Nanoscale metamaterial dispersion element at the fiber tip, reported in this work, provides a viable alternative to key applications of the Fiber Bragg Gratings (FBGs), a mainstream and massively deployed technology for dispersion control, spectral filtering, wavelength division multiplexing, as well as channel add-drop functionality, in optical networks and in fiber sensors. The large size of FBGs, which typically lies in the range of centimeters, hampers miniaturization of fiber optic devices. Here, we demonstrate a silicon metamaterial, fabricated on a facet of a silica fiber, which exhibits transmission resonance with the quality factor exceeding 300. Such miniature facet gratings can be used in compact interconnects, dispersion compensation applications in fiber telecoms. We also evaluate the potential for sensor applications.

To achieve a highly dispersive, low-loss response in a thin layer on the fiber tip, we have chosen an all-dielectric metamaterial (see Refs. 3 and 4) design that consists of alternating deep and shallow grooves etched into the silica layer of the fiber, followed by a thin silicon layer on the top (see Fig. 1). The slight difference between the depths and widths of the neighboring grooves provides coupling to the high-quality asymmetric mode supported by this metamaterial. The high-quality mode, which is a type of Fano resonance, can be excited by normally incident radiation with electric field polarization perpendicular to the grooves. The mode corresponds to electric displacement field oscillating in anti-phase in the silicon layer of the two grooves, which leads to reduction in the net radiation loss, and thus to establishment of high-quality resonant response. Further discussion on the asymmetric mode supported by the metamaterial will be provided later in the text. Apart from choosing a suitable metamaterial design, achieving high-quality response in a silicon metamaterial depends crucially on depositing and patterning silicon in a way that preserves its low optical loss in the near-infrared region. Here, we use focused ion beam (FIB) milling to structure the end-facet of the optical fiber. This method provides great precision and flexibility; however, it is well-known that direct FIB-patterning of silicon leads to accumulation of defects.

For this reason, we pattern silica, i.e., the glass of the fiber, and then deposit silicon over the patterned area, thus preserving its pristine low-loss response.

The fabrication is carried out by stripping a segment of single-mode silica fiber of the protective polymer jacket, leaving a few centimeter long bare silica rod (125 μm in diameter). One end of the fiber is cleaved to create a smooth end-facet, which is coated with a 50 nm thin sacrificial layer of chromium and gold. The tip is then patterned through the sacrificial layer using focused ion beam milling. Following patterning, the metal layer is removed using commercially available wet etchants, leaving a nanostructured silica fiber tip. A layer of amorphous silicon is deposited onto the tip using low pressure chemical vapour deposition. Finally, the bare fiber segment is spliced to a standard FC patch cord (at the non-patterned end). The result is shown in Fig. 1. Compared to other reported methods of fiber nanostructuring, this process results in a sample that contains only silica and silicon. Consequently, the metamaterial has very low loss in the near-infrared range and is tolerant both of high optical power as well as heating in general, due to strong adhesion between silica and silicon layers (and high melting point of both materials).

The response of the metamaterial was characterized by illuminating with normally incident linearly polarized white light from an incoherent source and recording the spectrum of light coupled into the optical fiber. The transmission spectra for both parallel (TE) and perpendicular (TM) polarizations (relative to metamaterial grating) are shown in Fig. 2(a). Metamaterial sample exhibits a relatively flat transmission spectrum for both TE and TM polarizations over a broad range of wavelengths, with the exception of a sharp dip at λ₀ = 1385.5 nm. This feature appears in both polarizations of incident light, but is significantly sharper for the case of TM polarization. Figure 2(b) compares the measured metamaterial transmission (TM) with the results of full-wave model (also TM). The geometry of the metamaterial used in model, shown in Fig. 3, has been designed based on the cross-section of the experimental sample, shown in the inset of.
Fig. 1(b). For the purposes of modelling, the refractive index of glass was taken as $n_g = 1.44$, the wavelength-dependent real part of refractive index of amorphous silicon has been extracted from ellipsometry [e.g., $n_{Si}(1400 \text{ nm}) = 3.25$], while the imaginary part of silicon refractive index has been estimated based on fitting the width of the resonance to experimental observation ($k_{Si} = 0.015$).

