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THE DOUGHNUT GAME
Intriguing Propertied of Super-Toroidal Currents
(a brief literature review)

1. From A CurrentLoopto Supertoroidal Currents

2. Electromagnetic Radiation of Supertoroidal
Current

3. Supertoroidal Currents in External Fields

4. Interaction Between SupertoroidalCurrents

5. Molecular Toroidal Mo ments

6. Vector Potentialof Supertoroidal Currents and the

Aharonov-bohm Effect

7. The “Flying Doughnuts”
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A CURRENT LOOP

to the magnetization of a sheet

enclosed by the loop @
I - - -

Current

J=1,n,3(p-3)3(2) = el OVAF- 1, md?curl(n 5%(r))

The current loop is equivalent [ n

Magnetization / Ampere Law

M=1,n8(p-3)d(z2) DB Of- 1, md®>nd¥r)



POLOIDAL CURRENT ON A TORUS

The poloidal current on a torus

/ Current
IS equivalent to the magnetization

confined to the interior of the torus M

J=curl M | magnetization

M=curl T @) +$+(® !

toroidization

( since div M =0)



HIERARHY OF TOROIDAL CURRENTS

m=2
m=0
m=3
Current loop
Jo = fo(®) curl (nd3(r))
Super-Toroidal current
m=4

J.=f () curl™D (nd3(r))



SUPERTOROIDAL CURRENT AS A 3D FRACTAL

Zvirblis, 1995

3D Fractal 2D Fractal




ELECTROMAGNETIC POTENTIALS

Scalar and Vector Potentials

E :—}ﬁ—A—gradCD
c a

H =curl A

Gauge invariance

A'=A+f
CD':(D—}ﬂ
c Ot



ELECTROMAGNETIC FIELDS
OF SUPER-TOROIDAL SOLENOIDS

m = 2k, “magnetic” type super-currents

f., (t) —time dependence of the current

Vector-Potential of radiation
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If a current oscillates in:

A current loop or super-toroidal coil of even order
= “magnetic” type radiation source

A toroidal coil or supertoroidal coil of odd order
= “electric” type (oscillating dipole) radiation so

(M=2k)

(M=2k+1)
urce



INTERACTION OF A CURRENT LOOP WITH
EXTERNAL FIELS

int eraction

JA,dV=="[MH_,dv OTTr- -uH,,
C
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INTEEERACTION OF SUPER-TOROIDAL CURRENTS
WITH EXTERNAL FIELDS

m = 2k, “magnetic” type interaction

f., (t) —time dependence of the current

U. dm Hext (t)
gt

INt

Jf_()n

m =o0: current loop with H

m = 2k+1, “electric” type interactions

U. deext (t)
Jt"

INt

Jf_()n

m = 1, toroidal solenoid with current



Toroidal Solenoid and Electric Field
Zeldovich, 1957

Toroidal Solenoid immersed in electrolyte with curr ent
Will be subjected to a moment of force



INTERACTION BETWEEN CURRENTS
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INTERACTION BETWEEN
ODD- and EVEN-order TOROIDAL CURRENTS

_Afanasiev, 2001
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RECIPROCITY VIOLATION?



VIOLATION OF ACTION-REACTION EQUILITY:
AN EXAMPLE (G.N.Afanasiev, 2001)

m=0 - | - m=1
Oscillating magnetic and electric fields
O are generated by AC current in the loop
No Fields are Generated by
a DC current outside toroid

0° 7’




The Reciprocity Relations

Maxwell's equation for current 1

Maxwell's equation for current 2

E,=]J; E,dv  =E;=[J, E;adV

H,=[J; H,dv =H,, =[J, H dV

)

Some algebra
+ harmonic time dependencies

Jq, Jo~exp(i wt)

The Lorentz Lemma

The Feld-Tai Lemma




Limitations of the Reciprocity Relations
Afanasiev, 2001

If time dependent currents are involved the recipro city relations are applicable if:
1. The time dependencies are the same for all space  points of a particular source

2. The time dependencies in source 1 and source 2 ar e the same

Free Space Electrodynamics:
E,=]J;, E,dvV =Ey=[J, E; dV The Lorentz Lemma

H,=[J, HydV =H, =[J, H, dV The Feld-Tai Lemma



Reciprocity of Radio Transmission

Free-space Communication line

Receiver

transmitter



TOROIDAL POLARIZATION IN CONDENCED
MATTER PHYSICS

Dubovik, Martsenyuk, Saha, 2000

Magnetization and polarization
with account of toroidal moments:

M=M+curlT"

P—=P+curlTF®

Total Current in Maxwell equations:

e
Jiotal = +d—P+ccurIM +0"Cl;rtIT +ccurlcurlT™

ot

The equation of motion with toroidal force:

2°r e or 1.9r
m? e+ 2 xB] +am e _ 101 m
22 C[ 2 1 +4re(curl T c[o’t xcurl T™))



Dipole

MOLECULAR MOMENTA

Te Tm
m d d m m
Pl B S |- R
d¢<\\\ r/I, /'//\fd m¢\\\\ r/II /’lfm
\§/d7 K- =
d m m
Magnetic Dipole “Electric” toroidal moment “Magnetic” toroidal moment

Te:%Zer

Tm:%erm



AROMAGNETISM

Tolstoi & Spartakov (1990)
Martsenyuk & Martsenyuk (1991)

K O-[TxoH/at ]

Oscillating Magnetic Field

H o) H Microcrystals of aromatic,
H nonmagnetic substances
H (antracene, pheantherene,
O With benzene ring)

Show NO magnetism
H of orbital or spin origin Optical Detection of induced

birefringence




CALCULATION OF MOLECULAR TOROIDAL
MOMENTA

ey , h,._ . ;

-4 ey . A _ o
il T
H H w/ N -
O N A A
H oo X NS
1l o ’
H ot

O 120 atoms Carbon Toroids show T™

5 %

Phloroglycine Molecule shows T¢©

Current included by uniform magnetic field

Martsenyuk & Martsenyuk, 1991 _
Ceulemans, Chibotaru & Fowles, 1998



Organic Molecular Tori




Organic Molecular Tori

Replication processivity
(sliding clamp)

8 PCMA

E col o, ceravisiae
35 A 35 A

[20] [21]
Transcription termination

Rho TRAP

E. coll B. subtilis
~30 A 23-35 A

[7] [8]




Organic Molecular Tori

Exonuclease Topoisomerase

A exonuclease Topoisomerase ||

15-30 A S. cerevisiae
[2] 95-55 A

[22]
Chromosomal breakpoint Phage head-tail
recognition connector
Translin e | Connector
human 29
~40 A 17-37 A

[l [23]




Molecular toroidal moments?
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DC CURRENT IN A TOROIDAL SOLENOID

Page (1971)

b
Yy K kk Vector .
- e ~_ potential,
DC current:
a Toroidal Solenoid has NO external magnetic & Elec  tric fields
but

HAS a non-vanishing vector-potential field



THE AHARONOV-BOHM EFFECTS AND TOROIDAL
CURRENTS

Aharonov-Bohm, 1959

In QM vector potential cannot be illuminated
from the basis equations

1

Do Potential have independent significance
from the Fields?

‘/’o it I_Io
W :woeian/h o H-= Ho +V
where S=[V(t)dt

2
For a charged [P A A]
particle H=




THE AHARONOV-BOHM EFFECT

Aharonov & Bohm, 1959

Electron beam
Interference
Region

DC Toroidal Solenoid

Vector potential,
but no magnetic field

Phase shift depends on the vector potential along the pass
(inconceivable in classical electrodynamics, no for ces):

Agoz—%sﬁAds :—%jB ds



TONOMURA’s AHARONOV-BOHM EXPERIMENTS

first claim: Jaklevic, Lambe & other, 1964

paind dauree

ﬂ\ plectrans

& D decipdor

ELECTRON INTERFERENCE
EXPERIMENT

51

v

A

PHOTOLITHOGRAPHICALLY
MANIFACTURED

MAGNETIZED TOROID

WITH SUPERCONDUCTION SHEELD
(prevents magnetic field to leak)
Trapped magnetic flux from 0 to 4h/e



TONOMURA'’s EXPERIMENTS

No trapped field

o=

Trapped field



NON-RADIATING CONFIGURATION: DC CURRENT
IN A TOROIDAL SOLENOQID
and AN OSCILLATING ELECTRIC DIPOLE

Afanasiev, 2001

"~ _ Toroidal Solenoid - "

I Oscillating Dipole

4
K k\ Vector
~_ potential,, *

. 17,
DC Excitation: Jdipole = _En o°(r - dipole)

a Toroidal Solenoid has NO external
magnetic & Electric fields

Interaction Energy
1. 1

U :j[pdipoleq)tor Jdlpole tor] dv U —_— i n Ator ?!

ca



FIELD-LESS SOURCES
OF OSCILLATING POTENTIALS??? (afanasiev 2001)
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Electromagnetic Permutations in Free Space

The Helmholtz wave equation

107
(O? -——)f(r,1)=0
c°a
Solution in the form of perturbations propagating w ith speed of light :

f=f(z—ct)+f,(z+ct)

Vector Generalization - Polarized Transverse Electromagnetic Harmonic Waves



Flying Doughnuts

Hellwarth & Nouchi, 1996

Ziolkowski (1989) discovered a class of generating
Functions which satisfies Helmholtz wave equations:

e— s/q3

" (g, +iT)(s+,)°

Here g, , ; - parameters
S is a function of coordinates and o

T = z-Ct; o=z+ct
Vector generalization satisfying Maxwell equations
Schematic of "focused doughnut”

A(r,t) = Ceurl (z f (r 1))

Vector Generalization - “Non-pathological” toroidal wave packets
which are neither transverse electric or transverse magnetic



Flying Doughnuts

Hellwarth & Nouchi, 1996

+H

Schematic of "focused doughnut”

Schematic of the electric and magnetic fields
of a one-cycle electromagnetic “flying doughnut”



THE END
This is thevirus thathas
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Abstract

Electromagnetic fields of the simplest time-dependent sources (current loop,
electric dipole, toroidal solenoid, etc), their interactions with an external
electromagnetic field and between themselves are found. They are applied
to the analysis of the Lorentz and Feld—Tai lemmas (or reciprocity-like
theorems) having numerous applications in electrodynamics, optics,
radiophysics, electronics, etc. It is demonstrated that these lemmas are valid
for more general time dependences of the electromagnetic field sources than
it was suggested up to now. It is shown also that the validity of
reciprocity-like theorems is intimately related to the equality of
electromagnetic action and reaction: both of them are fulfilled or violated
under the same conditions. Conditions are stated under which
reciprocity-like theorems can be violated. A concrete example of their

violation is presented.

1. Introduction

The reciprocity theorem has a long history in physics.
It originates from the third Newtonian law stating equality of
action and reaction. Later, Rayleigh, in the first volume of his
encyclopaedic treatise ‘Theory of Sound’ [1] proved certain
relations between the forces acting between two physical
systems and the displacements induced by them. Since there is
no time retardation in the Newtonian mechanics, this statement
looks almost trivial. ~Furthermore, Rayleigh applied the
reciprocity theorem to optics [2]. We quote him:

Suppose that in any direction (i) and at any distance
r from a small surface (S) reflecting in any manner
there be situated a radiant point (A) of given intensity,
and consider the intensity of reflected vibrations at
any point B situated in direction € and at distance r’
from S. The theorem is to the effect that the intensity
is the same as it would be at A if the radiant point
were transferred to B.

He gave no proof of this statement referring to the analogy with
mechanical systems treated in the ‘Theory of Sound’ and to the
optical Lambert law. In all probability, Lorentz [3] was the first
to have formulated the electric part of reciprocity theorem in
its modern form. This theorem has numerous applications

0022-3727/01/040539+21$30.00 © 2001 IOP Publishing Ltd Printed in the UK

in the theory of electric circuits [4], optics [5, 6], electron
diffraction [7], radiophysics science [8,9] and biomedical
engineering [10]. The magnetic part of the reciprocity theorem
was obtained by Feld [11] and Tai [12] in the same year, 1992.
It was rederived by Monzon [13] in 1996 who, without knowing
the above papers, pointed out numerous applications of this
theorem. Other applications of the Feld—Tai lemma were given
by Lakhtakia in his book [14].

The aim of this consideration is to use electromagnetic
fields (EMFs) of simplest sources (current loop, toroidal
solenoid (TS) and electric dipole) for the study of the
reciprocity-like theorems.

The plan of our exposition is as follows. In section 2, we
present the formalism of elementary vector potentials (EVPs).
Although they are exposed in many textbooks and treatises
(see, e.g., [15-17]), the lack of coordination between them is
so large that we prefer to give a self-consistent exposition. In
section 3, we apply EVPs to the pure current time-dependent
sources of EMFs. Special attention is paid to the current
loop and TS as well as to their interaction with an external
EMF. Various limiting cases of TSs with periodical current
are investigated. The EMF of the time-dependent electric
dipole and its interaction with an external EMF are studied in
section 4. The EMFs of more complicated point-like toroidal
sources and their mutual interactions are treated in section 5.

539



G N Afanasiev

In section 6, by applying the Lorentz and Feld-Tai lemmas
to the charge—current sources studied in previous sections,
we find that these lemmas are fulfilled under more general
conditions than it was known up to now. This obliges us to
consider the derivation of the Lorentz and Feld—Tai lemmas
more carefully. This is done in section 7, where it is shown
that the reciprocity-like theorems are satisfied in the same
cases when the equality of action and reaction is fulfilled.
New reciprocity-like theorems are obtained in the same
section, yet their physical meaning remains unclear to us. The
conditions are stated under which the reciprocity-like theorems
can be violated and a concrete example demonstrating this
violation is presented. A short discussion of the results
obtained is given in section 8.

2. Elementary vector potentials

Consider charge p (7, t) and current f(? , t) densities confined
to a finite volume V. Let their time dependence be periodical:

-

p=poexplior)  j=joexpliwr).  (2.1)

When presenting p and ] in such a complex form, one should
keep in mind the static limit of the problem treated. For
example, if one operates with pure current densities and wants
to have the time-independent current in a static limit, then one
puts ..
J = joexp(iot) p=0

and, after all calculations, takes the real parts of the EMF
strengths (see section 3, where the EMF of a current loop and a
TS are considered). On the other hand, if one desires to obtain
the time-independent charge distribution in a static limit, then
one puts

-

J = wjoexp(ior) p = ipgexp(iot) po = div jo

and, after all calculations, takes the imaginary parts of the
EMF strengths (see section 4, where the EMF of an oscillating
electric dipole is treated).

The electromagnetic potentials outside space region V, to
which the charge—current densities are confined, are given by

O, 1) = —4mik Y hi(kr)Yin (0, $)qum
4711k

AG. ) = === Aun(t. Pan (1)
where hy(kr) = h® (kr) = ji(kr) — in;(kr) is the spherical
Hankel function of the second kind, j; and n; are the spherical
Bessel and Neumann functions (j; = Jiri24/7/2x, np =
Nii24/7/2x); Y1, (6, ¢) are the usual spherical harmonics;
and Alm (t,7) are the elementary vector potentials (EVPs).
Values for t = E,L and M correspond to the electric,
longitudinal and magnetic EVPs, respectively. Their manifest
forms are given by

(2.2)

Alm(L) 7Vlelm
A (E) ! 1 x V)Y,
m = —————=cCurl(r X m
! kJIT+1) e
- i -
Ap(M) = ———— (7 x V)Y, 2.3
1m (M) () 1(r x V)Y, (2.3)

540

If notindicated, the arguments of the spherical Bessel functions
(ji, ny) will be kr, and cos 6 will be the argument of the adjoint
Legendre polynomials (P/"). In what follows, we closely
follow the Rose treatise [15] with the exception that instead
of his non-standard radial functions, the usual spherical Bessel
functions are used. EVPs satisfy the following equations:

curl Ay, (M) = ik A}, (E) curl Ay, (E) = —ik Ay, (M).

It is useful to write out the spherical components of EVP in a
manifest form

1 (+Dhyy =l d

JIT+ 1D 20+ 1 o "
m U+ Dhy—y —lhy

sindI0 + 1) 2A+1

[A7(E)], = I(+1)

[A]'(M)]y =

[A7(E)ly =

[AT(E)]y =

YZ m

lelm

- O Ym
sine«/l(l+1 i
ihl aYlm

JIT+1) 96

The multipole coefficients (or form factors) a;,,(t) entering
into (2.2) are defined as

qim :/.jIYltnpdV

[AT"(M)]y = — [A7(M)], =0. (2.4)

| L .. .
am(L) = —%/JIYZM divjdV = ;/JzYz,np = icqim

am(E) = — /curl(? x V)Y jdv

1
kJIT+ 1)

k w7
:m/ﬂYzm(”)dv

1 ,
/JZYZ,,,(V Curl])dV

— krjulY,,pdV

Alm (M) \/1(17

- «/1(1 D /

To escape ambiguities, by p we mean — div ;
strengths are given by

JiYE divE x j)dv. (2.5)

The EMF

. Ak?
H =

> 1A (E)an (M) — Ay (M)ay (E)]

Y (A (E)ai (E) + A (M)ay, (M)]. (2.6)

For the axisymmetric charge—current distributions, only
the m = 0 components survive:

qim = 8m0ql alm(E) = 8moal(E)
Aim (M) = (Smoal(M)

- 30 I+ Dhy =l
[Ai(E)]o = [A[(E)]p = [0+ D)@+ Dan 2

I+ 1)l +1)]Y?
(+i( + )] P,
T

. 20+1
4ml(l +1)

- - 1
[AI(E)], = [A)(E)], = = [

- . 1/2
[Ai(M)]y = [AV(M)] = ] mPl. @27



EMFs for testing reciprocity-like theorems

2.1. Historical remarks

Formulae of this section may be found in a number of
textbooks. Unfortunately, the differences in notation used are
is so large that we prefer to collect here the formulae needed
for the subsequent exposition.

3. Pure current densities

When only current densities are present (o = 0), then g;,, = 0,
Apm(L) =0, and

QYL G dv 3.1)

k
am(E) = \/ﬁ/

while a;,, (M) has the same form (2.5). Taking into account
the fact that

Qi) ~ @@+ ni(x) ~ — Q1= D!/ )

for x >0

one obtains in the static limit (k — 0)

kl+1 1 N
E lyx (7j)dv
Um(E) = ./1(1+1)’(21+1)!!/r m ()
i 14 >
A (M) — /rlYl* div(F x j)dV.
VIT+1) 2L+ D! "

(3.2)
The integrals entering into these equations are usually called
electric and magnetic moments, respectively. On the other
hand, the toroidal moment corresponding to the current density
f was defined in [18] as

Sl
Tlm ==
c2l+1)
e l I -, -
X Y i+ mmyz,m,m jdv (3.3)
where Y* , are the so-called vector spherical harmonics (see,

e.g., [15] for their definition). In view of the identities

- l L i
/VIH |:Yl>f<l—l,m + \/:HMYITHLW] ’ 4
2A+1 v i
_ _\/7 /curl(? x V)r'?yr jdv
(+ 1)(21+3)
1 21 + 7
- _ F (I +3) / r2Y;, div j v
(+DhEI+3)V 1

+2(20 +3) / rlY,fn(?;')dV]

(3.4)

established in [19], one obtains for the pure current densities

Tim c(l+1)V21+1/ Vi) dV.

Therefore, a toroidal moment 7;,, in the absence of charge
density (p = 0), up to a factor independent of the geometric
parameters of the current distribution coincides with the
electric moment (2.5) of this distribution.

(3.5)

3.1. EMF of a current loop

Let the current loop lie in the z = 0 plane with its symmetry
axis along the z axis. Then, its current density is given by

Ji = Ioiigd(p — d)8(2). (3.6)

Since 7 fL = 0, only the magnetic form factors differ from zero
a]m (M) = o (M)

72l +1)
I(+1)
Here P/" (x) is the adjoint Legendre function. Since le 0 =0
for [ even, only odd multipole coefficients contribute to the
EMEF of the current loop (P, 2n+1 0) = (=)™ @2n+1)!1/2"n!).

Therefore, for the current loop

172
ay(M) =ilyd [ ] jl(kaf)P,l (0). (3.7

. A4nk?
H===73 A(E)aM)
S 47 k?
E=— Z A (M)a(M). (3.8)
From the facts that: (i) FE = 0 and (i1) PAZ(E) =

(=DM A, (E) it follows [15, 17] that the radiation field of the
current loop is of a magnetic type (P is the parity operator).

