =
(− sin φ

cos φ

0

)
the integration in Eq. (B3) can

be carried out in a straightforward manner. The result is6

j (r ) = 2π2j0R rot ẑδ(r ) + π2j0R

8

[
(2R2 + 3ρ2)

(∇2
x + ∇2

y

)
+ 4ρ2∇2

z

]
rot ẑδ(r ) + O(r−4). (B4)

The leading term shows that the principal moment of this
current configuration is the magnetic dipole moment, which
is directed along the z axis and has the magnitude 2π2j0R.

The expansion of a current loop can be obtained by setting
ρ = 0 in Eq. (B4),

j ′(r ) = 2π2j ′
0R

′ rot ẑδ(r )

+ π2j ′
0R

′

8

[
2R′2(∇2

x + ∇2
y

)]
rot ẑδ(r ) + O(r−4),

(B5)

where we have used a different notation for radius R′ and total
current j ′

0. Assuming that

j0R = j ′
0R

′, (B6)

R′ =
√

R2 − ρ2

2
, (B7)

one gets

j (r ) − j ′(r ) = π2

2
j0ρ

2R rot ẑ �δ(r ) + O(r−4) (B8)

for the loop current placed inside the torus and circulating in
the direction opposite to the toroidal current.

6In Cartesian coordinates rot ẑδ(r ) =
( ∇y

−∇x

0

)
δ(r ).
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Thus, the leading moment of the resulting current con-
figuration is the first MSR of a magnetic dipole. Condition
(B6) simply ensures that the magnetic dipole moments of the
torus and the loop are the same and cancel each other out.
Condition (B7) ensures a more delicate balance. It defines the
geometry needed for the rivals of the first MSR to vanish (see
Table I).

APPENDIX C: FIRST-ORDER MEAN-SQUARE
RADIUS OF TOROIDAL DIPOLE

We use the same parametrization as in the previous section
to describe the surface density of the poloidal current (i.e.,
current that flows along the meridians of the torus),7

j (r ) = −j0

∫
dφ dθ θ̂δ(r − rφ,θ ), (C1)

with θ̂ =
(− sin θ cos φ

− sin θ sin φ

cos θ

)
. Expanding this current density to the

order O(r−5) yields8

j (r ) = π2j0Rρ rot2 ẑδ(r )+ π2

32
j0Rρ

[
(4R2+3ρ2)

(∇2
x +∇2

y

)
+ 4ρ2∇2

z

]
rot2 ẑδ(r ) + O(r−5). (C2)

The leading-order term corresponds to a toroidal dipole mo-
ment directed along the z axis and having the magnitude of

c−1π2j0Rρ = IV/4πc with V being the volume of the torus.
Embedding this torus in a larger one with poloidal current j ′

parameters R′, ρ ′, j ′
0 such that

j0Rρ = j ′
0R

′ρ ′, (C3)

R′2 − ρ ′2

4
= R2 − ρ2

4
, (C4)

one discovers

j (r ) − j ′(r ) = π2

2
j0Rρ(R2 − R′2)� rot2 ẑδ(r ) + O(r−5).

(C5)

Hence, the obtained current configuration corresponds to the
first MSR of a toroidal dipole to the leading order. Condition
(C3) ensures that the toroidal dipole moments of the two tori are
the same and cancel each other out. Condition (C4) constrains
the geometry of the current configuration, making sure (as in
the previous case) that the first MSR is the leading term of the
multipole expansion here.

7The normalization constant j0 has a different relation to the total
current I in this case: j0 = Iρ/2π , the minus sign is related to the
choice of direction for θ .

8In Cartesian coordinates rot2 zδ(r ) =
( ∇x∇z

∇y∇z

−∇2
x −∇2

y

)
δ(r ).
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