Figure 2(b) shows a good agreement between experimentally observed metamaterial transmission and the result of modelling. Simulation reveals that the sharp dip in the metamaterial transmission at $\lambda_0 = 1385.5 \text{ nm}$ corresponds to rise in absorption and is therefore a true metamaterial resonance, i.e., the thin layer of patterned silicon traps light at this wavelength, and retains it long enough to absorb the optical energy despite the low material loss. The distribution of electric and magnetic fields in metamaterial at the resonant wavelength (see Fig. 3) shows that this is a type of Fano-resonance, also known as trapped mode resonance, which arises as a result of destructive interference of the transverse-magnetic (TM) modes excited in the two grooves of each unit cell. An alternative equivalent way of understanding the optical response of our metamaterial, is to treat it as a leaky corrugated silica-silicon-air waveguide, which supports guided-mode resonance. Normally incident light is coupled into the counter-propagating leaky modes supported by the waveguide, which leads to entrapment of light in the metamaterial, manifesting as a sharp dip in transmission.

To further test the reported fabrication technique, another metamaterial was manufactured following the same process, but with all dimensions reduced by approximately 10%. The corresponding transmission spectrum for perpendicular polarization of incident radiation (TM) is shown in Fig. 2(b). As in the case of larger-unit cell metamaterial, the reduced-dimensions metamaterial exhibits a sharp dip in the transmission spectrum at $\lambda_0 = 1271 \text{ nm}$, i.e., 8.2% lower than the original metamaterial sample. This confirms that the dip in metamaterial transmission does arise as a result of patterning and can be tuned to a wavelength of choice by appropriate adjustments to metamaterial geometry.
The quality factors of metamaterial transmission minima \(Q = \frac{k_0 Q}{D_k} \) are \(Q \sim 310 \) and \(Q \sim 270 \), for the original metamaterial and the reduced-dimensions metamaterial, respectively. We note that quality factors reached in our metamaterials are of the same order as in the best planar dielectric metamaterials.4,39–41 In principle, one can develop further optimizations, such as annealing to convert amorphous silicon into poly-crystalline silicon and to reduce the surface roughness, but the improvements are likely to be modest even if the performance of optimized fiber-tip metamaterials would reach that of the state-of-the-art planar all-dielectric metamaterials \((Q \sim 500-600) \).

The narrow resonance exhibited by the fiber-tip metamaterial suggests highly dispersive response that could be used to compensate dispersion \(38,42,43 \) of short segments of telecom fibers, for example, in miniaturized fiber-optic devices. The group delay dispersion of the metamaterial, extracted from the full-wave model (see Figs. 2 and 3), is shown in Fig. 4. As one would expect, the transmission minimum of the metamaterial corresponds to maximum dispersion; however, dispersion remains large even in the spectral range of high transmission. The dashed line in Fig. 4 indicates the minimum level of positive dispersion necessary to compensate the (negative) dispersion of 1 m of standard optical fiber. It follows that metamaterial response is sufficiently dispersive (at \(\lambda \sim 1380 \) nm) to provide dispersion compensation even at maximum transmission level of \(\sim 80\% \).

An alternative application for high-quality response of the fiber-tip metamaterial is ambient refractive index sensing. Indeed, according to simulations, our metamaterial can deliver sensitivity of \(\sim 400 \) nm/RIU (see the supplementary material), which is comparable to the state-of-the-art fiber based refractive index sensors.14–18,20,22,23,26,27,44–47 Importantly, in our case, the large sensitivity of metamaterial to ambient refractive index is accompanied by very narrow line-width of the resonant dip (\(\Delta \lambda \sim 5 \) nm), leading to a high figure of merit (sensitivity/\(\Delta \lambda \)) \(\sim 20 \) RIU.

In conclusion, we have developed low loss dielectric metamaterials, with narrow transmission resonances and strongly dispersive response, on tips of silica fibers. We have demonstrated resonance quality factors in excess of 300 and corresponding group delay dispersion over 0.3 ps. Our results suggest that fiber-tip metamaterials could find applications in compact fiber-optic devices.

See supplementary material for simulations evaluating performance of the metamaterial as refractometric sensor.

The authors acknowledge financial support from UK Engineering and Physical Sciences Research Council (Grant No. EP/M009122/1) and the Singapore Ministry of Education (Grant No. MOE2011-T3-1-005). The data from this paper can be obtained from the University of Southampton ePrints research repository: https://doi.org/10.5258/SOTON/D0191.

5B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