When the time dependence of p and j is cos wt, the non-
vanishing EMF strengths are given by

27 Iodk?

¢ C

21 +1
x Z 0 )(cosa)t]1+sma)tn[)P, Ji(kd) P (0)

_ 27110dk2 1

¢ & la+

x{coswt[(l + D)n;_1 — Ins]

—sinot[( + 1) ji—1 — Lji1]}
21 Ipkd

- cr

X Z 2l + 1)(n; coswt — jysinwt) Py j (kd)P,1 0).
I=o0dd

P! ji(kd) P} (0)

(3.9)

To estimate the number of ¢;(M) contributing to the sums
in (3.9), we need the asymptotic behaviour of J, (x) for x fixed
and v > 1. This is given by (see [20], ch 8)

7,00 1 (xe)
L(x) ~ — .
2my \2v
It follows from this equation that the number n (I = 2n + 1) of
terms contributing to (3.9) with a;(M) given by (3.7) should
be slightly greater than 0.7kd.

Consider the particular following cases.

(1) In the static case (k — 0), one obtains

Jitkd) ~ (kd)' /(21 + D! ny(kr) ~ —1 — D1/ (kr)H!
27 Iod 1 d
E, =0 Hy==—3 ZH] P'P0)
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2rlod —~d' |
Ho=-=""2%" — PP 0). (3.10)

cr?
The term [ = 1 of this sum
7T10d2

Hy = sin 6 H, =

2 I()d2
cr? ¢

cr3

0s 6

corresponds to the field of a magnetic dipole of the power
m = mIyd?/c oriented along the z axis.

(2) When the radius d of the loop is so small that kd < 1,
only the / = 1 term contributes to (3.9). Then, EMF strengths
are equal to

ﬂlodzkz . 1 .
Ey = sinf | cos ¥ — — sin
cr kr
27 Ipd*k cosO [ . 1
H =—————|siny+-—cosy
cr? kr
7 Iyd?k? sin 6 1
H=———||1- cost/f——smw
cr k22

(3.11)
Here v = kr — wt. These expressions are valid at arbitrary
distances from the current loop.
(3) For large distances (kr > 1), spherical Bessel
functions can be changed by their asymptotic values

Jitkr) ~

1 [+1
ny(kr) ~ o sin (kr — %n) .

Then
E,— —H, = 7 lodk cos
c r
4n +3 .
X Z( 1)” (n n 1)(2 )P21n+l.]2n+l (kd)P2ln+l (0)
27'(10d .
H =—-———siny
cr

x Z(—l)" (4n + 3) Pyt jons1 (kd) Py, (0). (3.12)

The energy flux through the sphere of the radius r is
c 2 3
Sy =— | dQ EyHy = —(Iokd cos )
4 c

dn+3
><Z(n+1)(2n+1)

The average energy lost for the period is

[jans1 (kd) Py i ()T

4n +3 1 2
*(Iokd) > DD U kD) Payy OF.

These expressions are valid for arbitrary kd.

3.1.1. Interaction of the current loop with an external EMF.
The interaction of current (3.6) with an external EMF is given
by

1 - -
U= —f/jLAex,dV. (3.13)
c

Since div fL = 0, the current density can be represented as

J = curl M M, = 1;7,0(d — p)8(z).  (3.14)
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Substituting this into (3.13) and integrating by parts, one
obtains

-
U:—f/MLdeV.
C

For large distances compared with the loop radius d we have
1 d — 5 =
U=—--H, / M; dv = _MHext
c

where

I B | Ipd®
u:f/MdV:—/rxjdV: Sl §
c 2c c
coincides with the usual magnetic moment. These equations
illustrate Ampere’s hypothesis according to which the current

loop is equivalent to the magnetic moment normal to it.
When the radius d of the loop tends to zero,

M, — I nd*i8 () J, = curl My

83(F) = 8(0)8(2)/2mp. (3.15)

Let now the dependence of this current flowing in the loop be

fL ([), ie. .
Jo = fu@) curlii 83 (3.16)

(the factor nILdi is absorbed into f;(¢)). Then, the EMF
potentials and field strengths are given by

- 1 N - 1 . .
AL:_C27DL(7' X nr) ELZTrzDL(r X nr)
> 1 R
Hy = — |:(m2L)rFL — nLGL] (3.17)
Ar| or
where we put
. c
Dy =D(fy) = fi+ ;fL
. 3¢ . 3c
FL=F(fu)=fi+—fr+—5f
.. c . Cz
GL =G(fL)=ﬁ+;fL+r7fL~ (3.18)

The arguments of the f; functions entering into Dy, Fj, and
G are t, =t — r/c; the dots above the f;, Dy, F; and G
functions denote time derivatives. When f; does not depend
on time, one obtains the field of the elementary magnetic dipole

= L (rn .
HL — % [31"( 2L) _ nL]
r r

of the power p = f./c. Obviously, equations (3.15)—
(3.18) generalize (3.11) to arbitrary time dependences and
orientations.

3.2. Historical remarks on the current loop

Equations (3.11) describing the EMF of the current loop in
the long-wave limit may be found in many textbooks (see,
e.g., Jackson [17], Stratton [21], Panofsky and Phillips [22]).
In all probability, equations (3.9), valid for arbitrary distances
and frequencies, may be found in journal papers; however, the
author is unaware of any. It should be mentioned that even
nowadays the EMFs of current loops are being investigated
both theoretically [23] and experimentally [24].
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Figure 1. The poloidal current flowing on the surface of a torus.
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Figure 2. The coordinates R and ¢ parametrizing the torus.

3.3. Electromagnetic field of the toroidal solenoid

Consider the poloidal current flowing on the surface of a torus
(figure 1)

- ge. 3(R-R G Fcosy — i sin g
=——ny—— Ny =n;cosy —n,siny.

I 47" 4+ Reos W v : g

~ (3.19)

The coordinates R, Y and ¢ are related to the Cartesian

coordinates as follows:
y = (d+150051//) sin ¢
2= Rsiny. (3.20)

The condition R = R defines the surface of a particular torus
(figure 2). For R fixed and ¥, ¢ varying, the points X, ¥,2
given by (3.20) fill the surface of the torus (o —d)* +z* = R%.
The choice of jj in the form of (3.19) is convenient, because in
the static case a magnetic field H equals g/p inside the torus
and vanishes outside it. In this case, g may also be expressed
through either the magnetic flux ® penetrating the torus or the
total number N of turns in a toroidal winding and the current
I in a particular turn:

x = (d+1€’cos1//)cos¢

@ _2NI
V&R ¢

Let the current in a TS winding periodically change with time:
] = ]0 exp(iwt). Since

T nd—

-

x jr = 855k — Ry
4 ¢

and

- gedsiny 8(R—R)
r =

4r  d+ Rcosy
one has

dvFEx ) =0  amM)=0  apu(E) #0.

Therefore,
- 4n1k
A — D AlE)a(E)
- 47'rk2
H= Z Al(M)ay(E)
E=— (3.21)

(A is the vector potentlal) _From the facts that: (i) FH =0
and (ii) PA;(M) = (-1 AI(M) it follows [15, 17] that the
radiation field of a TS is of electric type.

The electric form factor a; (E) for the radiating TS is equal

B = Loeari [ 2
i) =4s8¢ 2+

2
I= /0 Jiky) Po(o) sin yr dyp

to

(3.22)

where y = [d?> + R?> + 2dRcosy]'/? and x = Rsiny/y.
It easy to check that ¢;(E) = 0O for [ even. Let the current time
dependence be cos wt. Then the EMF is given by the real parts
of X, E and H:

gd Rk? 1 . . .
Ay = LP{[d+1)j_;—1
0 > Zl(l+1) 1P LA+ D) it — L]
x sinwt — [({ + 1)n;_1 — Inj4q] cos wt}
dR
A = gatv 2(21 + 1)I; P (j; sin wt — n; cos wt)

de3 21+ 1
H, = g 3 Z 0+ 1)IlPll(nlcoswt — Ji sin wt)

gdRi? 1 . i )
Ey=— LPA{[d+ 1) —1
o > Zl(l+1) 1P+ D) Jimt = L]
x coswt + [(I + D)n;—1 — Ingyq] sin wt}
ng
E = > @+ DI P(jicosot +nsinwt). (3.23)

The number of a;(E) contributing to the sums in (3.23) is the
same as for current loop: it should be slightly greater than
0.7kd.

Consider the following particular cases.

(1) In the static limit (k — 0) one obtains

K d Rk 21+ 1
I] —> 76‘1 al(E) —> g¢ * Cl
Q1+ D! 420+ DI\ wld + 1)

ng«[
210+ 1)

Ty = 5m0 T; T =

2 :
R sin
o =/ ylP1<
0 y

where 77, is the same as in (3.5). This integral can be taken in
a closed form. We give its value only for/ = 1

G

) sin ¥ dyr (3.24)

wgdR*’k*c
4vér
The EMF strengths of the TS decrease as k>

Hy ~ —gdRK* )

C]:TL'R a1(E):

l 1
I(1+1) P
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gd RK? a1

7 il

dRk? 1
CtZCZP[r/T'

On the other hand, the vector potential of a TS does not vanish
in the static limit

ng C[ 11
A = i

EQ’V—

(3.25)

gdR 1
A= 5= 5GP (3.26)

The linear time dependence in E (for wt < 1) arises when one
differentiates the cos wt term in A and then let w go to zero.
For the infinitely thin TS (R < d), C; is reduced to

2n+ D!
2"n!

(2) Infinitely small toroidal solenoid (kd < 1).
Obviously, only the / = 1 term contributes to sums in (3.23)

Caus1 = TRA* (—1)"

I kR (E) rgd R*’k*c
= — a e —
T3 : 46
dR*k? 1
.= ngTCOSG [cosw - sintp]
dR*k? 1 1
Ey = MT sin 6 |:sin1// <1 — W) + ECOSW}
7gdR* K> ) 1
Hy = —————sinf |sinyy + —cos ¢ | . (3.27)
4r kr

For estimations, let the major radius d of a TS be 10 cm. We
rewrite the condition kd < 1 in the wavelength language
2md 60

<L
- <

This means that equations (3.27) will work for A > Sm.
(3) Infinitely thin toroidal solenoid (R < d). Taking into
account the fact that

Pya1(x) = =Py, (0)x for x — 0

one obtains

R 1
- P2n+1 (0)D2n+1

I2n+1 = d

21
Doy = / Joner (ky) sin® ¢ dyr
0

= _l R*k __dn3 Py . (0)D
c .
48 TQ2n+1)2m+1) ! 2

(3.28)
For R « d (but for arbitrary kd and kR) D,,; can be taken
in a closed form (see the appendix):

Doy
= 7 {Jo(kR) jons+1(kd) —

A2p+1 (E)

3L (kR) [ jansz(kd) + jou—1 (kd)]}.
(3.29)
If, in addition, kR < 1, then

Doni1 = 7 jone1(kd)
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and

a1 (E)

L LPI (0 (kd)
=38 TQn+1)2(m + 1) 2! Jon+l .

(3.30)
On the other hand, if kR > 1, then

Dypq1

2

2
= S\ o 08 (KR = Z) 101+ 1) fanakd) + nji (k)]
(3.31)

(we cannot substitute instead of J,,(kd) and Jy,.(kd)
their asymptotic values, since the presence of J,,(kd) and
Joni2(kd) guarantees the convergence of electromagnetic
strengths, (3.23)).

For kd > 1, equations (3.27) are not applicable. For
example, ford = 10 cm and A = lcm, kd =~ 60. The possible
outcome is to take the minor radius of a TS as small as possible.
Equations (3.23) with q;(E) given by (3.28) and (3.29) are valid
for arbitrary frequencies if R < 2 cm (for d = 10 cm). The
advantage of electric form factors (3.28) and (3.29) is that they
do not involve integration, which is very cumbersome for high

frequencies.
(4) Large distances (kr > 1). Then,
E K gdRK?> | "
= = — sin
v ¢ 4r
4n+3
" Ly Py 3.32
x Y (= ) G Do e P (332)
gdRk
Ey === cosy ) (An+3)(=1)" Donst Porar.
The energy flux through the sphere of the radius r is
S, = —r2 [ dQE,H,
" 4m e
. 2
gdRK*siny/ 4n +3 )
= I .. 3.33
C( 2 Z2(n+1)(2n+1) - 339

Correspondingly, the average energy lost for the period is

2
c [ gdRKk? 4n +3 5
S, == — ..
2 < 2 2 2(n+1)2n +1) !

3.3.1. Interaction of a TS with an external EMF. The
interaction of a TS with external EMF is given by

1 (- -
U= —f/jTAde. (3.34)
C

Since div fT = 0, the poloidal current (3.19) flowing on the
surface of the torus can be represented in the form [25]

-

]T_curlM divM =0

M = n¢4 @ (
(3.35)

That is, the magnetization M has only the azimuthal
component and differs from zero only inside the torus (middle

(o — d)2+z) div M = 0.
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T

Figure 3. The poloidal current fﬂowing on the surface of a torus is
equivalent to the magnetization M confined to the interior of the
torus and to the toroidization 7 directed along the axis of the torus.

part of figure 3). Since div M = 0, the magnetization M , in
its turn, can be written as

M=curl T divT #0 (3.36)
where
T =n,T
2 _
T:£|:®<d— /Rz_zz_p) d+~R* -2
4 R2—Z
+®(d+\/R2—z2—p)@(,o—d+\/R2—z)
2 _ 2
wlp YR =2 ”:Z]. (3.37)

Thus, T differs from zero in two space regions (see the lower
part of figure 3) as follows.

(a) Inside the torus hole defined as 0 < p < d — vV R% — 22,
where T does not depend on p
d+VR =2
=8, z (3.38)
4 R2 — 22

(b) Inside the torus itself (d — vVR2—z2 < p < d +
v/ R? — z2) where

d+~R>—27?
7=8,, VT TE (3.39)
471 P
In other space regions, T = 0. Therefore,
jr =curlcurl T divT # 0. (3.40)

Substituting (3.40) into (3.34), one obtains

1 [ ==
U=—-—= / ETdV
c
(the dot above E denotes time derivative). For distances large
compared with the large radius of a TS

1 = o
U= —7E/TdV. (3.41)
C

Despite the fact that T is rather complicated, the volume
integral looks very simple

- - dR?
f Tdv = nZ”gT.

Physically, equations (3.35), (3.36) and (3.40) mean that the
poloidal current j given by (3.35) is equivalent (i.e. produces
the same magnetic field) to the toroidal tube with magnetization
M defined by (3.36) and to toroidization T given by (3.37).
This is illustrated in figure 3. Obviously, these equations
generalize Ampere’s hypothesis.

Now let the minor radius R of a torus tend to zero (this
corresponds to an infinitely thin torus). Then, the second term
in (3.37) drops out, while the first one reduces to

(3.42)

T 250 - pV/RE - 2. (3.43)
2md
For infinitesimal R
VR? — 22 - 1nR*(2).
Therefore, in this limit,
- - - gcR2
j=curlcurl T T = §(2)Od — p). (3.44)

That is, the vector T is confined to the equatorial plane of a
torus and is perpendicular to it. Let now d — 0 (in addition
to R — 0). Then,

l(a(d ) —> ia )
7 —p 2p(p

and the current of an elementary (i.e. infinitely small) TS is

-

j=curlcurl T T = lncgdR**(Pi,. (345
Let now the dependence of the current flowing in the toroidal
solenoid be fr (), i.e.

Jr = fr(t)curl iig83 (7). (3.46)

(the factor %ncng R? is included in fr(t)). Then, the EMF
potentials and field strengths are given by

- 1 . 1. ..
Ar = = |:—an7 + —zr(rnr)FTi|
c'r r

- 1 [. . 1. .. .
ET = er |:nTGT — r—zr(rnT)FT:|

Hy = ——(F x iip) Dy (3.47)

1
=15
where the functions Dy = D(fr), Fr = F(f7) and Gy =
G (fr) are defined by (3.18). When f7 is independent of 7, the
EMEF strengths are zero, only the vector potential survives

1 . 3. ..
Ar = —4€7fT [VlT - rjr(rnr)] .

Clearly, (3.47) generalizes (3.27) for arbitrary time depen-
dences and orientations.
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3.3.2.  Toroidal solenoids with a more realistic winding.
Usually, the toroidal coil twists along the torus surface having
not only a 71y, component, but also a 7i, component parallel to
the torus equatorial line. Then, the total density is given by

f = cos ozfr + sin (fo (3.48)
where fL and fT are given by (3.6) and (3. 19), respectively, and
« is the inclination angle of the current j towards the vector
My

Since the EMF is a linear function of the current density,
it is given by

-

E :cosaI;"T+sinaEL FI:cosaEH+sinaI:IL
L L (3.49)
where E;, H;, and Er, Hy are the EMFs of the current loop
and TS given by (3.9) and (3.23), respectively. For o« = 0
and o = /2 the EMF (3.49) is transformed either into an
EMF (3.23) of a TS or an EMF (3.9) of a current loop.

However, if there is a need to create pure toroidal
EMF (3.23), then one should somehow compensate the ﬁ¢
component of ] For this, after finishing the toroidal winding
(3.48) (i.e. when the last turn of the toroidal winding meets the
first one), one closed turn lying in the equatorial torus plane and
having the direction opposite to 11, should be added. Another
possibility is to use a winding consisting of an even number
of layers. If the directions of coils in the even and odd layers
differ by the sign of «, then jg current components of even
and layers compensate each other and only the f¢ component
survives.

3.4. Historical remarks on TSs

TSs play an important role in physics and technology.
As the simplest three-dimensional topologically non-trivial
objects, they have been used for the experimental verification
of the Aharonov—-Bohm effect [26]. The corresponding
calculations were performed in [27]. They possess a number
of non-trivial characteristics such as toroidal [18,28] and
‘hidden’ [29] moments. Exact vector potentials of finite static
TSs were evaluated by Luboshitz and Smorodinsky [30], in
a non-standard gauge, and in [31], in a Coulomb gauge.
Similarly to the static magnetic TSs outside which the EMF
strengths disappear, but the magnetic vector potential differs
from zero, there are electric TSs outside which the EMF
strengths are zero but non-trivial electric vector potentials
differ from zero [25,32]. Furthermore, there exists the
toroidal Aharonov—Casher effect which describes quantum
(not classical) scattering of toroidal dipoles by the electric
charge [33].

Turning to TSs with time-dependent currents, one should
mention two papers by Page [34]. However, his EMF
strengths were presented in the integral form, unsuitable for
practical applications. The EMF of TSs for a number of time
dependences were studied in [35]. Unfortunately, the most
interesting case of a periodical current was considered for
a very special case of an infinitely small TS. The multipole
expansion of the EMF for a TS with periodical current was
given in [19,36]. However, these presentations were too
schematic, without practical applications. Equations (3.47) for
the EMF of an infinitely small TS was earlier been obtained
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by Nevessky [37] and, also, in [38]. Their generalization
for more complicated toroidal configurations is given in [39].
In the same reference, as well as in [25], the charge—
current toroidal configurations were found outside which non-
trivial (that is unremovable by a gauge transformation) time-
dependent electromagnetic potentials were different from zero
despite the vanishing EMF strengths. This makes possible the
performance of experiments investigating the time-dependent
Aharonov—Bohm effect. All these studies are summarized in
[40].

What is new in this section? It seems that general
equations (3.23) defining EMFs of TS and corresponding
particular cases (3.24)—(3.33) were not considered previously.

We briefly enumerate the applications of TSs as follows.

(a) Toroidal transformers are very effective since the leakages
of the EMF into the surrounding space are very small.

(b) TSs are widely used in modern accelerators. Being placed
along the circumference, they generate electromagnetic
field concentrated inside the torus holes (see e.g. [25],
where the exactly soluble configuration of a TS producing
atime-dependent EMF confined to the interior of a circular
tube was considered).

(c) According to [41] ‘Air-cored toroidal inductors are used in
power electronic circuits because they are relatively easy
to make, they do not saturate and they do not produce
troublesome external magnetic fields.’

(d) Finally, one should mention Birkeland’s electromagnetic
gun (see, e.g., [42]) in which the set of toroidal solenoids
are used for the acceleration of an iron bullet. The modern
version of Birkeland’s gun is realized in US Star Wars
programme, officially known as the Strategic Defence
Initiative.

4. EMF of an electric dipole

Consider two point charges at the points +ayn. Their charge
density is given by

pa = e[83(F — agi) — 83(F + agi)].

For an infinitely small dipole, this takes the form

pa = —2ea(iV)8>(F) Vv, =

Now let the charge density depend on time
pa = f(OGV)S )

(factor —2ea is included in f(¢)). The corresponding current
density is given by

Ja=—fORs ). (4.1)

The following EMF strengths correspond to these densities:

-

|
Hd=w(f‘xl’l)Dd

.

I [ I ..
E; = —- |:nGd — —z(nr)er] . “4.2)
c’r r
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Now let the time dependence of the charge density be cos wt:
pa = —2eay cos ot (IV)8> (F)
Jju = —2eaqw sin wtis® (7). (4.3)

For the unit vector 7 along the z axis, one obtains

2eaqk? i
Hyp = — edd sin @ (cos v — 31]1; 1#)
r r

k? 1 sin Y
sin 6 [cosw <1 — W) i ]

1
5— cosf (Sin Y + — cos W)
r kr

Y = kr — wt.
4.4)

In the static limit (k¢ — 0) one obtains the field of an electric

dipole

4

Ze sinf  Eg — e?d cos® Hyy — 0.

2a
Ed0 —

For the oscillating electric dipole with a finite a4, oriented
along the z axis
pa = iexp(iot) pao

Pdo 8(r —ag)[8(0) —8(r —6)]

" 2malsinf
Ja =Tirja Ja = —wexp(iowt) jao
) e
Jao = ﬁG(ad —nr)[8(8) — 8@ —0)] 4.5)
JTr? sin O

If we desire to obtain, in the static limit, the static electric
density pg0, we should take, at the end of all calculations, the
imaginary parts of the EMF strengths (since p, in (4.5) contains
the imaginary unit factor i). It turns out that a;" (M) = 0, i.e.
only the electric form factors with / odd contribute to the EMF
strengths,

1
a;" (E) = 8oai(E) a(E) = —266,/sz(kad)

4.6)
(+ 1) ji—i(kag) — Ljis (kag)
20+ 1 '

kag
Fi(kay) = / Ji(x)x dx+kay
0

For ka; — 0 this reduces to

I+1
2r+nt
Taking the imaginary parts of the EMF strengths (3.18) with

a;(E) given by (4.6), one obtains

20 +1 L
Hy = —2¢k? Z 0+ (cos wtj; + sin a)tnl)PllF/(kad)

;= (kag)'.

1
Ep = —2ek>) T {coswi[(l + Dny_i — Inj1]
—sinwt[( + 1) ji—1 — L 1} P} Fi(kag)

2ek
E, = = Z(Zl + 1)(coswtn; — sinwt j;) P Fi(kag). (4.7)
r

We evaluate the square bracket entering into the definition of
the toroidal moment (see the last line in (3.4)) for the electric
dipole charge—current density given by (4.5):

(1+3)/r’+2Y,fn div]‘ddV+2(21+3)/r’Y,’;n(7fd)dV
2e0l(l+1) |pn

(+2)
(factor exp(iwt) is omitted).

= Omo (4.8)

4.1. Interaction of an electric dipole with an external EMF

Substituting the charge—current densities of the elementary
electric dipole

pa = FOGVSG =70 Ju=—fOF8F — i)

into the expression for the interaction energy

- S N
U= / [pd(r)d%xz(r) - ;Jd(r)Am(r)} dv
one obtains

-2 o 1, - .
U=—fa@)(nV) Py (ra) + ;fd(t)nAext(rd)~ 4.9)
Let the external EMF be the field of a TS with a constant current
ig its winding. Then, outside the TS, ®,,;, = 0, E,,; = 0,
Heyy =0, Apy # 0 and

U= _%fd(t)ﬁAext(Fd)~ (4.10)
It is surprising enough that the interaction energy differs from
zero in the space region where E,,; = H,,; = 0. Despite the
fact that EMF strengths vanish outside the static TS, the vector
potential A cannot be eliminated by a gauge transformation
everywhere in this region. This is due to the fact that f Ads
along any closed path passing through the TS hole, is equal
to the magnetic flux inside the TS. However, the space region
where A differs from zero depends on the gauge choice (see,
e.g., [40]). On the other hand, the interaction energy (4.10)
should not depend on the gauge choice. The origin of this
inconsistency is unclear for us.

4.2. Historical remarks on electric dipoles

The EMF of an electric dipole is analysed almost in any
textbook on classical electrodynamics. However, all of them
are limited to the long-wave limit, expressions (4.2) and (4.4).
We did not see the general equations (4.7). This is due to the
fact that for the typical wavelength of the short-wave range
(A = 25 m), kag <« 1 for a; ~ 10 cm. In this case
equations (4.7) are reduced to (4.2) and (4.4). However, in
the microwave region equations (4.7) should be used.

5. More complicated elementary toroidal sources

In this section we give, without derivation, the EMFs of more
complicated toroidal sources obtained earlier in [39]. They are
needed for the evaluation of integrals entering in the Lorentz
and Feld-Tai theorems. Unfortunately, their omission makes
the text unreadable. Consider the hierarchy of a TS each turn
of which is again a TS. The simplest of them is the usual TS
obtained by the replacement of a single turn, representing the
current loop, by the infinitely thin TS. We denote this TS by
T S; (the initial current loop will be denoted by TSp). The
next-in-complexity case is obtained when each turn of 7'S; is
replaced by an infinitely thin toroidal solenoid ¢s; with the
time-dependent current in its winding. The thus obtained
current configuration denoted by T'S; is shown in figure 4.
We see on it the poloidal current j flowing on the surface
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TS, T

Figure 4. A toroidal source of the second order is obtained if
instead of each particular turn of a usual TS, a new infinitely thin TS

ts is substituted with the current fin its winding; it generates the

magnetization M covering the surface of the original TS and
directed along its meridians. The complete magnetization from all
ts generates the closed tube of toroidal moments 7 filling the
interior of the original TS and generating in turn the second-order
toroidal moment shown by the vertical arrow.

of a particular torus 7s;. Only one particular turn with the
current j and only the central line of s, are shown (for the
torus (p — d)? + z2 = R, the central line is defined as p = d,
z = 0). The arising time-dependent magnetization (due to
the current ] flowing in ts1) coincides with the central line
of ts; and lies on the surface of 7Sy, in its meridional plane.
Since there are many turns in 7' S, (each of them is the same as
ts1), the superposition of their magnetizations gives the overall
magnetization M, filling the surface of T'Sy (see figure 1 or
the upper part of figure 3, where j now means M). This
distribution of magnetization is equivalent to the closed chain
of toroidal moments T aligned along the central line of 7'S,
(see the middle part of figure 3, where M now means 7).
The closed chain of toroidal moments leads to the appearance
of a higher-order toroidal moment shown in figure 4 by the
vertical arrow. When the dimensions of this, just obtained,
configuration 7'S, tend to zero, we obtain (see [25, 39])

curl® = curl - curl - curl .

(5.1)
The corresponding vector potential and field strengths are
given by

o = fot) curl® (783 (7))

E) = L Df)(? x n)
52

o=l oo 1o
H, = ncs—er - CSTr(rn)Fz . 5.2)
Here the subscripts on the D, F and G functions mean that
they depend on the f function with the given index, while the
superscript denotes the time derivative of the order equal to the
superscript. For example,

dll
DY = —D(fn).
m dt" (f )

The argument of f functions is t — r/c. By comparing (5.1)
and (5.2) with (3.16) and (3.17) we conclude that for the
current configurations 7'Sp and T S, the electromagnetic fields
coincide everywhere except for the origin if the following
relation between the time-dependent intensities is fulfilled:

2(2) =—fo /cz. This means, in particular, that the EMF of
the static magnetic dipole ( fy = constant) coincides with that
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of the current configuration 7'S; if the current in it quadratically
varies with time (f, = — foc?t?/2). It follows from this
that the magnetic field of the usual magnetic dipole can be
compensated everywhere (except for the origin) by the time-
dependent current flowing in 7'S.

Now we are able to write out the EMF for the point-like

toroidal configuration of arbitrary order. Let
Jn = fu(®) curl™D (i3 (7). (5.3)

We consider even and odd m separately.

5.1. Toroidal configurations of even order

Let m be even (m = 2k, k > 0). Then

. 1 _
Ay = (= D! 22,2 Déik)(r X 1)
Ey = () 555 D5 x n)
c2k+3p
T e L[ 1o oo -1
Hye = (=1 oy rj”(””)sz —n;GZk . (549

The distribution of the radial energy flux on the sphere of radius
r is given by

. 2
C 2.0 sin” 0 2%+ 42k
Sr = E(E X H),» = WDZI{ sz.

Here 6 is the angle between the symmetry axis 7 and a
particular point on the sphere. The total energy flux through
this sphere is

2
2 2k+1 ~2k
r / S, dQ = WDZ/( G2k'

The interaction of the even toroidal source with the external
EMF is given by

U=-2% / AV Ay curl* (@83 (F — 7))
c

Sk -z
= (—1)k+lw(nHe(ff))

(5.5)

where the external magnetic field is taken at the position of a
point-like toroidal source.

5.2. Toroidal configurations of odd order
On the other hand, form odd (m =2k + 1,k > 0)

> 1 | R 1ok
Agpr1 = (—1)](02,(75 [ﬁr(V”)Fz(kﬁ - ”;Gékﬁl

Egpsr = (=1)F!

1 1
) 75 R ) SR
o2k [ﬁr(””)szﬂ - ";szﬂ :|

D (2k+2)

aket (T X 1)

Hyr = (=1)f ———
+ o2k+4,2

2 G (2k+1) D (2k+2)

S= 3T T2+ Pkl

(5.6)

The distribution of the radial energy flux on the sphere of radius
r is given by

242 ~2k+1
DGy

c - - sin? @
Sr= g B Hr = iy
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The total energy flux through this sphere is
2 2 2k+2 ~2k+1
r S, dS2 = WD%H G-

The interaction of the odd toroidal source with the external
EMF is given by

U—— Pt
c

/ AV A,y curl*2G83F — 7))

f2k+1 = 1 (2k+1)
s REGT™).

= (=D 5.7
Again, the external electric field is taken at the position of a
point-like toroidal source.

5.3. Short resumé of this section

We see that there are two branches of toroidal point-like
currents generating essentially different electromagnetic fields.
A representative of the first branch is the usual magnetic dipole.
The electromagnetic field of the kth member of this family
reduces to that of the circular current if the time dependences
of these currents are properly adjusted
w =D @/t k0. (58
We remember that the lower index of the f functions selects
a particular member of the first branch, while the upper one
means the time derivative.
The representative of the second branch is the elementary
TS. Again, the electromagnetic fields of this family are the
same if the time dependences of currents are properly adjusted
o = EDEAO k>0 (5.9)
2k+1 1 = Y- :
From the equations defining the energy flux it follows that for
high frequencies, the toroidal emitters of the higher order are
more effective (as the time derivatives of the higher orders
contribute to the energy flux). They may be used in the same
way as usual frequency modulation transmitters. Namely, the
EMF of high frequency carries the energy. It is modulated
by the low-frequency EMF carrying the information. The
resulting signal is decoded in the receiver, its high frequency
is removed, while its low-frequency part comes to our ears.
From the classical electrodynamics it is known [15, 17]
that there are two types of radiation. For the multipole radiation
of magnetic type 7E = 0 and ¥H # 0, while for radiation
of the electric type should be FH = 0 and FE # 0. It
follows from (5.4) that FEy; = 0 and 7Hy # 0. Thus,
radiation fields of the time-dependent currents flowing in a
circular turn and in toroidal emitters of the even order are
of theﬁmagnetic type. It follows from (5.5) that ?Ijlzk =0
and 7 E,; # 0. Correspondingly, radiation fields of the time-
dependent currents flowing in a toroidal coil and in toroidal
emitters of the odd order are of the electric type.

5.4. Historical remarks to section 5

EMFs (5.4) and (5.6) of elementary toroidal sources were
obtained in [39]. Their interactions with an external EMF
are given here for the first time.

6. The Lorentz and Feld-Tai lemmas

6.1. Standard derivation of the Lorentz lemma

We write out Maxwell’s equations for two current sources jj
and jp:

s J QS = 1= 4 -
curlEl =——H,; CurlHl =*E1+7]1
Cc C C
= 1= e 1= 47 -
curl B, = ——H, curl Hy = —E», + — j5. 6.1)
C C C

From this one easily obtains
div(El X Ijlz) = FIZ curl E"l — I:fl curl I;"z

1- = 1- = dr - -
= —-HWH, —-EE,— —pE;
c c c
div(E, x Hy) = Hycurl Ey — E; curl E,

Subtracting these equations from each other, one obtains
- - - - 1 - = 5 o
diV(El X H2 - E2 X Hl) = *(Hle — H2H1)
¢

1 - = N dr - - e
—;(ElEz—E2E1)+7(]1E2—J1E2)- (6.2)
When the time dependence of the field strengths is given by

exp(iowt), i.e.

E) = exp(iwt) E? E, = exp(iwt) EY

H, = exp(iwt) HY H, = exp(iot) HY (6.3)

then . .
H,H, = HyH,

E\Ey = E>E, (6.4)

and
.= - o - A -
div(E; x Hy — E> x Hy) = 7(11152 — J1E2).

Integrate this relation over the sphere of the radius Ry and apply
the Gauss theorem

> > > o 4 - o - o
R; /(E1 x Hy — Ey x H), dQ2 = 7/(]1152 — iE>) dV.
(6.5)

For Ry — oo, the left-hand side (LHS) of this equation
disappears and one obtains the famous Lorentz lemma

En =& (6.6)
where we put £}, = fflﬁz dV and &, = ffgél dv.
6.2. The Feld-Tai lemma
The Feld-Tai lemma states that

Hip = Ha (6.7

where H;p = f}lflz dV and Hy = ffzfll dV. It is proved
along the same lines as the Lorentz lemma. From (6.1) one
easily obtains

.= - - - 2 R
div(H; x H,) = ;(HZEI — HiE>) + jiH, — ji1H>
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o o 1 - = o
diV(E] X Ez) = E(EIHZ - E2H1). (68)

Subtracting these equations from each other, one obtains

- - - - 1 - - 5
div(E; x Ey — Hy x Hy) = —(E1H> — E>H))
C

1 - = S - o S o
_;(HZEI —HEy) — jiHy + joHi. (6.9)
If the time dependences of E and H are exp(iwt), then the first
two terms in the right-hand side (RHS) of (6.9) cancel each
other. Integrating the remaining ones over the whole volume,
one obtains

rz/dQ (E] X Ez — I:i] X Ijlz), = /dV (—fll‘}2+lejl|).

L. (6.10)
Since E = H x nand i = 7 /r on the sphere of infinite radius,
the LHS of (6.10) disappears and one obtains the Feld-Tai
lemma (6.7).

6.3. Lorentz and Feld—Tai lemmas for real time dependences

The crucial point in obtaining (6.6) and (6.7) is (6.3). However,
the real current densities should be real. The possibility of
operating with complex quantities like

exp(iwt)]' exp(iwt)f exp(iowt) H

is valid as far as we deal with the quantities linear in field
strengths. For example, if the actual dependence of the
current density is coswt, then we may solve Maxwell’s
equations with exp(iwt) j, exp(iwt) E and exp(iwt) H and at
the end of calculations take the real parts of these quantities.
However, one should be very careful in dealing with quadratic
combinations such as (6.2) and (6.9). To avoid mistakes
one should first take real parts of the EMF strengths and
substitute them into quadratic combinations of the field
strengths. Consider the two equalities, (6.4), obtained under
assumption (6.3). Equations (3.9), (3.23) and (4.4) show that

actual field strengths contain both cos wt and sin wt
I;"l :coswtff+sinwtff Ez :coswt]?"ﬁ#sinwtfi

H, = cos wt H{ +sin wt H} H, = coswt Hy +sinwt H; .

(6.11)
Substituting (6.11) into (6.4), we find that (6.4) are satisfied if
ESES = EJES HH = H; HS. (6.12)

Itis not evident that these equations are fulfilled for the real time
dependences, cos wt and sin wt. We show below (section 6.5)
that they are not satisfied even for the simplest of EMF sources.

6.4. The Lorentz and Feld-Tai lemmas for elementary
electromagnetic sources

We apply now the Lorentz and Feld-Tai lemmas to the
simplest electromagnetic sources. The general conditions for
the validity and violation of these lemmas will be given in
section 7.3. The verification of the Lorentz lemma validity
for particular sources is needed because the RHS and LHS
of this lemma are the experimentally observed voltages (see
section 7.3.3 for details) induced in these particular sources.
Their deviation from the theoretical values testify to the
possible violation of reciprocity (see section 7.4).
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6.4.1. Interacting electric dipole and current loop.
Equations (3.16) and (3.17) define the current density and EMF
strengths of the current loop, respectively. Correspondingly,
equations (4.1) and (4.2) define the same quantities for the
electric dipole. Combining them, we evaluate the integrals
entering into the Lorentz and Feld-Tai lemmas:

Erg = fL/curl(ﬁL53(7—7L))Eddv
1 N N LS
= - fanL/83(r —F)HydV
c

1 > N .
= %fL(t)(RLd(nd x np))Dq

1 . - s .
EaL = 5 Ja@W)(Rar(nL x ng)) Dy
'Ry,
M= o ful®)
W= =Gro
N . l o = S 2 .
X [(”d”L)Gd - T(ndeL)(nLRdL)Fd]
RiL
Mar = 1 f1(0)
aL =~ Gg.Jd
oo r - . -
X |:(ndnL)GL - RT(ndeL)(nLRdL)FL] . (6.13)
L

Here Ry = —Rar = FL—Fa, D = D(f1), Da = D(f2), etc.
The functions D, F and G are defined by (3.17). The argument
of f functions entering into D, F and G ist — Ry /c. We see
that

ng = 5dL and HLd = HdL (6.14)
for arbitrary f;, = fy.
6.4.2.  Interacting electric dipole and TS. Combining

equations (3.46) and (3.47) that define the current density and
EMF strengths of a TS and equations (4.1) and (4.2) that define
the same quantities for the electric dipole, we evaluate the
integrals entering into the Lorentz and Feld—Tai lemmas:

Era = fr(t) / curl® (1783 F — Fr)Eq dV

1 5 o
= — < fr()Es(Rrp)
C
(GNP |
= {Ti (nrna)Ga — —— MaRra) (M Rra) Fa
C¢*Ryr R%,

. 1
Ear = t)————
ar = Ja® S

N . 1 L = L = .
X |:(nTnd)GT - T(ndRTd)(nTRTd)FT]
Rir

1 s
Hra = —ijT(l)(”THd(RTD)

= 3
= - WfTRTd(nd X nT)DfJ)
Ta

U - L0
Har = —— fa(®) Rar (g x ii7) DY .
c*R
Td
The dots above the field strengths denote time derivatives.
Again, we see that these integrals coincide for arbitrary

fr = fa.

(6.15)
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6.4.3. Interacting current loop and TS. Finally, using
equations (3.16), (3,17), (3.46) and (3.47) we obtain for the
integrals entering into the Lorentz and Feld-Tai lemmas:

Eir = focurl(ﬁL33(7 —FNErGF—7Fr)dV
1 B
= —ffLﬁLf#(?—?L)HT(?—?T)dV
C

1 a X
= — — fiRyr(ig x ii) D
CsRinL rr(ny x np)Dy

Ery = fT(t)/Curl(z)(ﬁTSS(;:_?T))EL(?_ Fr)dv

1. o= -
_fT(t)gnTEL(RTL)

3N - -
- é?fT(t)D;‘)RTL(nL X nr)
TL

Hir = f1 / curl (i, 83 F — #) Hy (F — Fr) dV

1 = -

= EflnLET(RLT)

= GGy — —Gir Rur)GrRon) E

_CSRLT‘L npnt)Gr Rdzr npKkpr)\nrKpr)rr
Hrp = fT/cur1<2>(ﬁTs3(7—7T))HL av

1. I >
= —ngnT/83(r—rT)HL(r— R;)dV
= — %ﬁTIjI(I_éTL)
fr oo 1 . = I
= =5 — |np)GL — —— L Rer)(np Rer) Fr |
C RTL RdT

(6.16)
We see that these integrals coincide for arbitrary fr = fi.

6.5. The Lorentz and Feld—Tai lemmas may be fulfilled even
when condition (6.4), ensuring their validity, is violated

We analyse the conditions (6.4) and (6.12) using the interacting
current loop and TS as an example. As we have seen, the
equalities

Hir = HrL

are satisfied if fr = fr. However, it is easy to check that
the conditions, (6.4) and (6.12), under which the Lorentz and
Feld-Tai lemmas were obtained are not satisfied for arbitrary
fr = fr. More accurately, (6.4) and (6.12) are valid if the
time dependences fr and f; are of the following specific
form: fr ~ exp(iwt) and f; ~ exp(iwt). But how to
reconcile the violation of (6.4) and (6.12) with the fulfillment
of (6.6) and (6.7) proved in a previous section? The answer
is that although the left- and right-hand sides of (6.4) do not
coincide for interacting current loop and TS with arbitrary
time dependence, space integrals from both sides of (6.4) do
coincide. This, in turn, means that the Lorentz and Feld-Tai
lemmas have a greater range of applicability than suggested up
to now. The same conclusions are valid for the interaction of
an electric dipole with the current loop and with the TS. The
fact that the Lorentz lemma (6.6) may be fulfilled due to the
equalities of the space integrals from (6.4), not to (6.4) itself,
was earlier recognized by Ginzburg [43].

gLT = 5TL and

6.6. Historical remarks to section 6

The standard derivation of the Lorentz lemma may be found
in many textbooks (see, e.g., [44-46]). The derivation of the
Feld-Tai lemma is available only in journal papers [11-13].
The mutual interaction of a point-like electric dipole, current
loop and TS is given here for the first time.

7. Alternative proof of the Lorentz and Feld-Tai
lemmas

7.1. Digression on the energy exchange

At first we consider a simpler case, corresponding to the
energy exchange between two sources of electromagnetic
energy. The energy transmitted from one charge—current
source py(7, 1), jo(7, t) to the other source p; (7, t), ji (¥, t) is
given by

- - 1~ . -
Wi (1) = / |:pl(rlat)¢’2(rlst) - E]l(rlal)AZ(rl»t)i| vy,

7.1
where ®,(7,t) and AQ(?],I) are the scalar and electric
potentials induced by the charge—current density (o2, j2) at
the position of the charge—current density (p;, j;). They are
given by

. 1 .
Dy (r1, 1) = / sz(rz, 7)8(t —t+ Ryz/c)dVadr
12

- 1 |
Az(rl,t) = E/Rsz(l’z,‘L')(S(‘C—t+R12/C)dV2d‘E. (72)
12

Here R, = |F| —7>| is the distance between the particular point
of sources 1 and 2. Substituting this into (7.1), one obtains

. . |
Wi (t) = / |:Pl(r1’t)/)2(r2af) - gjl(rl,l‘)Jz(Vz,T)]

1
XRfﬁ(t—t+R|2/c)dV1dV2d‘L'. (7.3)
12
In the same way,
. . - . -
Wo (1) = / [pz(rz, Hpi(r;, ) — ijl(rl, 7) j2(r2, f)}
1
XRfﬁ(r —t+Rpp/c)dV;dV,dr. (7.4)
12

We see, that in general Wy (r) # Wia(7). Let now the time

dependences in p and j be separated
p1(Fi, 1) = p1(t) p1 (Fr) 02(Fa, 1) = pa(12) p2(F2)

NMGEDENIGNIGY J(F2 1) = jo(t2) o (Fa).

(7.5)
Then,

Wia (1)
- - 1 v o=
= /[Pl(t)pl(rl)l)z(rz)ﬂz(f)—ijl(f)jl(rl)jz("z)jz(f)]

1
XFS(T —t+Rpp/c)dVidV,dr (7.6)
12

Wa (1)
. . 1 PRI
= /[Pz(f)pz(rz)pl(rl)pl(f)—ijz(f)jz(rz)jl(rl)jl(f)]

1
X =81 =1+ Rip/c)dVi dVadr. (1.7)
12
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It follows from this that Wi, = W5, if the time dependences
of sources 1 and 2 coincide, i.e. when

p1(t) = pa(1) J1(t) = jo(0). (7.8)

That is, the action and reaction coincide if the time
dependences of sources 1 and 2 are separated and
synchronized.

The violation of action and reaction due to the retarded
nature of electromagnetic interaction was first recognized
by Lorentz in 1895 [47]. As far as we know, the best
exposition of these questions was given in Cullwick’s book [48]
where the explicit violation of action and reaction equality
was demonstrated for the interaction of a charge with a TS.
In a modern physical literature the violation of this equality
is considered as almost obvious. We quote, for example,
French [49]:

The equality of action and reaction has almost no
place in relativistic mechanics. It must be essentially
a statement about the forces acting on two bodies, as
a result of their mutual interaction at a given instant.
And, because of the relativity of simultaneity, this
phrase has no meaning.

The violation of action and reaction equality for the
interaction between the moving current loop and charge and
between two moving charges was noted by Jefimenko [50]
and Cornille [51], respectively. However, this violation
is not restricted only to the retardation effects. Even for
the interacting static metallic currents there are two known
interaction laws: Ampere’s law which agrees with Newton’s
third law (equality of action and reaction forces) and Lorentz’s
law which violates it (see, e.g., [52,53]). However, if the
above currents are closed, the difference between these forces
disappears: both of them satisfy Newton’s third law [54] (from
our considerations it follows that in the non-static case the
violation of the action-reaction equality is possible even for
closed coils). As to experiments, some of them [55] support
only Ampere’s law of force, while others [56] give the same
result for both laws. These questions are beyond the present
consideration.

7.2. Concrete examples: the energy exchange between
elementary toroidal sources

Let us have two toroidal sources T7'S; and T'S; in an arbitrary
order. Their interaction energy is

W =Wp+ Wy

where Wy, and W, are the parts of W localized at the positions
of TS| and T S,. More accurately, W), is the energy induced
by source 2 at the position of source 1; similarly for W,;. They
are given by

Wiy = —%/ﬂ(?—ﬂ)&(?—?z)dv (7.9)
and
Wa = —lsz(l’ —P)A G~ dV (7.10)
respectively.
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7.2.1. The interaction of even toroidal sources. Let fl and ]’2

be both of even order
i = filo) cur® [, 83 G — 7))

J2 = o) curl 1,83 F — 7).

Then,
( 1)[1+1 > a1y
le_ifl(t) |- HP(Ryy)
( 1)[2+1 . .
War = o2+ 5 [2(0na H1(212)(R21) (7.11)

where 132(21‘) (I_élz) is the 2/; time derivative of the magnetic
field produced by T'S, at the position of 7S, and H 1(212)(1$2])
is the 2I, time derivative of the magnetic field produced by
T S at the position of T S,. Substituting them from (5.4), one
obtains
Wi=fi

(_ 1)11+[2+1

CZI]+212+4R12

= 20,421 oL |
x RT(mRu)(anlz)Fg( PR — (i) G
2 i
( 1)11+l’7+1
= F i
cHiteht i Ry
M1 L o L o
X T(”llRl2)(n2R12)F1(211+212>_
Ry,

(;i . ;iQ) G§211+2[2)

(7.12)

(the upper indices at F' and G functions denote the time
derivatives). We see that Wi, = W, for arbitrary f; = f>.
Let f; and f, not depend on time. Then, W, and W, differ
from zero only forl; =1, = 0:

fifa

Wi = Wy = _czsz

|: = (711 R12) (2 Riz) — (711712)]
12
which coincides with interaction of two magnetic dipoles.

7.2.2. The interaction of odd toroidal sources. Let fl and fz

both be of odd order.
Ji = faun (@) curl? (7,83 F — 7)1

Jo = S (8) curl?22 (71,83 (F — ).

Then
(% (b ~Qh+D) 1
2= "2 i [1On - BT (Ry)
_ (_l)lﬁl 2 0h+1), 3
War = —5 foOiiz - B (Rar) (7.13)

where Eézl‘m (R12) is the 2/, + 1 time derivative of the electric
field induced by TS, at the position of 7S} and E lezﬂ) (ﬁzl)
is the 2/, + 1 time derivative of the electric field induced by
TS, at the position of T'S,. Substituting them from (5.5), we
obtain
(_ 1 )l 1+
2= f 1 m

T
* [RT(”IRlz)(”lez)Ff D (i i) G
12
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( 1)1 1+l

Wa =12 2GR

(ﬁl;iZ) G§211+212+2)i| )

(7.14)

Again, we see that Wi, = W, for arbitrary f| = f,. Let fi
and f, notdepend ontime. Then, Wj, = W,; = 0. This means
that static toroidal sources of an odd order (and, in particular,
usual static TSs) do not interact.

Itfollows from (7.12) and (7.14) that the interaction energy
between toroidal sources of the same order vanishes when the
two following conditions are fulfilled simultaneously.

| L o
X[P%m&ﬂm&ﬁﬂ%%m—
12

(1) The symmetry axes of toroidal sources are mutually
orthogonal.

(ii) The symmetry axes of toroidal sources are perpendicular
to the vector R, going from T S; to, T'S>.

In particular, this is valid for two interacting current loops or
TSs.

7.2.3. The interaction of even and odd toroidal sources. Let
one of the currents be of the even order and the other of the
odd one:

= fite) curl®™ii, 8 — 7))

7o = fo() curl?> 2,83 F — 7).

Then,
=it P T D
le = Wfl(t)nl N H2 (RIZ)
_ =D Dl = QL+l 5
War = o242 L®ny - By (Ray). (7.15)

We observe a curious fact: 7T'S; interacts with the time
derivatives of the magnetic field induced by 7S, while TS,
interacts with the time derivatives of the electric field induced
by TS; (by ‘interacts with time derivative’ we mean that
the time derivative of the corresponding order enters into the
interaction energy). Substitution of E 1 from (5.4) and Hz from
(5.5) gives

(=Dl Qh+21+2)
— 1 2
2= f S R i1 (Riy x n2) D
(—Dhhrt g 21 421,42
Wy = f2WR2 72 (Ryy x n) D22 (7.16)
Again, we observe that Wi, = W, forarbitrary f; = f,. From

this one can see at once the violation of the action—reaction
equality for f; # f,. Take, for example, the last equation. Let
f1 and f, depend and not depend on time, respectively. Then,
Wi, = 0 and W,; # 0. This means that 7S; acts on TS,
while TS, does not act on 7'S;. It follows from (7.16) that the
interaction energy between toroidal sources of even and odd
orders is zero if one of the following two conditions is fulfilled.

(i) When the symmetry axes of 7'S; and 7S, are parallel.
(ii) When at least one of the two symmetry axes (T'S; or T'S»)
is parallel to the vector R, going from 7'S; to T'S,.

In particular, this is valid for the interaction of a current loop
with a TS.

7.2.4. Numerical estimations. To explicitly see at what level
the equality of action and reaction is violated, consider an
interacting current loop and TS with a constant current in its
winding. Since, there is no EMF outside such a TS it does not
act on the current loop. On the other hand, the action of the
current loop on the TS is given by (7.16) where one should put
11 = 12 =0. Then,

1 - -
Wrr =0 WrL = —fr——5—Rro(nL x nT)D(Lz)~
Ry,

Let f; periodically change with time. Then,

fo= nILdi cos wt

. 1
D, = —nILdzw <sm wt, — — CoS wt,.>
r
w R
DY = —w?’D k=— e
¢ ¢
T[ILd - o N 2
Wrp=—fr oY) LRyp (i x nT)D;)w3

. 1
X (sm wt, — o cos wt,) .
r

Now we choose fr. It is equal to mcgdr R%/4, where g =
2NIr/c, N is a number of coils in a TS winding and I is a
current in a particular coil. However, instead of a TS winding,
it is convenient to use a ferromagnetic ring magnetized in the
azimuthal direction (see the middle part of figure 3). These two
objects are completely equivalent as to their interaction with
an external EMF. The magnetic field inside a TS is given by
Hy = g/p, where p is the cylindrical radius. If the major
radius dr of a TS is much larger than its minor radius R, we
may put H¢ = Hy = g/dr and g = dr Hr. Finally, for Wy,
we obtain

n’l Hrd;d; R? -

5 p2
Ry,

. 1
X (sm wt, — o cos a)t,) .
r

Its maximal absolute value is

2
Wrp = — Rrr(iL x nT)D(L)a’3

|\Wri| = n*I Hrd; d7 R /¢ Ry

This expression should be multiplied by the number, N, of
the turns in a circular loop. The typical value of magnetic
field inside the ferromagnetic sample is about 1000 G. Let
Ny = 1000, I; = 1 A, the dimensions of a current
loop and TS are of the order of few centimetres and the
distance between sources about 10 cm. In order that the
motion of the TS can be observed, the frequency should
be of the order few hertz (otherwise, positive and negative
values of W7 compensate each other for the finite observation
time). For these parameters, Wy, ~ 10732 ergs and the
corresponding force Fy; ~ Wy, /Ryy ~ 10733 dynes. Such
a small force could be hardly observed experimentally for
the realistic cosine or sine current dependences. Under the
influence of a force from a current loop, the TS begins to move.
The EMF strengths are non-zero outside the TS, when it moves
uniformly in a medium [57, 58], or when it is accelerated (both
in a medium and under vacuum [36]). The moving TS will act
on a current loop which, in turn, begins to move. However,
these, next-order effects, are beyond the present consideration.

553



G N Afanasiev

At first glance it seems that the violation of the action—
reaction equality testifies to the energy—momentum non-
conservation. Fortunately, this is not so. In fact, the energy—
momentum balance restores if one takes into account the
energy—momentum carried out by the radiated EMF.

7.3. Back to the Lorentz and Feld-Tai lemmas

7.3.1. Lorentz lemma. Proceeding in the same way as
for the interaction energies, we obtain for the integrals
&1 and &) entering into the formulation of the Lorentz
lemma

- - 1
En = —/p](r|, )p2(rp, T)S(T —t + R]2/C)R7 dVv,dV,dr
12

1 EN - . . 1
+— /]] (l’], l)jz(rz, T)S(‘L’ — 1+ R|2/C)7 dV] dV2 dr
c? Ry
(7.17)
- R 1
&1 = —//)2("2, He1(r, )T — 1+ Rlz/C)Rf dvidvadr
12

1 - - . . 1
+— /J'z(l’z,l)jl (F1, T)8(r —t + Ryp/c)— dV dV,dT

C2 R12
(7.18)

where the dot above p denotes the derivative with respect
to (w.rt) t and the dot above the § function denotes
the derivative w.r.t. its argument. Again we see that, in
general, Slzjt) # &1(t). Let now the time dependences
of p and j be separated in the same way as in (7.5).
Then,

& = —/m(f)/)l(?l)/)z(?z)ﬁz(f)

1
X75(‘L’ -1+ R12/C) dV1 de dr
Rz

1 - Lo
+7/jl(f)h(rl)jz("z)jz(f)
c

1 .
XRch(r —t+ Rpp/c)dVidVadr (7.19)
12
&1 = _/pz(t)92(72)91(?1)P1(T)
1
X —368(T —t+ Rlz/C)dVI dV,dr
Ri»
1 I I
+C7/jz(l)jz(VZ)]l(rl)]l(T)
1 .
XR78(7.' —t+ Rpp/c)dVidV,dr (7.20)
12

Similarly to the interaction energies, we see that £(t) =
&,1(¢) for the arbitrary time dependences p; and j; coinciding
with p, and j», i.e. when conditions (7.5) and (7.8) are fulfilled.

7.3.2.  Feld-Tai lemma. Direct evaluation of integrals
entering into the Feld—Tai lemma gives

Hiy = Gijk/jli(ﬂ,

= eijk/.llz(rl»t).hk(rzs ) — R
12

Ry
X (‘L’—t+7> dV,dV,dr
C
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Hoy =€ijk/121(72,l

0 1
= €ijk / Jai (P2, 1) ju (71, t)ﬁRng

Ri»
(r—t+——)d%d%dr (7.21)
C

Here €;j; is the unit antisymmetrical tensor of the third rank.
When the time dependences in current densities are separated
(j@r,t) = j(t)j(r)), these equations are reduced to

1
Hip = Gi_ikjl(t)/jZ(T)]lz(rl)]Zk(rZ)iRi(s
12
Ri»
(‘L’ —t+ —) dVv,dV,dr
c
Ho = Gz;ka(l)/Jl(T)Jzz
R12

R,
(‘L’ —t+ —) dV,;dV,dr. (7.22)
c
Obviously
Hiz = Ha

when the arbitrary time dependences of sources 1 and 2
coincide (j;(t) = j2(1)).

7.3.3.  The physical meaning of the Lorentz and Feld-Tai
lemma for the interacting current sources. We conclude:
the Lorentz and Feld—Tai lemmas are fulfilled when the two
following conditions are satisfied.

(i) Time dependences are separated from space variables in
the charge—current densities. This means that the time
dependence should be the same for all space points of a
particular source.

(i1) The separated time dependence is the same for sources 1
and 2.

The physical meaning of the Lorentz lemma is as
follows [9, 59]. The time-dependent magnetic flux penetrating
a particular turn of a winding creates an electric field directed
along this turn. Being summed, they give the potential
difference between the ends of the winding if itis not closed and
induce the current in the winding if itis closed. This voltage (or
current) can be measured. To obtain voltage, in £, we omit
the time-dependent current force /; (not the current density
Jj1). Thus &1,(¢) so obtained gives the time-dependent voltage
induced in winding 1 by the time-dependent current flowing
in winding 2. Similarly, if in &, we omit the time-dependent
current force I, then & (¢) gives the time-dependent voltage
induced in winding 2 by the time-dependent current flowing in
winding 1. Thus &£}, and &,; so obtained coincide if I} = 1.
We observe that in the first case winding 1 is a receiver and
winding 2 is a transmitter. In the second case, the situation is
opposite. This means that an induced voltage is invariant under
the replacement of the detector and transmitter. We illustrate
this using a point-like TS and a current loop as an example.
Turning to (3.16) and (3.46), we observe that f7 and f; in &7
may be presented as

7 NIrdr R?

> fr fr :”ILdifL

fr=
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where Ir and I; are thf: current forces in a TS and current

loop, respectively, and fr and f}, are their time dependences.

Omitting the factor Ir fr, for the voltage induced in a TS we

obtain 5 )
N dTR d ~

Ve = — L DO ).
2¢°Ry;
In the same way, omitting the factor I, fL, for the voltage
induced in a current loop we obtain

7 Ndr R%d?

Vir = — LDy fr).
2c5R%L

Indeed, we see that V7, = V7 if ITfT = ILfL, i.e. when the
time-dependent currents flowing in a current loop and toroidal
solenoid are the same.

For completeness, we write out, without derivation, the
left-hand (€1, = [dV ji(F — F)E2(F — F2) dV) and right-
hand (& = [dV jo(F —F2) E\(F — 1) dV) sides, the Lorentz
lemma for the toroidal sources, the following.

(i) Both toroidal sources are of even order

-1 L +l+1
s (=1

2= fi 2R
I - L oo
X [RT("1Rlz)(anlz)Fg(zl'+2IZ+]) - (nlnz)Géthr%H)}
12
(_1)l|+lz+l

821 = f27
CZI|+212+4R12

Lo
X |:RT(n1R12)(l’l2R12)Fl( 1+ 2+)—(n1n2)G§ 2bt) |
12

(i1) Both toroidal sources are of odd order

(_1)[1+Iz

& = fli
CZl|+212+6R12

1 - > 2014+20+3 - - 201+21+3 |
X T(anlz)(anlz)Fg( b (mnz)Gé b
L K7 i

(_1)11+lz
&1 = hharan
cthtih R12

- B 2042043 o o (21420043
X F(anlz)(ﬂ2R12)Fl( 1+2043) —(nlnz)Gi 1+21+3)
L 12 |

(iii) One of toroidal sources (source 1) is of even order
and the other (source 2) is of odd order

(=D o Qh+2143)
512:fIWRT 1(R12Xn2)D2 e

e 2

(=Dt 21420543
&1 = o5 5 =57 M2(Ry X nl)Di HREe),

2i+2h+5  p2
c Ri,

These quantities are proportional to the induced voltages and,
thus, have physical meaning. It follows from these equations
that the voltages induced in the toroidal sources of the same
order vanish when the two following conditions are fulfilled
simultaneously:

(i) the symmetry axes of toroidal sources are mutually
orthogonal;

(ii) the symmetry axes of toroidal sources are perpendicular
to the vector R, going from T'S; to T'S;.

On the other hand, voltages induced in the toroidal sources of
opposite orders vanish if one of the two following conditions
is fulfilled:

(i) when the symmetry axes of 7S, and T S, are parallel,;
(i) when at least one of two symmetry axes (TS 0rTSy)is
parallel to the vector R;, going from T'S; to T'S».

These considerations may be useful when planning experi-
ments with reciprocity violation.

The physical meaning of the Feld-Tai lemma for
interacting current sources is not clear to us. A time-dependent
electric field penetrating a particular turn of a winding creates
the magnetic field directed along this turn. If free magnetic
charges existed, then integrals entering into the Feld—Tai
lemma (after omitting the corresponding factors as in the
Lorentz lemma) would give the magnetic voltage between
the ends of the winding (if it is not closed). Their equality
would give the symmetry between the transmitter and the
receiver. Since monopoles have not yet been found, this
interpretation of the Feld—Tai lemma has no relation to reality.
However, Lakhtakia [14] and Monzon [13], seem to have found
numerous applications of the Feld—Tai lemma.

7.3.4. Another viewpoint on the Lorentz and Feld-Tai lemmas.
In the Fourier representation (E(t) = f E(w) exp(int) dw,
etc.) the curl parts of Maxwell equations look like

. . - . A -
curl E = —ikHA cul H = ikE+ 27 k=w/e.
C

Then, the Lorentz and Feld-Tai lemmas are satisfied trivially.
For example, the proof of the Lorentz lemma without using the
Maxwell equations takes three lines

AP 2/171(71)512(72)(1‘/1
= /}1(;1)[_%(1)12(?1)_ikAIZ(;l)]dVI

. I N
= —iw/ |:,01(71)¢’12(71)+Ej1(1’1)A12(1’1)] dv,

. . |
—iw/ |:,01(F1)/O2(r2)+ gjl(rl)jz(rz)]

exp(—ilez)
X— =7

dv,dv.
Ri> 1dV2

= &1.

Therefore, the Lorentz and Feld—Tai lemmas may be viewed
as integral relations between the Fourier transforms of the
current densities and field strengths. This, in its turn, may
be used to derive new identities. For example, multiplying &£,
by exp(iwt) and integrating over w, one gets

/f1(71,w)lz"lz(ﬂ,a))exp(iwt)dvl do

_L _'(; t/)E (;: l‘”)

= 4n2 Jilry, 12(r1,
x explio(t —t' —t")]dV; dwdt’ dt”
1 T s N (3 4 / 1 ’ oy

=3 JGELYERGFL Y8 — 1 — ") dV, dr de
1 e - = -

= E/jl(rl,f —t)Ep(h, 1) dVv,dr. (7.23)
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Performing the same operation with &; and equalizing the
result to (7.23), one arrives at

/ Gt —)EpG, ) dv di’

= / S (ot — 1) Exi (P2, 1)) dVa . (7.24)

This equation was obtained by Feld [60]. We make one further
step, excluding electric strengths. Then, the LHS of (7.24) is
reduced to

1 9 Grt—1) Y Ri»

ri,t— Pt — —=

o ot P11 P2\ 2 B
R

1~ . - 1
+ =Lt —t)ja | Rt — — ) | =——di' dV; d V5.
c? c R

Therefore, the following equation should be satisfied:

R R
/[Pl(rla[_t/)PZ (Vz,l —%)

1- . - R 1
+ St =1 <r25t - 712)] —dt’ dV,dV,
c c

12
R R
= /[Pz(rzal—t/)pl (Vl,t — ?12>

1= . R R 1
+ =Gt — O (ALt = 22 ) | —dr' dviaVs.
c c Ry»

(7.25)

Performing the same operation for the integrals entering into
the Feld—Tai lemma, one obtains

/ exp(iot) ji (71, w) Hip (71, @) do dV)

1 e d -
= 7/].1(”1,1‘— tYHp(ry, ) dt’ dV,

— curl Jt—t
2nc/ R G "

XJZ(Vz,t — Rpp/c)dV,dV, dr’.

Therefore, the following equalities should be fulfilled:
/}1 (Fr.t — Y Hpp(Fy, 1) de’ AV,
= /}2(7% t— l‘/)ljlm(;:z, t)dt' dv,

/?Cur1]|(r], t—t )jz(rz,t — R|2/C) dv, dedl
12

1 - . - .
= / 7R curl jg(}"g, t— t')jl(rl, t— Rlz/C)dVI dv, dr’.
12
(7.26)

It is important that equations (7.24)—(7.26), contrary to the
equations defining the Lorentz and Feld-Tai lemmas, are
satisfied for any charge—current density. No assumption on the
separation of the space and time dependences or the equality
of the time dependences for two interacting sources is needed.

As the author is not the specialist in the applied aspects of
reciprocity-like theorems, he cannot appreciate the meaning of
the results obtained. On the other hand, there are outstanding
experts in this field (A Lakhtakia, ] C R Monzon and others).
It would be nice to hear their opinion on the treated questions.
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7.4. Violation of the Lorentz and Feld-Tai lemmas

Now we analyse the assumption on the separability time and
spatial variables in charge—current densities. Take at first the
simple circular current loop. Since there are no other turns,
there are no resistive or capacity connections between them.
Therefore, the current is the same along the whole wire (due to
the continuity equation div j = 0) and the time dependence is
clearly separated from the space variables. On the other hand,
consider the winding with many overlapping turns, for example
the TS. If the turns are close to each other, there is a finite
capacitance between them. For high frequencies the leakage
currents appear between particular turns and the current will
be changed along the wire. This does not have any relation
to the violation of the continuity equation divf = 0, which
will be fulfilled due to the presence of other f components
having a direction different from that of wire. Since the current
density changes along the wire, the time dependence is not now
separated. This should lead to the violation of the reciprocity
theorem. We conclude: the violation of the reciprocity is
possible for high frequencies and a large number of overlapping
coils.

In general, two windings with the same voltages at their
terminals do not satisfy the reciprocity theorem if the time
dependence is not separated in their charge-current densities
and if these charge-current densities are different. The
theoretical analysis of an experimental situation becomes
easier if one of the windings is chosen as simple as possible
(in particular, time dependence can be separated in its charge-
current density), while the time dependence of other charge-
current density should be non-separable. The measurement
process involves two stages:

(1) Apply time-dependent voltage to the terminals of the first
winding and measure an induced voltage at the terminals
of the second winding;

(2) Apply the same time-dependent voltage to the terminals
of the second winding and measure an induced voltage at
the terminals of the first winding.

These induced voltages do not coincide if the time
dependence in at least one of charge-current densities is not
separable (despite the equality of applied voltages at the
terminals of each winding).

At present we did not succeed in evaluating the explicit
form of the resulting current with a non-separable space—
time dependence (arising from the current leakages at high
frequencies) for the realistic winding. Instead, in the next
section, we consider the simplest charge—current density with
non-separable space—time dependence and prove the violation
of the Lorentz and Feld-Tai lemmas. We realize that this
example is slightly unrealistic. It is needed to support the
conclusion on the possible violation of reciprocity following
from the alternative proof of the Lorentz and Feld—Tai lemmas
given in section 7.3.

7.4.1. Concrete example of the reciprocity violation:
interacting electric oscillator and current loop. We
demonstrate the violation of the Lorentz and Feld—Tai lemmas
using the interacting electric oscillator and an infinitesimal
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current loop as an example. We consider the electric oscillator
oriented along the z axis:

Posc = €8(x)8(y)8(z — a cos wr)

20SC

J*¢ = —eawsin wt§(x)§(y)d(z — acoswt). (7.27)

Let the origin of a current loop br represented by the vector 7,
and let 71, be a vector normal to its plane. Then, according to

(3.16)

Jio = fu(t)curl(i 83 GF — 7r)). (7.28)

We first evaluate the electromagnetic potentials of an electric
oscillator. They are obtained from the general expressions

® (—> _ i =1 ’ 5 Py
osc r,t)_ Rposc(ral)a r—t+ c dv'dr

N I s = / R "ds’
A;}A(,(r’t): 7‘]7”“(r,[)8 t'—t+— ) dV'ds
R°* C

R=[F—F|

by substituting charge—current densities (7.27) into them and
performing integration over space variables. This gives

- 1 , R ,
Opcr,ty=e | =6t —t+— ) dt
R c

ose o sinwt’ ([, R ,
AZ(r, 1) = —efo S|t —t+—)dr.
R c

1/2

Here By = aw/c, R = [p? + (z — acoswt’)?]"/? and p? =

x? + y?. Integrating over ¢’ one obtains

efo sin wt

0

By (P 1) = é AP, £) = — (7.29)

where Q| = R; + By(z — acoswt)) sinwt; and R, = [x2 +
y2 + (z — a cos wt;)*]"/2. The retarded time 7, is found from
the equation

ot —t1) = Ry. (7.30)

Since the charge velocity 8 = —fpsinwt is less than one,
there is only one root of (7.30).

When obtaining (7.29), the following property of the delta
function was used: 8(f(x)) = 8(x — x1)/|f'(x1)|, where
x1 is the root of f(x). For the treated case it looks like
3(t' —t+R/c) =8("—1)/[1+ Bo(z —acoswt;)/R]. The
EMF strengths are given by
ad 9A;

E,=—2" E, =-2" _ Hy = —
p ap ¢ 3z cot ¢ B

A,

.

When performing differentiation, one should take into account
the fact that #; depends on the space—time coordinates of the
observation point. The corresponding derivatives are given by

dr Ry
dp Oy

dey P dey Z — a cos wty

z 0

a0

Then,
e, . Z
E) = —’i [1 — B3 sin® wt; — B cos wt (f - cosa)tl)]
a
1
ea ) Z Ry .
E! = — 1= ,33 sin?wn) [ = — coswt; — ,30—1 sin wty
0; a a
2
2P
+ By — cos wt
ﬂO az 1}
e R . .
Hq‘; = —ig [,30—1 coswt; + (1 — ,83 smzwtl)sma)tl] .
o a

(7.31)

We need also the EMF strengths of the current loop. According
to (3.17), they are given by

- 1 . . . R
Ep = —5=5Di((r —rp) xnp)
c3r}

c3rp r}

A= b [C G son .| am)

where r; = |F — 7| and the argument of the D;, F; and G,
functions (see (3.18) for their definition) is t — rz /c.

7.4.2. Lorentz lemma. Direct evaluation of the integrals
entering into the Lorentz lemma gives

eaw sin wt .

E(osc, L):/fo.scEL dV = ————Dylxpny — yinj]
c’R
L

where x;, y; and z; define the position of the current loop;
Ry = [x? +y? + (z; — a cos wt)?]"/%; the argument of the D,

function is t — R /c. Further,

E(L, osc) =/}LEOSCdV
Ry, d

cQip d

1 RlL 2 .2 .
S e Bo—— coswt; + (1 — By sin“ wty) sinwt; | ¢ .
Q1L a

= efofrL(O)xLny — yinj]

Here Ry, = [x% + yi +(zz —acoswt)?1V?, O\, = Ry +
Bo(zrp — acoswty) sinwt; and #; is found from the equation:
t —t; = Ry /c. Now we choose the time dependence of the
charge—current loop to be the same as that of electric oscillator:
fL() = fosinwt. Then, equalizing £(L, osc) and E(osc, L),
one obtains

k? ( , 1 t> Ry, d
—— | SINnwl — —— COSw = —_—
Ri kRL CQlL dtl

1 Ry 2 .2 .
X\ =5 ﬂOT coswty + (1 — By sin” wty) sinwty | ¢ .
1L

Here k = w/c. This equality is not satisfied, and therefore
the Lorentz lemma is not fulfilled for the interacting electric
oscillator and current loop. Experimentally, this means that
the non-coincidence of the voltages induced and the absence of
the receiver—transmitter symmetry (see section 7.3.3). Instead,
the more complicated relations (7.24) and (7.25) should be
fulfilled. Their physical meaning is not so clear as that of the
Lorentz lemma.
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7.4.3. Feld-Tai lemma.
Tai lemma one gets

For the integrals entering into Feld—

eaw sin wt i
H(osc, L) = —27{[(11 coswt — zp)n5 — xpny
C RL
,.acoswt — z
_yan]iz LFL—}’liGL}
R}
efp(t) Ryp d { y
H(L, o0sc) = —— — 1 (xyn} +yLny)
¢ Qi dy L L

. 20
X [1 — ﬂg sin® wt] — ﬂg cos wty (— — coswtl)]
a
. . Z Rip .
+anj |:(1—ﬁ3 sin® wt;) (E_ cos a)tl—,BOT sin a)t1>

02
+ ,Bga—é cos a)tl:| }

PL =i+

Putting f1(#) = fosinwt we find that the Feld-Tai lemma
cannot be satisfied for the interacting electric oscillator and
current loop.

It should be mentioned that the more general reciprocity
relations formulated in section 7.3.4 are fulfilled for arbitrary
time dependences and, in particular, for the interacting electric
oscillator and current loop.

7.5. Historical remarks to section 7

Conditions (7.5) and (7.8), ensuring the validity of action
and reaction and the fulfillment of the Lorentz and Feld-Tai
lemmas for arbitrary interacting electromagnetic sources, are
new. The same is valid for the interaction laws (7.12), (7.14)
and (7.16) between the even and odd toroidal sources and for
the generalizations (7.25) and (7.26) of the Lorentz and Feld—
Tai lemmas. The conditions under which the Lorentz and
Feld-Tai lemmas can be violated and the concrete example
demonstrating this fact have never before been obtained.

8. Discussion and Conclusion

Recently, we were aware of experiments with toroidal coils
of higher orders (see section 5). In these experiments,
the non-coincidence of the voltages induced in the toroidal
coils (i.e. the violation of the transmitter—receiver symmetry
mentioned in section 7.3.3) was observed for large frequencies.
The reciprocity theorem seems to be so well established that the
scientists performing these experiments did not dare to attribute
this non-coincidence to its violation. However, the present
consideration shows that this violation is, indeed, possible. It
should be mentioned that the violation of reciprocity will lead
to serious consequences in both theoretical and experimental
electromagnetism. According to [13]:

One of the basic and most important theorems of
electromagnetic theory is the so-called reciprocity
theorem. Its importance is evident from its wide
range of applicability in all branches of electrical
engineering.

We briefly enumerate the main results obtained.
(1) We obtained expressions describing the EMFs of a
current loop, TS and electric dipole with a periodic current
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in their windings. These expressions are valid for arbitrary
distances and frequencies. We did not find them in the available
textbooks and journal papers (only long-wave limit expressions
were found in the literature). Various particular cases are
considered and conditions for their validity are given. The
interaction of these sources with external EMF and between
themselves is found.

(2) We applied the reciprocity theorem (Lorentz and
Feld-Tai lemmas) to the EMFs of time-dependent electric
dipole, current loop, TS and higher-order EMF sources. It is
shown that the proportionality of time derivatives of the EMF
strengths to the EMF strengths themselves is not a necessary
condition for the fulfillment of the reciprocity theorem.

(3) An alternative proof of the reciprocity theorem is given.
It is shown that the reciprocity theorem works for more general
time dependences than previously suggested. The conditions
for its validity are reduced to the following two:

(i) the time dependence should be separated from the spatial
dependence in the charge—current densities of interacting
sources;

(ii) the time dependences of these sources should be the same.

These conditions are essentially the same as those needed for
the equality of action and reaction between two interacting
electromagnetic sources. The estimation of action-reaction
violation for an interacting current loop and TS is given.

(4) Conditions under which the reciprocity theorem can be
violated are given. A concrete example is presented for which
the reciprocity theorem is manifestly violated.

(5) New reciprocity-like theorems valid for arbitrary
space—time dependences (and, in particular, for those discussed
in the previous item) of the interacting current densities are
obtained. However, their physical meaning is not very clear.
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Appendix

We begin with the well known relation (see, e.g., [20])
cos v0J, (ky/d? + R2 — 2d R cos )

o]

= Z J o (kR) Iy (kd) cos my R <d (A.1)
—00

where tan6 = Rsiny/(d — Rcos ). For R « d, the angle

6 may be put to zero. Then,

o0
Jy(ky/d? + R = 2dR cos ) ~ Y " Jyu(kR) Jysy (kdd) cos myy
—00

(A2)
R <d.

We cannot put R = 0 in the RHS of this equation, since for
high frequencies kR may be large. Furthermore,

s [
jons1(ky) = [ —— o, ky)~ | —Jo, k
Jon+1(ky) ‘/2ky one3y2(ky) %d +3/2(ky)



EMFs for testing reciprocity-like theorems

where y = (d? + R? + 2d R cos y)'/? is the same as in (3.22).
We changed y by d outside the Bessel function. This is possible
since R < d. Then, according to (A.1),

st (k) % Y (=1)" Iy (kR) Jons1om (kd) cosmyy — (A.3)

—00

R «d.

Therefore, the integral defining D5, is given by

2
/ Jome1 (ky) sin® y dy
0

1
T {Jo(kR)j2n+1(kd)—iJz(kR)[j2n+3(kd)+jzn—1(kd)] } .

(A.4)

This exactly coincides with (3.29).
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SEM image of multi-walled
nanotube coils on a silicon
substrate

Ring diameter: 700 nm
Tube diameter: 1.4 nm

(Avouris, IBM)



AFM micrograph
of 1 um ring placed
over gold electrodes

(Avouris, IBM)




Euler theorem# 1750)

 The number of verticey) minus edgesq) plus
faces ) in a polyhedron is a constant that is
characteristic for the surface on which the
polyhedron can be embedded. For a polyhedron
that can be mapped on a spherg (e has:

v—e +f =%(&) =2



From geometry to topology: the polyhedral complex

Vertices: dimensionality: zero
functionality: scalar

Edges: dimensionality: one . . -~ < o
functionality: vector oY o

Faces: dimensionality: two
functionality: rotor SO - C k
'U] | v 'U] < 'Ud

(vioIvF) (vFvIiv?)




Symmetry extension of Euler’s theorem:

['_(v) : Induced symmetry representation of vertex points
I'A(e) : Induced symmetry representation of edge vectors
['5(f) : Induced symmetry representation of face rotors
[, : totally symmetric representation
[, : pseudoscalar representation

S To(V) -Tp(€) +T(f) =T + T,

A. Ceulemans, P.W. FowlaXature, 1991



Example: tetrahedron

F“(e)

|

y Ty
9,

>

w
O 9,

LN




Embedding on a torug(S;) =0

St Io(v) -T'a(€) +Iy(f) =T~ Iy - I'g, + T

€

[,(Z,) : Electric monopole @

I, (Z,): Electric dipoleanapole I'(1y)

[+ (2,) :Magnetic dipole
[ (Z,): Magnetic monopole

I'(Rz)



Anapole moment operator

1
o=~ b0
with:

_ . av
Mo = Zd(DDﬂBa)O

The anapole moment operator is the antisymmetric combination
of the second-order magnetic moments operators. This
describes the interaction of the system with the rotor of the

external field.



For B’ be a uniform rotor field along z-direction:

N

» Anapole moment: =—2—
p aZ 5BI

. __, 0V
>Anapole susceptibility: A = _Z(OB')Z




Case 1: particle on aring in a circular
magnetic field

- Yy




Hamiltonian

h> 9° A A
H = — UzH{-sin ¢ s« +cosy sy}

8771 0¢°

Rotational symmetry

[H,——+5,] =0
271

Ansatz
LIJI =Cll e”¢ |0’ > +CZI ei(|+1)¢ |18>

1, +S)¥, =+ )W,




Solutions:

Energy matrix:

i h° ,
— 5 hgH E(Hl) -E

Eigenvalues

h* 1 1 [a* . 1
() 2I( 2) 5 |2( 2) 7%



Second-order magnetic moment

e 2+ A Zo 2
My = Z%[M@“X Fos)riGhe gs‘“’“y}

Magnetic anapole moment

a, = —%[pnxy —thxJ = —Zi(é X[ )Z

= 2m

Expectation value

& = a1

mafie 1)



Case 2: Molecular network
Model: 120 atom carbon toroid

Achiral: Dy, Chiral: Ds



(b)

OO
O

(T
s

Y

Projections of the two networks,
obtained by unpeeling the
toroidal surface. Top and bottom
edges represent the inner
equatorial circuit of the torus.



Huckel treatment and London
approximation

N =By exp(2iif, ) witht, =—= (A -A)(R +R)

Vector Potentials:

»Uniform vector field: A=

> Uniform rotor field: A=



Calculated dipole and anapole properties

For details: see A.Ceulemans et al, PRL, 80, 1861 (1998)

Ds Ds4 Ds Ds

neutral |cation |neutral |cation
Y -2200 |-1890 -1130 |-1180
A 5420 8000 -12600 |-9350
m 0 2.74 0 | 4.86
a, 0 0 0 13.9
M 0 0 -265 | -380




Induced currents under a uniform magetic field along the central axis



(b)

(a)

=
Q




Conclusions

» The toroidal topology has two current-like invariants
with the symmetries of magnetic and electric dipole

» A spin in a uniform rotor field has a toroidal moment

» Chiral toroidal networks can couple a magnetic dipole
and anapole
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Toroidal moments

e Static toroidal moments e Toroidal moments of
Static toroidal moments cause transitions
parity nonconservation in Toroidal moments of transitions
atoms arising from the P-odd could exist even if a system
part of the weak interactions. does not have a static toroidal
C.S.Wood et al. (Science 275 moments.
(1977) 1759) measured a For a very limited number of
static dipole toroidal moment of nuclei, the toroidal moments of
the 133Cs nucleus in the atomic nuclear E1 transitions can be
6S - 7S transition in 1997. extracted from data on

anomalous internal electronic
conversion of y-rays -
M.A.Listengarten et al., Izv.
Akad. Nauk SSSR, Ser. Fiz.
45 (1981) 2038.



How to extract the toroidal moments of transitions from the half-lifes of
atomic levels?
There are two main ideas

e Decay probabillity of excited atomic states depends on
electronic properties of the bulk € and p as

EL _ f2(p\ol-1/2, L+1UAp/EL
Wiaium = (€)W,

vac

« Formfactors (moments) of the electrical transitions contain
toroidal formfactors (moments) with a factor k?

(k = (ep)2w) :
<J M, Q5 (K)[IM, >=iw<I M, |Q5 [IM, >

+ik? <J M [Ql (K)]I M, >



Electromagnetic Decay in a Medium

An infinite dielectric medium influences the probability of spontaneous
emission in the optical region. The probability of electric dipole transition

iIn a medium with dielectric constant £ at an emission frequency wcan be
expressed through the probability of spontaneous decay in a vacuum by
the relationship from the vacuum values according to the formula

El — §£2 1/ El

vacC

The function f(&) relates the electric component E_, of a macroscopic
electromagnetic field in a medium to the local electric field E. at the point

where dipole is located
EIoc = f(g) Em

How the factor /2 arises in Eq. (1)?



Electromagnetic Decay in a Medium

Expression for the probability of electric dipole transition:

Wrrllzeilium = 2 <f

where d is the dipole moment operator of the emitting system

~ 4,
dlE_.

| > Prveium(&)

and E;C IS the electric-field creation operator.

N

The field operator E;] and the density o, .4ium(@) Of photon final state are
renormalized from the vacuum values according to the formulas

Ve

i~ 1 =z,
Em = F Evac , IOm (C()) = gglzpvac (C())



Electromagnetic Decay in a Medium

The first relation follows from the quantization rules for the
electromagnetic field in a medium. For the gauge divA = 0, the equation

AA-2?A=0

for the vector potential A follows from the Maxwell equations in a uniform
dielectric medium with permeability p = 1 in the absence of extrinsic
currents and charges:

curle = - H curlH =D D=¢E
divH =0 divD =0

where the electric and magnetic fields are defined via A in the standard way:

E=-%A H = curlA



Quantization of the Electromagnetic Field in a Medium

The vector potential can be written as an expansion in plane waves

A(r t) Z Z(ak/lpk/] +é'E,/\A;,/]eiax)

—»

A=12

|2
2 S E
! N EW

e, Is the unit vector of plane wave polarization. The factor

(2TUEW)Y2 follows from the formula for the energy of a free
electromagnetic field in a medium 1/81((E, D, +H,_ B )d3r

where

The operators of photon creation and annihilation in obey the ordinary
commutation relations

A A A+ A+ — A A+ —
[& a1 =l8 8, 1=0 (8,8, 1= 610,
and the field energy and momentum operators are expressed in terms of the
creation and annihilation operators in the standard form

~ Ar A 1 :_ A+ A
:Z Z A8 +§j P= Z Zkaﬁ,/la?,/l

kK A=12 K A=12



Electromagnetic Decay in a Medium

The explicit form of the creation operator for an electric field with
momentum k and energy @win a medium is

é+ — _i % 27Ta)e_||2|7 ~ 4
K, A medium elZ,A < am
The renormalization of phase volume: in matter
k2= EQF
and the k2dk/dw value increases in a medium by a factor of &/2.

The result: £/2-type dependence of the E1 emission
probability on the dielectric constant.



Toroidal moments of transition

The interaction Hamiltonian for the emission has the form
—_ . — — 3
H, (1) =—ef j5 (T, A (7, t)dr

where e is the electron charge. The current |; and the
vector-potential of the radiation field A, are in the
interaction picture.

The Hamiltonian for the interaction in the EL mode Is
proportional to

[ d°rAS, (k1) 0 (1)



Toroidal moments of transition

The explicit form for the electric multipole field is

JL-l(kf)Y () - JL+1(kf)YL+1(f)

K, T
AL, (kT = L 11 T

where j, (kr) are spherical Bessel functions, and Y, - (r) are
spherical vector functions.

Usually one introduces the electric multipole form-factors

/2
A CeL+pn( oL Y
<'Jfo|QLEM|JiMi>_ L+1

kL

2L+1j JArAL, (K.Y 4 ()



Toroidal moments of transition

and uses long-wave approximation (kr << 1) for derivation
of the relation

im <3, M [QF, (K IM, >=iw, <M, Q5 |IM, >

where the standard formula is used for the charge
multipole moments

4]7_ 1/2
3 >\ L'
2L+1] Jdro (F)r Y, (1)
Such an approximation is not correct, because the toroidal
moments are lost (V.M.Dubivik and A.A.Cheshkov, Sov. J. Part.

Nucl. 5 (1974) 318). One obtains a stricter representation for the

electric multipole form factor if takes into account higher-order terms
In the Bessel function’s expansion into a power series.

<J;M; |QEM | J;M, >:(



Toroidal moments of transition

Toroidal multipole form factors are introduced according to
the relation

<JM,|Q5, (K)|IM, >=iw, <IM, |Q5, [IM, >

+ik?< I, M, |Q, (K)|IM, >

The explicit form for toroidal moments is easily obtained.

i O VYL V2
<Jfo|QEM|'JiMi>:( j ( j

2\ 2L+1 L+1

- VIl 2 L ol
% d3r . I—: r L+1 Y L-1 r + Y L+1 r
J a4 (r) [ S 0+ Y ()]




Toroidal moments of transition

This result enables one to make a more accurate
parametrization in the Hamiltonian for radiation of the EL
mode in the range kr << 1:

. - it L +1 1/2 oL +1 1/2
R el
JE A &N T O=5000 ) o

(201G 13, > <3 M, 1L, 19M,>)

Electric multipole emission is possible even if g, = 0, I.e., if all
charge multipole moments are equal to zero.



Toroidal moments of transition

The final formula for the EL emission in a nonabsorbing
medium is

Wk = (O AN X1

+ 20, R I 119, >Re< 3, [IF 113, >+Im<J, | |3 >Im<J, | ||J, >
<3 IQE 119, >F

eI I >

<J, IQE 113, >|2)



Ratio between toroidal and charge terms in the emission
probability

The toroidal term becomes equal approximately to the
charge term in the range N plll/wa, where the a is a
characteristic size of the emitting system. If an atom
emits an optical range photon, then a //ag , where ag IS
the Bohr radius. Inside a dielectric medium, for example,
In the real cavity model the known linear refractive-index
dependence

W _EYW _ Fl [On
becomes
W _ELW,  El On®

in the range n > 1/(wag)*?.



W_EYW _ EFl as a function n

FIG. 1. Plot of W_EY/W _Elas a 10°-

function of the refractive index n for 10"

a typical atomic transition in the |

optical range (w=2-3 eV, or A = "4 1“&'_

400-600 nm). The plot corresponds E 10%

to a real cavity. =" m’d

The plot for a virtual cavity can be 1S e —
obtained by multiplying by a factor n4. 10° 10' 10° 10’

The 2" « % and 1* « 0 or1° « O* atomic transitions are suitable
for experimental investigation of the dipole toroidal moment
contribution to the E1 emission, because there is no M2 component
in such transitions.



A numerical example

Moments of transition

2C - 4” 3 —\. L .
< 1Q5, 11 >= | [dr, (MY, ()
2 L
f — L+1 L-1 L+1
< f1Ql 1i >= J2L+1\/2L+1jdnf.(r>r [YLM<r)+2L+31/L+ ()]

Current

74 (F) = 2mel(w)w(r) w0, 7))+ [Dx(wf(r)sw(r)ﬂ

Data of calculation for atomic E1 transition in H: 2P, - 1S,,,

27f
<f ”QL L >=—— 3

- N
<fIQ [l >= me5 36( ij



A numerical example

Energy w= 10.2 eV

s o 7 ~ ~
[arAS, (P T, () 05 <3, 11QF 113, > +k <3, 1T 119, >

%< 3, 1GC 113, > +k < 3, 1G] 113, >0~ 074a, +n-* 0634,
n m,

where W/m, = 2x10->



Toroidal moments In
spin-ordered crystals
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Overview

 History of the magnetoelectric effect and
the axio-polar (time-odd polar) vector

* Ferroics, Ferrotoroidics and Multiferroics
e Detection of toroidal moments in crystals
o Postulated effects

- Toroidic domains and toroidic walls

- Electrotoroidic, magnetotoroidic and
piezotoroidic effects

- Toroidal optical SHG and toroidal
" optical rectification

"\ Hans Schmid Super-Toroidal Electrodynamics,
3 Southampton, 5 November 2004




History of the magnetoelectric (ME) effect

« 1894  Pierre Curie's conjecture:

"Materials should exist, which can be
polarised by a magnetic field and
magnetised by an electric field "

Many unsuccessful experiments
followed between 1922 and 1937 !

See: T.H. O'Dell, The Electrodynamics of Magneto-electric Media,
North Holland, Amstedam,1970

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

)2/ Hans Schmid



1894 Pierre Curie knows the
symmetry of the magnetic and
electric field

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004




History of the magnetoelectric (ME) effect

1932 Eugene Wigner introduces the "time
reversal" symmetry operator R (= 1":

 Forspaceinversion 1: 1E=-E; 1H=H
 Change of sign by applying R:

velocity RV =-V
electrical current density Rj=-]
sSpin density RS =-S5
magnetic field RH=-H
 No change of sign by applying R:
charge density Rp=p
electric field RE=E

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

)2/ Hans Schmid



2l  Hans Schmid

History of the magnetoelectric (ME) effect

1937 Landau

nonmagnetic crystals =0
magnetic crystals R
R

1956 Landau and Lifshitz in The Electrodynamics
of Continuous Media (in Russian)

The magnetoelectric effect and the plezomagnetlc
effect (not explicitly denominated) "should exist in
principle for certain magnetic classes "

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004



POINT GROUPS AND SPACE GROUPS

Crystallo-physical
phenomenology

32
Point groups
(Crystal classes)
J.F.C. Hessel 1830,

A. Bravais 1848

« Time reversal »

U

122
Shubnikov-Heesch
point groups

A.V. Shubnikov 1929
H. Heesch 1930,
B.A. Tavger and V.M. Zaitsev
1956,
A.V. Shubnikov and N.V.
Belov 1964

translation
—

translation
—

Crystal structure
coordinates

230
Space groups

Fedorov 1890,
Schonflies 1891

« Time reversal »

U

1651
Shubnikov space groups

A.M. Zamorzaev 1953,
N.V. Belov, N.N.Neronova,
and T.S.. Smirnova 1955




History of the magnetoelectric (ME) effect

« 1959 Dzyaloshinsky predicts the linear
ME effect in a.f.m. Cr203: Point group 3'm'

P.=a, H and M, =aqE,
U1p = Uy O33
» 1960 Astrov measures the (ME). effect
M, on Cr,0,
="

S

Super-Toroidal Electrodynamics, 8
Southampton, 5 November 2004
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Dzyaloshinsky and Astrov,
Ascona, September 1993

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004




History of the magnetoelectric (ME) effect

e 1961 Rado, Folen and Stalder
measure the (ME), effect on Cr,0O;:

Hy

Pi= o Hy

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

)2/ Hans Schmid
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History of the magnetoelectric (ME) effect

e 1966 (1964) Ascher, Rieder, Schmid and
Stossel measure the (ME),, effect on
ferroelectric/ferromagnetic Ni,B,O |

"Butterfly loop"
| P, y 100P

| = N l'\ H_= ferromagnetic
S v\\A coercive field
Super-Toroidal Electrodynamics, 11

5/ Hans Schmid Southampton, 5 November 2004



-gE, H; ) =. . . +°PE;+ JH; + V2 eoenLiEy + Y4 popiH:H,
+ ok Hy + 72 BinEHH + 72 v HiEEg + ... (1),

where

g0 = (1/(c’1y)) [As/(Vm)] = free space permittivity Eik
relative permittivity

no(=47107") [Vs/(Am)] = free space permeability LLik

relative permeability

¢ = free space light velocity (=3 10°[m/s])

°P [As/m°] = spontaneous polarization

J [Vs/m?] = spontaneous magnetization

a [s/m] = tensor of linear ME effect, “EH” effect Olite

non-symmetric in 1k

B [s/A] = tensor of bilinear magnetoelectric“EHH” effect Biik
symmetric in jk

y [s/V] = tensor of bilinear magnetoelectric“HEE” effect Yiik

J.-P. Rivera, Ferroelectrics, 161, 165-180 (1994) symmetric in jk

Hans Schmid




Some magnetoelectric

effects

e Linear effects 58 magnetic point
groups

P.=a,H, and M, =a.E,

e Bilinear effects allowed in:

Pk — Bkij HiHj 66 piezoelectric point
groups

M, =V EKE; 66 piezomagnetic point

I'\t)_:.’?ﬁ j}R
;,
z

2\ _ Super-Toroidal Electrodynamics, r 13
;) Hans Schmid Southampton, 5 November 2004 g ou pS




Some magnetoelectric
effects (contin.)

e "Spontaneous effects” and "cross
effects" H. schmid, Ferroelectrics, 221, 9-17 (1999)

Switching (180°reversal) or reorientation
(by angles other than 1809 of:

SP. I
P' with E, H, o Knowledge of prototype
SM, with E, H, © point group and of
. _ ferroic phase point group
> | with E, H, o, Si - (EXH)i required !!
,, 2\ Super-Toroidal Electrodynamics, 14

Hans Schmid Southampton, 5 November 2004



(100)- CUT (110}~ CuT

Species
- 43mFm'm2'

iy
-

OBSERVATION DIRECTION”

H. Schmid,
Rost Kristallov

FRONT VIEW

7, 32 (1967)
[Growth of

VIEW FROM TOP

Crystals, 7, 25
(1969)]

.|
e
N

Supertoroidal Electrodynamics,

Southampton, 5 November 2004 ? f G ¢ g )

FARADAY
|ROTATION

Fig. 25. Observation of electric and magnetic-field-
induced domain switchings in NIB by means of the

72 H Schmid
ans schmi Faraday effect.




THE AXIO-POLAR
(TIME-ODD POLAR)
VECTOR

Super-Toroidal Electrodynamics,




* 1956 Lee and Yang : propose that weak interactions
destroy parity conservation

T.D. Lee and C.N. Yang, Phys.Rev. 104, 254-258 (1956)

1957 Wu et al. demonstrate experimentally parity
nonconservation in 3-decay of cobalt-60.

C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson, Phys.Rev. 106, 1361-1363 (1957)

e 1957 Ya.B. Zel'dovich

Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz., 33, 1531 (1957) [Sov. Phys. JETP, 6, 1184 (1958)]

- Studies the origins of parity nonconservation

- Finds that a system which has no definite parity
generates a distribution of magnetic fields
resembling a circular magnetic field of a toroidal
winding: the "anapole" (name proposed by A.S.
Kompanets). The anapole changes sign both under
space and time reversal, hence a time-odd polar
vector.

2 _ Super-Toroidal Electrodynamics, 17
Hans Schmid Southampton, 5 November 2004




Science, 275, 1759 (1997)

~ Measurement of Parity
Nonconservation and an Anapole
- Moment in Cesium

~C.'S. Wood, S. C. Bennett, D. Cho,* B. P. Masterson,
" J. L. Roberts, C. E. Tanner,i C. E. Wieman$

The @mplitude of the parity-nonconserving transition between the 6S and 7S states of
cesium was precisely measured with the use of a spin-polarized atomic beam. This
measurement gives Im(E1_, )/B = —1.5935(56) millivolts per centimeter and provides an
improved test of the standard mode! at low energy, including a value for the S parameter
of -1 3(3) o (1 hineory: THE NUClear spin-dependent contribution was 0.077(11) millivolts
per centimeter; this contribution is a manifestation of parity violation in atomic nuclei and
is @ measurement of the long-sought anapole moment.



k/‘ The nuclear

anapole moment,
Group of

C.E. Wieman,
from Internet

Super-Toroidal Electrodynamics,

 7%: Hans Schmid Southampton, 5|November 2004




Two sources of parity
non-conservation in atoms:

 Electron—nucleus weak interactions

 Magnetic interactions of electrons with the
nuclear anapole moment

Super-Toroidal Electrodynamics, 20
Southampton, 5 November 2004

)2/ Hans Schmid



Independently of Zel'dovich
E. Ascher, Helv. Phys. Acta, 39, 40-48 (1966)

determines

* the 31 magnetic point groups permitting a
"spontaneous current" # (i.e., In the absence of
an external electric field)

* the 66 magnetic point groups permitting the
"piezoconductive effect"

* The tensor form of the "piezoconductive effect”
for all 66 groups

# changing sign under space and time reversal,
hence it is an axio-polar (time-odd polar) vector

o _ Super-Toroidal Electrodynamics, 21
;) Hans Schmid Southampton, 5 November 2004




The four irreducible representations of the dihedra I
group 11' of order four, generated by space inversion

~1 and time reversal 1'

E L 1V M '
E L Baa o |, | e
*HE) point
group***)
1| 1| 1| 1| G |p, M, gradP,|co/m1
n***),
B S P P, V comm1’

-1 -1 M M, grad v |oo/mm'm'’

et T i, v, A, P, |oo/m'mm
grad M

*) E. Ascher, 1966 ; **) E.Ascher, 1973
‘“’{\ﬁ er-Toroidal Electrodynamics
¥ .&____55“**) V. Dubovik, S.SaKiaieu Sidembdigashev, 1987




"SPONTANEOUS
CURRENTS" and
TOROIDAL MOMENTS

Super-Toroidal Electrodynamics,




V.L. Ginzburg, A.A. Gorbatsevich, Yu.V. Kopaev
and V.A. Volkov, Solid State Commun., 50, 339-
343 (1984)

* They give the 31 Shubnikov-Heesch
point groups, permitting a non-zero
toroidal moment density.

e "...0ne should bear in mind that In a
toroidal state a magnetoelectric

effect must be observed..." | l.e.,

the 31 groups must allow the linear
magnetoelectric effect.

Super-Toroidal Electrodynamics, 24
Southampton, 5 November 2004
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It turns out that the 31 Shubnikov-
Heesch point groups given by
Ginzburg et al. and permitting a toroidal
moment, are identical with the 31

point groups allowing an axio-polar
(time-odd polar) vector , e.qg., velocity,
current density, linear momentum, etc.,
as determined earlier by

E. Ascher, Helv. Phys. Acta, 39, 40-48 (1966);
E. Ascher, Int. J. Magnetism, 5, 287-295 (1973)

A Super-Toroidal Electrodynamics, 25
Js/ Hans schmid Southampton, 5 November 2004



E. Ascher, Int. J. Magnetism, 5, 287-295 (1974)

TABLEI
1 4/m 6/m I’ 41’ 61’
2/m 42'm’ 3m’ 2m’'m’ 217 4 mm’ 3ml’
2'[m’ 4/mm’'m’ 62'm’ dm’'m’ ml’ 4dmml’ 6'm'm
mm’'m’ : 6mml’
i
i
~ A Y
i 4/m’ 6/m
2/m’ 4'm2’ 3'm
2'[m 4/m’'mm 6'm2’
m'mm 6’ 6/m’ mm
4 3
MPvu: 1,2, m, 2, m’, mm’2,4,3,6
_ Super-Toroidal Electrodynamics, 26
Hans Schmid

Southampton, 5 November 2004




The "Magic Trinity" of Groups

Mg Ferromagnetic
31 groups

/\\

T

S
31 . 31 .groups - 1
groups Ferrokingtic, Eérrotoroidic,

Ferroelectric .
E. Ascher, Int. J. Magnetism, 5, 287-295 (1gl§grr000nduct|ve
<N

2 Hans Schmid Super-Toroidal Electrodynamics, 27
3 Southampton, 5 November 2004




SOME DEFINITIONS

e p=/PdV electric dipole moment

e m=|MdV magnetic dipole moment

e t=|/TdV toroidal dipole moment

e t=[TdV=(1/20c) | [(£r - 2r2j]d3r (c.g.s.)
 where

density of Polarization

P
e M density of Magnetization (sometimes
called “Magnetic moment”)
T

density of Toroidal moment  (often
referred to as “Toroidal moment”)

 J current density

e T radius vector

e C free space Ii%ht velocity
V.L. Ginzburg,, Usp fiz Nauk, 171 (2001)., [Physics-Uspekhi, 44 (2001), T037-1043/1041.]

V.L. Ginzburg, Applications of Electrodynamics in Theoretical Physics and Astrophysics, Gordon and Breach Science Publishers,
New York, etc., 1989 (translation of 3rd Russian edition, 1987), p. 151

Hans Schmid Super-Toroidal Electrodynamics, 28
Southampton, 5 November 2004




Definition of spin part of toroidal
moment

ST-_—. l/:z}lB Z l‘aXSa,

S, = spin moment of magnetic cation
«am»

I'a = radius vector of magnetic cation
« a » from the unit cell’s center

A.A. Gorbatsevich and Yu.V. Kopaev, Ferroelectrics, 161, 321 (1994)

Super-Toroidal Electrodynamics, 29

5/ Hans Schmid Southampton, 5 November 2004




Toroidal moment of a solenoid
formed Into a torus with an even
number of windings*)

Magnetic
limiting point
group
co/m' mm

*) V. Dubovnik and L.A. Tosunyan, Sov. J. Part. Nucl., 14, 604 (1983)

Super-Toroidal Electrodynamics, 30
Southampton, 5 November 2004



Spin configurations with non-zero
toroidal moment

« Head-to-tail spin configurations with four-fold

axis C, along the toroidal moment T
ﬁ

|

 Head-to-tail spin configuration with binary axis
C, along the toroidal moment T

A.A. Gorbatsevich and Yu.V. Kopaev,
Ferroelectrics, 161, 321-334 (1994)

Super-Toroidal Electrodynamics, 31

2/ Hans Schmid Southampton, 5 November 2004




Ferromagnetic domain configurations
with non-zero toroidal moment

e Circular head-to-tail configuration of orthorhombic
ferromagnetic domains

o Aizu-species 4/mmml'/Fm'm'm(s)
e m'm'm does not allow a toroidal moment !!!

> -

!

A |

== —)

|

|




DOMAIN
SWITCHING AND
HYSTERESIS
LOOPS

CEeY | _ Super-Toroidal Electrodynamics,
?j ;2 SSSSSSSSSS



Toroidal moment contribution to
stored free enthalpy

1) ~-T x curl H

A.A. Gorbatsevich and Yu.V. Kopaev, 1994

2) ~-TS;, where S, = (E x H),

A.A. Gorbatsevich, Yu.V. Kopaev and
V.V. Tugushev, 1983

Super-Toroidal Electrodynamics, 34
Southampton, 5 November 2004
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V.M. Dubovik, M.A. Martsenyuk and N.M. Martsenyuk,
J. Magn. Magn. Mat., 145, 211-230 (1995)

Proposed reversal of T by vorticity field G plus
magnetic bias field H, for decreasing critical
coercive field G,

G Super-Toroidal Eledtrodynamics,
H Southampton, 5 November 2004
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"FERROICS"
Ferrodectrics

Ferromagnetics

Ferrotoroidics

erroel astics

,- O\ - & i .
~'SHlA") Hans Schmid PUPET Torg o=
o, Y2 $outhampton, 5 Novemby




H. Schmid, Ferroelectrics, 252, 41-50 (2001)

Table X Ferroic “driving forces” of domain switching
and reorientation due to differences in domain states

(adapted from !'=~-'°]
"Driving force'"  States differ in:
AG oc

Kerroics

Ferromagnetic A’M. H; spontaneous "M,
magnetization

Ferroelectric  A°P; E; spontaneous “P;
polarisation

Ferrotoroidic A °T,S; spontaneous "T;

toroidal moment

Ferroelastic A'g; G spontaneous g

deformation |
Super-Toroidal Electrodynamics, 37

Southampton, 5 November 2004



Table X Ferroic “driving forces” of domain switching
and reorientation due to differences in domain states

(adapted from [1.2.3 1l
"Driving force'" States differ in:
1 AG o
Secondary ferroics|
Ferrobimagnetic Ay HiH; magnetic Xij
susceptibility
Ferrobielectric Ax;; BiE; electric Kij
susceptibility
Ferrobielastic A s O5i0x  €lastic Siikl
compliance
Ferroelastoelectric  Adyy Eioyc ~ piezoelectric diji
coefficient
Ferromagnetoelastic  Aq Hioyc ~ piezomagnetic ik
coefficient

Ferromagnetoelectric Aoy; E:H. magnetoelectric
%% b]. Schmid, Ferroelectrics, 25"2, 41-50 (2008) ~nafficiont




Primary ferroic hysteresis loops

ferroelectric

°P., *M,, °T,, 3¢,

ferromagnetic

ferrotoroidic

ferroelastic

E;, Hi, S, 0;

“

S = (ExH), !

i
(=T . .
;"' \ﬁ\ Hans Schmid Super-Toroidal Electrodynamics, 39

Southampton, 5 November 2004



Secondary ferroic, magnetoelectric
Uik

- T.J. Martin,
Phys.Lett.,
17, 83-85 (1965)

Cr,0,

(Ei Hy)

Ferrotoroidics: (ExH),,.

(Ei Hk)c
Coercive
product

Super-Toroidal Electrodynamics, 40
Southampton, 5 November 2004



Magnetoelectric switching of

antiferromagnetic domains of Cr,0O,
(J.C. Martin and J.C. Anderson, 1966)

9" = Y2 Xi HiH, + 72 Ky EE, + 0 EiH,

9" -9 =2a,EH, switching energy for the
total hysteresis loop

Super-Toroidal Electrodynamics, 41
Southampton, 5 November 2004




Observed signatures of
spontaneous toroidal moments In

crystals
 Anomalous temperature dependence
(singularities) of the linear ME effect (Boracites:

e The asymmetry of the off-diagonal components
of the linear ME effect tensor attests the
presence of a toroidal moment in

Ga,_ e, 0O,
Cr,0; (T,~03-045)

(sl ﬁ Hans Schmid Super-Toroidal Electrodynamics, 42
Southampton, 5 November 2004




D.E. Sannikov, Ferroelectrics, 219, 177-181 (1989)

%,
- | %
I '
Ds 0 \ V
- A A e A A . 0 L L L
0 10 20T.K 0 10 20 30 . K 4 6 8 o 7K

FIGURE 1 Temperature &caendenccs of the cbmpdnehts a

. 33 and a3 of the magnetoelectric
tensor in C, phase of Co-Br!! (1), Co-1 (2), and Ni—C1P (3) boracites.

Magnetic point group m'm2' : only coefficients 0,; and as;,

.. _ DaPo 1 3D*> 3D .
7 xBC xB\?T xC @ C (4)
o . a
23 =~ 2 (10)
Super-Toroidal Electrodynamics, 43

Southampton, 5 November 2004




A.A. Gorbatsevich, Yu.V. Kopaev and V.V
Tugushev, 1983

identify
the physical meaning of the order parameter

T as the antisymmetric component of the
linear magneto-electric effect tensor

N.B.: Any rank-2 tensor can be written as a sum of symmetric and
antisymmetric parts as

AMN = LH(AMN + ANM) + Lo(AMN _ ANMm)

bl
\t"., “._;: . .
fo \ﬁ\ Hans Schmid Super-Toroidal Electrodynamics, 44

Southampton, 5 November 2004



Magnetic field dependence of the off -diagonal
components of the ME susceptibility tensor, O3, O3,
and T, ~ (a3, - a,3) of the monoclinic (2'/m) toroidic
spin-flop phase of Cr ,0; at 150K

1.0

Tz R T

N Above ~ 70 kOe
Antiferromagnetic,
magnetoelectric,

Below H ~ 70 kOe .|
Antiferromagnetic,
magnetoelectric,

O3, U31, Upg, Ugp
toroidic
2'/m

011, Oq9, O3z = o
non-toroidic,

-3'm'

0.5 F

uuuuuuuuuuuuuuuuuuu

Yu. F. Popov, A.M. Kadomtseva, D.V. Belov, G.P.
Vorob'ev and A.K. Zvezdin, JETP Letters, 69, 330-335

. (1999)

“fg, _ Super-Toroidal Electrodynamics, 45
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Postulated toroidic effects

* Electrotoroidic (toroido-electric) effect
 Magnetotoroidic (toroido-magnetic) effect
* Piezotoroidic (toroido-elastic) effect

e Toroidic optical SHG
o Toroidic optical rectification
e Toroidic domains and domain walls

i
(=T . .
;"' \ﬁ\ Hans Schmid Super-Toroidal Electrodynamics, 46

Southampton, 5 November 2004



E. Ascher, Int. J. Magnetism, 5, 287-295 (1974)

Definition of the ferrokinetic, kineto-
electric, kinetomagnetic and magneto-
electric effects, respectively, with the
terms of the density of stored free

enthalpy g of the crystal
- g =...+°p.v; + VE+H{vieB, +
+ e AEiCBy

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004
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E. Ascher, Int. J. Magnetism, 5, 287-295 (1974)

-g (E,B,V) = ‘|‘Op. y T Nik ViEk s éik V,'CBk
+ &y A Eic By

°p = linear momentum without electric (£) and
magnetic (B) fields

v=velocity

¢ = speed of light

ni = kineto-electric coefficient

& = kinetomagnetic coefficient

Air = magnetoelectric coefficient
SoutliairpLorn, o Novelrilper Zuvu4



Correspondence
Kinetic effects « Toroidic effects

E. Ascher, 1974 H. Schmid, 2001
* Density of free enthalpy:
-g (E,B,v) =

oLV + i VE, + e vieBy + g4 ECBy

by

-g (E,H,S) =
LTS+ R SEt hSH+ gy EiH,

Super-Toroidal Electrodynamics, 49
Southampton, 5 November 2004
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Primary ferroic
e Ferrokinetic ~ Ferrotoroidic

Secondary ferroics
» Kineto-electric ~ toroido-electric
 Kinetomagnetic ~ toroidomagnetic

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

4- Hans Schmid
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The "Magic Trinity" of Groups

Mg Ferromagnetic
31 groups

/\

31 groups 31 groups

Ferroelectric Ferrokinetic, Ferrotoroidic

E. Ascher, Int. J. Magnetism, 5, 287-295 (1974)

2 \\ Hans Schmid Super-Toroidal Electrodynamics, o1

?nq &, Southampton, 5 November 2004




The "Magic Trinity" of Groups

58 groups
Magneto-electric

/

58 groups >8 groups
Kinetomagnetic Kineto-electric
Magnetotoroidic/ Electrotoroidic/
Toroidomagnetic Toroido-electric

Super-Toroidal Electrodynamics,

Hans Schmid Southampton, 5 November 2004




"Driving forces" (switching energy) for
secondary ferroic domain switching
terms of stored free enthalpy function

E, H; S; Oy
E. EE EH ES Eo
H. HH HS Ho
S SS So
o 00

Icr.'l,'j';ﬁ‘f}&
=
P

%\ Hans Schmid

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004
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Higher order magnetoelectric terms "hidden" in
toroidal terms of stored free enthalpy function,

with the restriction: (EXH)

E; H; S; Oy
E. EE EH E(ExH) Eo
H. HH H(ExH) Ho
S, (ExH)(ExH) | (ExH)o
of OO0

Icr.'l,'j';ﬁ‘f}&
=
P

%\ Hans Schmid

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

54



DOMAINS

and

DOMAIN WALLS

Super-Toroidal Electrodynamics, 55

Hans Schmid Southampton, 5 November 2004




Are toroidal domains and
toroidal domain walls possible?

e D.E. Sannikov, Domain Wall in Ferrotoroic
Phase of Boracites, Ferroelectrics 291,
157-161 (2003)

Magnetic point group m'mz2’

 D.E. Sannikov, Dynamics of Domain wall
In Ferrotoroic Phase of Boracites,
Ferroelectrics, 291, 163-168 (2003)

Super-Toroidal Electrodynamics, 56
Southampton, 5 November 2004




Toroidal domains ?

Magnetic point group C
m'm2’

SP SM ST \\
1x2x%x2
domains

.
\.\ .- |
N - !
~-— |
|
|
|
1

/a/\

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004
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How many domains ?

Perovskiie P M T m 3m1l
m'm2' 12 x2x2= 48

m 24 x2x2= 96

1 48 x 2 x2 =192 |
Boracite P MT 43m1l
m'm2’ 6 x2x2= 24

m 12 x2 x2 = 48

1 24 x2x2 =96 Il

4- Hans Schmid

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004
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How to make ferroic domains
visible to the eye?

Domains Methoo
* Ferroelastic polarized light
* Ferroelectric=ferroelastic  polarized light
* Ferroelectric etching, decoration,
optical SHG, etc.
 Ferromagnetic Faraday rotation, etc.
e Ferrotoroidic hopefully non-linear

optical spectroscopy
(magnetic SHG topography ?) *)

*) See Manfred Fiebig and co-workers, Max-Bohr-Institut, Berlin:
http://mitarbeiter.mbi-berlin.de/fiebig/german/frame-mf.htm

Super-Toroidal Electrodynamics, 59
Southampton, 5 November 2004
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Nickel-iodine boracite NizB,0O,5Cl, species 43mFm'm2’,
cubic (100)-cut, ferroelectric/ferroelastic/ferromagnetic domains

T = 12K

=0
rd .
~'SMEA° Hans Schmid
i 1‘:'); o




Nickel-iodine boracite Ni;B,O,;Cl,
species 43mFmm21', 20<C,
cubic (100)-cut, ferroelectric/ferroelastic
domains

oSS . .
8 “\ Hans Schmid Super-Toroidal Electrodynamics, 61
¥ 2

Southampton, 5 November 2004



Hans Schmid

PIEZO-
EFFECTS

Super-Toroidal Electrodynamics,
Southampton, 5 November 2004
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Piezomagnetic
66 groups Hoy, HiEE,HHH,

The "magic trinity"
of symmetry groups

Piezotoroidic
(Plezoconductive,

piezokinetic

Piezoelectric 2
E. Ascher, 1966, 1974

/

66 groups 66 groups
:”J{tj:fq\ Super-Toroidal Electrodynamics, 63

;) Hans Schmid Southampton, 5 November 2004



The "Magic Trinity" of Groups

Mg Ferromagnetic
31 groups

/\

il

T

S
31 . 31 .groups - 1
groups Ferrokingtic, Eérrotoroidic,

Ferroelectric .
E. Ascher, Int. J. Magnetism, 5, 287-295 (1gl§grr000nduct|ve
<N
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H. Schmid, Ferroelectrics, 252, 41-50 (2001)

Table 3 Tensor form and type of transposed matrix form (Fig.1 of ref.
%)) of some secondary and tertiary ferroic terms of stored free enthalpy

Piezoelectric tensor form (t-type. matrix) :

Eiij . EiEjEk ; EiHij

Piezomagnetic tensor form (s-type matrix):

Hiop , HiEiEx ,  H;H;Hg

Piezotoroidic tensor form (u-type matrix) :

Siojk » SiEiEx ,  S;HjHk

[38] H. Grimmer, Ferroelectrics, 161, 181-189 (1994)
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OPTICAL
RECTIFICATION
AND SHG

. Super-Toroidal Electrodynamics, 66
Hans Schmid Southampton, 5 November 2004




Optical second harmonic and optical rectification

P = % K E02 Electric optical rectification
P’ = % Ky E02 cos2 ot Electric optical 2nd harmonic
M= %(xﬁ; E/ Magnetic optical rectification
o=1 o E)° cos2wt Magnetic optical 2nd harmonic
/ ) g p
7= ";" i Ef Toroidal optical rectification
= % Eil Ey cos2 ot Toroidal optical 2nd harmonic

For the term HHH and Magnetic Optical Rectification see e.g. E. Ascher, Helv. Phys.Acta, 39, (5), 466-476 (1966)
/ Appendix 3

For the « stored free enthalpy » function g see e.g. H.Schmid, /nt.J Magnetism, 4, 337-361 (1973) / Table I

Hans Schmid Super-Toroidal Electrodynamics,
Southampton, 5 November 2004

67



Conclusions
e Toroidal moments in crystals are of
magnetoeletric nature. Experimental evidence
has been obtained

e Ferrotoroi(di)cs: a new kind of primary
Ferroics — extension of "multiferroics”

 The microscopic theory and refined
measurements of the (spontaneous) toroidal
moment in crystals should be developed

Quantitative ME measurement of ST , calculation
of ST from nuclear and magnetic structural data,
search for agreement of theory and experiment,
orbital moments should be taken into account...

o _ Super-Toroidal Electrodynamics, 68
) Hans Schmid Southampton, 5 November 2004




Conclusions (contin.)

e Symmetry considerations allow to postulate
some new toroidal effects:

- magneto-toroidic (toroido-magnetic) effect
- electro-toroidic (toroido-electric) effect
- piezo-toroidic (toroido-elastic) effect

- toroidic optical SHG and toroidic optical
rectification

» The existence of toroidal domains and
domain walls is probable

— Desirable: attempts at revealing domains and
walls by non-linear optical spectroscopy

— Desirable: attempts at creating toroidic single
domains by magnetoelectric/toroidic poling

* Anti-toroidal magnetic structures may exist

T
i \ﬁ\ Hans Schmid Super-Toroidal Electrodynamics, 69

e\ 7 H Southampton, 5 November 2004
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Toroid electrodynamics:

multipole decomposition of fields of finite system of moving
charges

S

The system S of charges moving
in finite region L is considered as
a system of GIVEN quantities

o(F,1), j(7,t)

E(R,1)

Observation point

Our interest is to find electric and magnetic fields

Toroid electrl.doc Created by Mikhail Martsenyuk



Multipole moments

d>
©
<:J::>

Toroid electrl.doc Created by Mikhail Martsenyuk
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The system in external field

External fields classes of physical importance

a 5) B) r)

Behavior of system in external field depends on the following:
— Does the system have fixed multipole moment or not?
— If not, what kind of polarization it is allowed by material?

Examples of the systems with fixed multipole moment
— ferromagnetic particle (m)

— piroelectric particle (p)

— aggregate of ferromagnetic particles (T)

— antiferromagnetic particle (T)

— toroid memory cell made of ferromagnetic film (T)

— aromagnetic particle (G)

Examples of systems manifesting toroid polarization under the
action of external field

— ferromagnetic fluid with aggregated particlés |

— suspension of antiferromagnetic particlgs )

— suspension of aromagnetic particl¥s |

— nuclear (or effective atomic levels) spin systefn X
— chiral molecule in uniform electric fieldY()

Toroid electrl.doc Created by Mikhail Martsenyuk



Interaction energy between multipoles

Dipole -dipole interaction

Dipole -toroid interaction

Toroid -toroid interaction

Toroid electrl.doc Created by Mikhail Martsenyuk



Direct measurement of multipole moments

D M

D/ — _T/C M) — G/c

E D Y® —Li[MR]/ R
—iT.y® | —LIGR]|/R®
H D R]/R? M .Y

—+TR)/R | G-V

(2)(R) _ 3xx R 5,

Toroid electrl.doc Created by Mikhail Martsenyuk



Estimation of induced signal

Mowment Omnenka Pasn. mot. | II3meput.cucrema
D ~ eaNL’ ~ dreaNL DNEKTPOJIBI
T ~ 6a%R0N’L3 ~4dreaty N'R, DIICKTPOIDI
M ~ ea%NL?’ ~ ea-N Lu Burok
G caR.N'L’ eag—jN’Rc Burok
v=aw; u= L,
Aoy Tovu Ay N'R,
~——— ~ 4r :

App  drce Apy NL'
Apg  W'N'R. Apg u

~J

A(pDNllﬂcQNl; Apr  dmv

Toroid electrl.doc Created by Mikhail Martsenyuk
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Applications of supertoroid electridynamics considered in
details

1. Magnetic toroid memory chip
2. Toroidness in antiferromagnetic theory
3. Origin of aromagnetism

4. Toroid susceptibility of aggregated magnetic particles
suspension

5. Curie-Weiss behavior of aggregated magnetic fluid
6. Toroid relaxation in aggregated magnetic fluid

7. System of interacting spins dynamic in external alternating
fields. Toroid echo. Toroid response. Toroid resonance

absorption of energy

8. Structural theory of optical activity based on the toroid
polarizability of chiral molecules

Toroid electrl.doc Created by Mikhail Martsenyuk
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Minimum dipole-dipole-interaction energy N
magnetic particles aggregates

N-2
~O——0-
2-1
: @
—O—O——C0C=
3-1 3-2
N=4

N=5 Qi
5-2

aggreg_1.doc Created by Mikhail & Nikolay Martsenyuk
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Schema for measuring toroid susceptibilities )(T ,)(TM

— =
~—

H——"

A

<3 TR Ad

o 17“'3 )

The cylinder-shaped sample 1 of substance that is

having toroidal susceptibility XT (@) or cross susceptibility

x"™ (b) to benot equal to zero. Alternating current Jin the
coil induces vortex (a) or uniform (b) magnetic field on
the sample. As a result toroid moment of the sample

oscillates and potential A appears on the capacitor 3

The_measure.doc Created by Mikhail Martsenyuk



10

Capacitor manifests low frequency inductance when f illed by
special material poses toroidal polarizability...

X' |
l\\\ N C
\ o L ot e
N |
IN / N T
C Lt £/ X

T
Capacitor C isfilled by substance having toroidal susceptibility X to be not
equal to zero. Effective inductance L on the equivalent circuit given on the right

T
sideis proportional to X

...Inductance coil manifests low frequency capacity wh en
filled by special material poses axial toroidal pol arizability

X © l l
Ceff
—_—— L ~
L ~ i
Cet HXG
G

Inductance coil L isfilled by substance having toroidal susceptibility X~ tobe
not equal to zero. Effective capacity Cqt on the equivalent circuit given on the

G
right sideis proportional to X

equival.doc Created by M.Martsenyuk
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Aromagnetizm phenomena

Reorientation of
aromagnetic particlein
altanative magnetic field
|\| H(t). It was found by
experiment (N. Tolstoi &
A.Spartakov) that particles
have constant effective

H(t)  magnetic moment Megt .
It was proposed
(M.Martsenyuk & N.
Martsenyuk) to explain the
origin of aromagnetizm by

axial toroild moment G
that poses aromagnetic
molecules

Molelecules of some aromagnetic substasnces

Soolete

anthracen phenantren

naphthacen

peten L1 L1

pentacen

Aromagnetizm_ phenomena.doc Created by M.& N.Martsenyuk
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Orientation of aromagnetic particle by alternating
magnetic field

} rot E~-dH/dt
E
G
P
brot E
E
Moment of force on the particle is equal to
K = —£|:G Xa—H:l
C ot

Aromagnetizm_ phenomena.doc Created by M.& N.Martsenyuk
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Quantum chemistry calculation of dipole moments on atoms of
aromagnetic molecule by method MOLCAO.

Dipole moments on a molecular fragment are depicted for the

molecular orbital symmetry Ezg classified by irreducible

representation of D6h point group. In this quantum state

molecule poses axial toroid moment as it is obviously follows
from the picture

Quantum_chemistry.doc Created by Mikhail Martsenyuk
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Electron density distribution in anthracene molecule

C14H10 (X-ray experiment by Kitaigorodskiyi) Arrows

visualize local dipole moments

A

/1 - N
S o
ST LR
NI

Eeamnty

C_
~
"~

\
\
\
\ -

0
A

1 2 3

T I I e

0

Created by Mikhail Martsenyuk
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Possible aromagnetis: (1) molecular & (2) structural

(1) a) pmopriummH 1 ero crepeonsomep (0); B) pU30PIIUH; T) THAPOXUHOH; JI)
HPOTAILION

A 4 H

a)
H
H (4]
;; |
0
H A0 o
6) 2)

(2) Unpanavon-1,3 nupuaunuii 6etaun (1PB)
(0]

9@

Structure of IPB crystal

Possible aromagnetis.doc Created by Mikhail Martsenyuk
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Toroid writing and reading principles

T A
g / —
T 1 .
Toroid hysteresis loop

D P
=) 55

H(t) ¢ 4 4 MOFEE

AN
AAEE AN

LA AN
| "NV

t

T
~
=2

o
=
<
[any
&)}
=

B

write_read princ.doc Created by Mikhail and Nikolay Martsenyuk



17

Magnetic toroid memory matrix

A e r7‘14 7
e 3 4 / ) 1)
\ P
h S -
7 t/&é 7 ) )
° 0 °°oD°°°°°o°o° /
) )
[ R U R G
a) Toroid memory cell b) Toroid memory matrix
A |
A, «
/ /) /p() } ZA
1570 J
1 (2
| i
c) Writing on the cell d) Reading from the cell

1 Cell 45/14, slope

—"0" is written on the cell
—"1"is written on the cell

40

20

iR

Response magnituda, mV

-20

Y

-40

-100 -50

100

Responseof 5x5 mcm
memory cell on pulse of
magnetic field created
by pulse of current y(t).
The response depends on
information  that is
written on the memory
cell depicted on thefig a)

Tor_memory.doc

Created by Mikhail & Nikolay Martsenyuk
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Toroid theory of optical activity of dielectric chiral media

E t
Cin /N /] l /P( OU/\]/

N

Incident plane
wave Optical active
media
a / Structural element of media
Q00
Q00
QR e
L UL aj20 a 209 J
L
0909 900 000 JS'S'8

The problemisto find how O depends on the properties and
geometry of structural elements of media?

EXisting theory:

_ (0 oE _ _C
1) Phenomenologycal Di = el Ex + Vi G—XT Yiki = afeikl

2) Quantum o /7 (W [Py ) (W, M| W)
(other level of phenomenology)

optical activityl.doc Created by Mikhail Martsenyuk and Stanislav Azanov



Vector moments and cross polarizabilities Y and I

19

E rote H rotH
g V q(9 (M (a7)
11 q(Mp) W) oM n
_ 1. _
Mgf =—0 + M. If Yis a scalar:

s 16Nl
p=x‘" [E+ y[otE G—‘)\—ZV

g= V [E +X(g) [TOtE If Yis atensor:

X — ellipsoid

optical activity2.doc Created by Mikhail Martsefkyand Stanislav Azanov
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Qualitative explanation of optical activity effect using «cross»
polarizabilities

rot E

Model of the body with the cross polarisability. Group of N
dielectric ellipsoids have chiral relative deposition. In thseca
uniform elictric field E that is applied on the system induties
toroid moment G. And visa versa — nonuniform vortex field can
induce dipole moment P.

optical activity2.doc Created by Mikhail Martsefkyand Stanislav Azanov
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Calculation of “cross” polarizability

CH,CH(NH,)COOH (Alanine)

Algorithm

1. Find molecule geometry by on of the approximate

methods (atom-atom/molecular dynamics or other)

2. Input atom polarizabilities estimated through atom
refraction coefficients

3. Consider molecule in applied electric field as a system
of interacting dipoles (Kirkwood method) and find

atom dipole moments P, in molecule

4. Calculate dipole P and toroid G moments for molecule
as awhole and find cross and direct polarizabilities of a

molecule
DKCIepuMeHTaIbHbIN Teopernueckuit
yACIbHBIN yToJ BpallleHUs IOCKOCTHU TOJIIpU3aIuU yACTbHBINA
yroi
Bemectso PacTBOpHTEH t [a] [a]
(C) | (rpan) (vpan)
D-Ananun HCI 25 14.5 14.8
a -D-I'mroko3a H,O 20 52.7 53
D-a-0pommiponinoHoBast oe3 20 29 22
KHCJIOTa PacTBOPUTEIS
D-a-6pomdenunykcycHas O6eH3o0 20 -145 -153
KHCJIOTa

optical activity3.doc

Created by Mikhail Martseyuk and Stanislav Asanov
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Microwave experiment for modeling molecular optical activity

1 2; 3

/

14 . 3

1-klystrone; 8 — sample: model of molecule made of artificial
dielectric; 9- receive antenna; 11 — detector

Model of structural element of chiral media. Foam plastiacgr
(d=1cm, L= 10 cm) bear spiral made of artificial dieleciviiach
was prepared from mix of metal powder and paraffin.

Polar diagrams of dependence of rotary angle on the sample
orientation (a) right spiral and (b) left spiral. Theory pointsvam

optical activity4.doc Created by Mikhail Martsenyuk and Stanislav Asanob
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by black squares. Spirals rotate 3 cm wave polarization in opposite
directions

215

optical activity4.doc Created by Mikhail Martsenyuk and Stanislav Asanob
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Introduction : Why Torus Surface Plasmons ?

* Magnetic dipole moments at optical frequencies ??

* 1stindirect experimental evidence in NFO microscopy in
relation with circular symmetry plasmon of nanostructured
probe tip

=> Design of toroidal nanostructures to create magnetic dipole
moments at optical frequencies ??

=> Conseguence for quantum electrodynamics ??

Nanosciences : Optique Submicronique - Dijon — p.3/41
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Near-Field Optics

Scatterer’s size vs. incident wavelength

Macroscopic regime a >> A ray optics, scalar approx

Mesoscopic regime a ~ A Maxwell equations (no approx.

Microscopic regime a << A hon-retarded or dipolar approx

C. Girard and A. Dereux, Rep. Prog. Ph$9, 657-699 (1996).

Nanosciences : Optique Submicronique - Dijon — p.4/41
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Near-Field Optics

Scatterer’s size vs. incident wavelength

Macroscopic regime a >> \ ray optics, scalar approx.

Mesoscopic regime a ~ A Maxwell equations (no approx.)

Microscopic regime a << A non-retarded or dipolar approx.

C. Girard and A. Dereux, Rep. Prog. Ph$9, 657-699 (1996).
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Near-Field Optics

Scatterer’s size vs. incident wavelength

Macroscopic regime a >> A ray optics, scalar apprd

Mesoscopic regime a ~ A Maxwell equations (no appro
Nanoscopic regime Ik visible

Microscopic regime a << A non-retarded or dipolar appr¢
C. Girard and A. Dereux, Rep. Prog. Ph$9, 657-699 (1996).

Nanosciences : Optique Submicronique - Dijon — p.4/41
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lllumination vs collection mode

SNOM = illumination mode PSTM = collection mode

:

~

INC

y .
ZT_.y /- y N ZT_.y LKL’

kinc
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Tips fabrication

SEM images
300 m x 300pm

Tips fabrication : Y. Lacroute

900 NM X YRRk hces : Optique Submicronique - Dijon — p.6/41
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Testing tips 1

17 = ; : 3 Ao
WoDEIICPNIH N0-43-78 Yo RN A 0b &1 2N
Fing 165:45:12 Finm Ib:di: 34

® Y. Lacroute
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Testing tips 2

Mod633P24T22H35

® Y. Lacroute

Nanosciences : Optique Submicronique - Dijon — p.8/41




How to define the subA resolution ?

Criterion : Recover the underlying shapes of
material structures ?

Problem :when NFO images look like the
topography, they are probabiy
(= disguised AFM images)

B. Hechtet al,, J. Appl. Phys81, 2492 (1997)

Fact : Most NFO images do ot look like the
topography !

Inverse scattering difficult
=> Another criterion ?
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Sub )\ detection & Heisenberg uncertainty

When the detection volum@!)® is such that! << A,

Az; Ap; > h
leads to (with cyclic permutation @t, j = z,y, 2)) :
h c?
AE;, AH; > —
‘ 72 (64
i{‘* = s A=1.5um
% o | \\r\ | |
T A=0.5m ]

—10 —8 —6 —4

lo ol (m
glO ( ( )) sciences : Optique Submicronique - Dijon — p.10/41

® W. HeisenbergPhysical Principles of Quantum Theo(r;19%?53.
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Interpretation of PSTM images

K,
23N L//

_>

kinc
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Interpretation of PSTM images

2, K

_>

kinc
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Interpretation of SNOM images
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Direct interpretation of the images ?

* Are the images recorded By In agreement
with the distributions of the electric and/or
magnetic near—fields scattered by the sample
surfacesas computed without including any #p

Nanosciences : Optique Submicronique - Dijon — p.13/4f




Direct interpretation of the images ?

* Are the images recorded By In agreement
with the distributions of the electric and/or
magnetic near—fields scattered by the sample
surfacesas computed without including any #p

* Is there any link between the images obtained by
and thew-resolved distribution of the
electromagnetic local density of stajg3-, w)
close to the sample surfa@s computed without
Including any ti?

A. Dereux, C. Girard, J.C. Weeber, J. Chem. Py, 7775 (2000)
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Scattering theory

With the usuakxp( iwt) time (¢) dependence;” being a vector in direct space amdeing the
angular frequency, the vector wave equation issued from Maxwell's equations (SI units:

c = /€0 po is the speed of light in vacuum):
— — T — S\ g —
VXV XETr)+—e(r)E(r)=0
C

may be cast as
V x V x E(F) + ¢ E(F) = V(7)
with

2 2
9 W

i W N ——
= = €rer and V(1) = = (1 Ere f e(r))

Nanosciences : Optique Submicronique - Dijon — p.14/4f
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Experimental tests : PSTM images

K,
2 L//
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kinc
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From Mesoscopic to Nanoscopic regime

Glass pads 250 nm 250 nmx 100 nm Glass pads 100 nmn100 nmx 70 nm

. —~ ~
& &
S S
8 N— N—
- - - *§ o g
¢ g =
N B S S
- 3 3
] - - v 5 2 5
= S S
) - % Q. S
o~ B < <

(@)

. - -

‘ ‘ (@) (@)

2 4 6
z (um) z (um)

® Samples on glass substrates by Y. Chen (L2M - Bagneux)
® J.C. Weeber, E. Bourillot, A. Derewet al, Phys. Rev. Lett77, 5332 (1996)
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Mesoscopic dielectric sample

TM polarization TE polarization

40
60

y (um)
40

20 50
Tip Displacement (nm)
4
|
|
Tip displacement (nm)

2
|

10
]
o T I
‘ |
‘ \
0

z (um) z (pum)
® Dielectric tip ;A = 633 nm ;0 = 60 deg

® J. C. Weeber, E. Bourillot, A. Derewst al,, Phys. Rev. Lett77, 5332 (1996)
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Nanoscopic dielectric sample

TM polarization

Isointensity PSTM ) . B
~ M
& £
- % g ~ 3
£ : g
- ‘ sd 2
N .'-' I § o§
B ‘ ‘ ; ) ﬁ
s a )
z (um)
- 2 .
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IR B
‘ 1 S 85
" v .,' d B © %
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3 L ’ f -
= *.I8 ¢ e
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T (um) z (um)
A =633 nm ;6 =60 deg Nanosciences : Optique Submicronique - Dijon — p.19/44
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Dielectric tips: A dependence

AFM (130x130x100 nrd) |E(7)|2 (theory, no tip)
i 2l B 5\}‘!{,’ ]
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PSTM,A=543 nm, TM
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Detecting|H (7)>2 @ X = 633 nm R |

Dielectric tip, TM
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Detecting \F[(?)P @ A\ =633 nm

Dielectric tip, TM Gold coated tipl =20 nm
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Detecting \F[(?)P @ A\ =633 nm

Dielectric tip, TM Gold coated tipl =20 nm
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Detecting \F[(?)P @ A\ =633 nm

Dielectric tip, TM Gold coated tipl =20 nm
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Dependence on circular symmetry

Gold coated tipi =20 nm Semi-coated tig =20 nm
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® X\ =633nm ;0 =60 deg; TM polarization
® E. Devaux, A. Dereuet al, Phys. Rev. B62, 10504 (2000)

Nanosciences : Optique Submicronique - Dijon — p.22/4"




Plasmo-nano-devices gz¥
http://www.plasmonanodevices.org

Circular symmetry plasmons: non-retarded

&N
g
§ a-b=d

o o
| |
S S
3 2
o @]
3 3
a/b = 1.3
w i 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
1 2 3 4

k_*a

E. Devaux, A. Dereuxt al, Phys. Rev. B62, 10504 (2000)
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Dipole moments of nanostructures

Coupling of nanostructures eigenmodes to an external field
p- Eext +m - Bext

Electric dipole moment

1
p= — [ dr J(r)

(109,

Magnetic dipole moment

m:ziC /dr T x J(r)]

where (Gaussian Units)
W

T am

J(r) le(r,w) €4 E(r)
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Circular symmetry plasmons: retarded
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Detecting|H (7)|> @ X = 543 nm I |

Gold coated tipi =20 nm Gold coated tig =30 nm
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Dependence on coating thickness

Gold coated tipi =30 nm Gold coated tig =35 nm
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® X\ =543 nm ;0 = 60 deg ; TM polarization
® E. Devaux, A. Dereuet al, Phys. Rev. B62, 10504 (2000)
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Gold particles on glass

AFM (100x100x60 nm) Cr coated tip
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E. Devaux, Ph D Thesis, Univ. Bourgogne, Dijon (2000)
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Cr coated tipd =7nm
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Detecting|H (7)]? @\ = 633 nm o |

Cr coated tipd =7nm Gold coated tigd =20 nm
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Detecting|H (7)]? @\ = 633 nm o |

Cr coated tipd =7nm Gold coated tigd =20 nm
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Detecting|H (7)]? @\ = 633 nm o |

Cr coated tipd =7nm Gold coated tigd =20 nm
g S
I T
e
g
-4 o § 3
. — = <t ’0
o E o 5
S = S =
—~ N =) ~ N S
g INEGE: g i
& g < 5
) = I~ E
S S 9 LS
(@] (@]
(@]
1000 2000 3000 0 1000 2000 3000
T+ IS
E E
3 o3
e e
S dEnE S S
@) o J Lo
~ > ~ >
£ = g =
& 8 & g
> 3 > ]
o g RS o 1 S
o (@]
O (@]
N
@) (©)
0 1000 2000 0 1000 2000



Plasmo-nano-devices gz¥
Detecting|H (7)|? @\ = 543 nm o |

Cr coated tipd =7 nm Gold coated tigd =30 nm
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Torus Surface Plasmons

Non-retarded approximation

V- -E(r)=0
VXxE(r)=0
VZ®(r) =0

d(r) = \/f(Q1,Q2) L(q1) U(q2) V(g3)

A. Mary; A. DereUX, T. L. Ferre”, to be pUb“Shed Nanosciences : Optique Submicronique - Dijon — p.31/4¢
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General solutions In toroidal coord.

P(r) = \/f(Ch,QQ) L(q1) U(g2) V(g3)

f(q1,q2) = coshq;  cosqo

cosngs (even)

sinngs  (odd)

Nanosciences : Optique Submicronique - Dijon — p.32/4¢



General form of solutions

p

P™ | (coshqq)

1
no3

N~

(coshgi)

1
: 2

lim P™ ; (coshqi) = oo
2

q1 —00

lim Qm

1 (coshqy) = o0
q1—0 5

"

o (r) if g1 > g}
d(r) = |

t : 0
\ ®Ou (r) lf a1 < Q1
where
400 4o

O (r) = /fla,q2) Y D> BrQ™ 1Un (g2) €'

m=oco n=0

400 4o

U (r) = /flar,q2) D D> ATPT 1 Un(ge) ™9

1
m=oco n=0 2
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Boundary conditions on torus surface

Continuity of the tangential components of the electric figldr)

BrQm oy = AT P™

5 n

continuity of the normal component @ (r) = ¢(r,w) E(r)

oP™ (r) } oDt (1) ]
e(w) —€eg —— =
991 1gy=¢? 9q1 a1=q"
leads to
O (e @)
D An Un(a2) Cif =23 Ayl Un(a2) Gp' cosg
n=0 n=0
where
dP™ | Q™
G = edQZL 0 2 e(w)P:Ln Ol 2
z  dq 2 dq
q1=4" q1=4"
and
CM = |(e(w) eg) sinhqué\/‘r(iQi/[Ol 2GM cosh ¢
2 2
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Eigenmodes

Condition for even modes wheré > 0.
Cy Cyy1 = (1+don) Gy Gy
Condition for odd modes wher® > 0.
CM CN-I—l - GM GN—I—l

We label a mode only with the coup{é/, M), thereby meaning
the triplet(N, N + 1, M)

N+1

O (1) = VI lar42) 3 ANQY | Un(ga) Mo

n=N

N+1

(I)out ) — \/f(qh q2) Z A,flwpéw% Un(QQ) eiMQS

n=N
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Drude vs Exp. Diel. Functions

Re e(k), Im €e(k)
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Dispersion relations (Drude diel. fct.)
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d/R, 4 R,

Au (Drude) torus embedded in vacuum:
N =0,M =1, 2,3 (left, even modes only) ant¥ = 1, M = 1, 2, 3 (right)

Nanosciences : Optique Submicronique - Dijon — p.37/4¢



Plasmo-nano-devices gz¥
http://www.plasmonanodevices.org

Dispersion relations (Exp. diel. fct)

w/c (um™")
w/c (um™")

10 20 50 40 10 20 50 40

d/Rin d/Rzn
Au (Palik) torus embedded in vacuum:
N =0,M =1, 2, 3 (left, even modes only) anty = 1, M = 1, 2, 3 (right)
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Electric potential & field distributions
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Ford = 40 nm andR;,, = 85 nm, distribution of®q 1 (r)| (a,b) and ofEq, 1 (r)| (c,d) of the
lower frequencyd) /c = 7.546 um 1) mode. (a,c): cut plangs = 0. (b,d): cut planecs = 0.
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Electric potential & field distributions
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Ford = 40 nm andR;,, = 85 nm, distribution of®q 1 (r)| (a,b) and ofEq, 1 (r)| (c,d) of the
lower frequencyd /c = 15.99 um ') mode. (a,c): cut plangs = 0. (b,d): cut plane
x3 = 0.
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Electric potential & field distributions

d = 40 nm andR;,, = 85 nm,
higher frequency /c = 15.67 um ') mode,
cut planegs = 0
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Distribution of®1 1 (r) (a) Even mode, (b) odd mode.
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Distribution of |[E; 1 (r)| (&) Even mode, (b) odd mode.
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Dipole moments of nanostructures

Coupling of subwavelength torus eigenmodes to an external field
p- Eext +m - Bext

Electric dipole moment

1
p= — [ dr J(r)

(109,

Magnetic dipole moment

m:ziC /dr T x J(r)]

where (Gaussian Units)
W

T am

J(r) le(r,w) €4 E(r)
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Dipole moments of even and odd modes

Forcosh(q;) > 1 which arises for “well-proportionned” torus
(d ~ R;, ), both integrals ovetg; andg, may be performed
analytically.

7'('(61 + ieg) 5M,1 fq—i.—oo Sl (ql)dql (even)

PN M =
0 (odd)

0 (even)

’“’“27;“’ (iel e2)5M,1 fJgOO SQ(Ql)dQ1 (Odd)
47

mN,M =
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Dipole moments of nanotorus
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Conclusion

Magnetic dipole moments at optical frequencies with odd torus

modes
But : even-odd degeneracy !
Remedy : design arrays where unit cell is a couple of torus close

to each other!

NoE Plasmo-Nano-Devices workpackage currently running on

this issue!

Nanosciences : Optique Submicronique - Dijon — p.45/4¢



	Title
	Table of Contents
	List of Participants and Group Photo
	Workshop Timetable
	The Donut Game. Intriguing Properties of Super-Toroidal Currents 
	Simplest Sources Of Electromagnetic Fields as a Tool for Testing the Reciprocity-Like Theorems 
	Topological Invariants in Molecular Networks, and Their Current-Like Observables 
	Toroidal Moments and Atomic Emission in Condensed Media 
	Toroidal Moments in Spin-Ordered Crystals 
	Toroidal Electrodynamics and Solid State Physics 
	From the Detection of the Magnetic Component of Optical Near-Fields to Nano-Torus Plasmons Carrying a Magnetic Dipole Moment at Optical Frequencies 

