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Abstract: 

Microscopes and various forms of interferometers have been used for decades in optical 

metrology of objects that are typically larger than the wavelength of light λ. Metrology of sub-

wavelength objects, however, was deemed impossible due to the diffraction limit. We report 

the measurement of the physical size of sub-wavelength objects with deeply sub-wavelength 15 

accuracy by analyzing the diffraction pattern of coherent light scattered by the objects with 

deep learning enabled analysis. With a 633nm laser, we show that the width of sub-wavelength 

slits in opaque screen can be measured with accuracy of ~λ/130 for a single-shot measurement 

or ~λ/260 (i.e. 2.4nm) when combining measurements of diffraction patterns at different 

distances from the object, thus challenging the accuracy of scanning electron microscopy and 20 

ion beam lithography. In numerical experiments, we show that the technique could reach an 

accuracy beyond λ/1000. It is suitable for high-rate non-contact measurements of nanometric 

sizes of randomly positioned objects in smart manufacturing applications with integrated 

metrology and processing tools.  

 25 

Main Text: 

Accurate measurements of a sub-wavelength object by imaging it with a magnifying lens 

(conventional microscope) is impossible because the image blurs. Advanced and complex 

nonlinear and statistical optical techniques such as the stimulated emission depletion (STED) 

and single-molecule localization methods (SMLM) can measure sub-wavelength objects 30 

remotely (1, 2) but are generally unsuitable for non-invasive metrology in nanotechnology, as 

they require intrusive functionalization of samples with luminescent molecules or quantum 

dots.  

Lensless imaging and metrology is also possible by analyzing the diffraction patterns of light 

scattered by the object (scatterometry). Traditional scatterometry relies on multiple 35 

illuminations of the sample and demand post-processing of data to compare with libraries of 

measurements and simulations (3, 4, 5) and has been shown to increase the resolution of low 

numerical aperture imaging systems (6). A range of iterative feedback algorithms has been 

developed to enable the reconstruction of an image from the intensity of scattering patterns of 

optical, deep UV and X-ray radiation with a resolution that is essentially limited by the 40 

wavelength of the illuminating light in most cases (7, 8) and that is around 5-times higher when 

compressed sensing techniques for imaging sparse objects are used (9). 
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Artificial intelligence provides a powerful alternative to the iterative feedback algorithms in 

solving the inverse scattering problem of reconstructing the object from its diffraction patterns 

by analyzing them with a deep learning artificial neural network trained on similar a priori 

known objects (10). This way, random dimers of two sub-wavelength slits have been measured 

in the proof-of-principle experiments with an accuracy of λ/10 using a small training set of 5 

~102. Recently, it was demonstrated that the resolution of imaging and metrology can be further 

improved if topologically structured light is used for illumination of the object (11).  

Here, we report that the accuracy of single-shot measurements of linear dimensions of 

randomly positioned sub-wavelength objects of ~λ/130 can be achieved by deep learning 

analysis of light scattered by the slits with a neural network trained on <103 objects of known 10 

dimensions. The ability of measuring randomly positioned objects is an important feature of 

this methodology that makes it radically different and more suitable for applications that other 

techniques that require scanning (e.g. SEM, SNOM, STED).  We measured slits of random 

width that are cut in an opaque screen. Each slit was placed at a random position along x-

direction within a rectangular frame, defined by four alignment marks. Each slit is 15 

characterized by its width W and offset O from the center of its rectangular frame (Fig. 1).  
 

Fig. 1. Deeply Sub-Wavelength Non-Contact Optical Metrology. Schematic of the 

apparatus is presented on the left (not to scale). The sample is a sub-wavelength slit in an 

opaque screen. A typical intensity field map recorded at distance H = 10 λ from the 20 

sample is presented on the right. The green rectangle shows the section of the diffraction 

pattern that is used. The normalized average intensity profile of this section (1576 pixels) 

is input to the neural network. 

The sample with the slits was placed at the imaging plane of the apparatus and illuminated 

through a low numerical aperture lens (NA = 0.1) with a coherent light source at wavelength λ 25 

= 633nm. Light diffracted from the sub-wavelength slit was then imaged (mapped) by a high-

numerical aperture lens (NA = 0.9) at distances of H = 2 λ, 5 λ and 10 λ from the screen and at 

the screen level (H = 0). Slit localization and focusing was done semi-automatically, relying 

on the repeatability of the XY + Z stages (~10nm), and on the regularity of the fabricated array 

of slits. An imaging system with a 4X magnification changer and a 5.5-megapixel sCMOS 30 

camera with 6.5µm pixel size was used. Since the diffracted field reaching the image sensor is 
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formed by free-space propagating waves, it can be imaged at any magnification without loss 

of resolution by adjusting the magnification level necessary to ensure that the detector pixels 

are smaller than the required resolution. Our imaging system had a magnification of 333X, 

corresponding to an effective pixel size of 19.5nm on the reference plane. On the diffraction 

map, the slits are not resolved. They appear blurred and surrounded by interference fringes. 5 

Single-shot recording of a diffraction map was sufficient to retrieve the width W and offset O 

of the slit with nanometric accuracy. They are retrieved with an artificial neural network (seven 

fully-connected layers, see supplementary materials for details), previously trained on a set of 

scattering events from a number of such slits of known widths and positions. Once trained, the 

system is ready to measure any number of unseen slits.  10 

The deep learning process operates with diffraction patterns created by slits of known width W 

and offset O at different distances H from the sample. Our analysis below will aim to answer 

the following two questions: a) What is the accuracy of measurements of the slit width W that 

can be achieved if information on the intensity profile of diffraction pattern is used? b) Since 

the power of light passing through the slit increases with the slit width, what is the accuracy of 15 

measurements of the slit width W that can be achieved if only the overall power of transmitted 

light is recorded? 
 

In practical terms, the main challenge in the implementation of Deeply Sub-Wavelength 

Optical Metrology is creating a trustworthy training set for deep learning. Such a dataset can 20 

be either virtual or physical. The virtual training dataset of objects and their diffraction 

scattering patterns can be generated by numerical modelling (Maxwell solving). Here the main 

challenge is to ensure that the computer model is meticulously congruent with the physical 

realization of the optical instrument to allow adequate operation, which may be problematic. 

Alternatively, a physical dataset can be created by fabricating a number of real scattering 25 

elements followed by recording of their real scattering patterns. Generating a physical set is 

labor-intensive, but such a set is naturally congruent with the metrology instrument.  

We chose a physical dataset for training and validation that has been created by fabricating a 

number of slits followed by recording their scattering patterns in the optical instrument. The 

substrate supports hundreds of slits of random width and offset. We fabricated a set of 840 slits 30 

of random size by focused ion beam (FIB) milling on a 50nm thick chromium film deposited 

on a sapphire substrate. In the set, widths of the slit W were randomly chosen in the interval 

from 0.079 λ to 0.47 λ (50nm to 300nm). The slit offset O was randomized in the interval L 

from -0.79 λ to 0.79 λ (-500nm to +500nm). Here, all slit widths are well below λ/2 and hence 

their structure would be considered beyond the “diffraction limit” of conventional microscopy. 35 

Upon fabrication, the slits were measured by a scanning electron microscope (SEM) and these 

measurements were used as the ground truth values. For comparison (see below), we also used 

as ground truth the prescribed width values for fabrication by focused ion beam milling. 

Upon completion of the training with 756 slits of a priori known width and position, the 

apparatus was ready for measuring unseen slits. To minimize errors related to the order with 40 

which the network was trained, we repeated training 100 times randomizing the training sets. 

The retrieved parameters of the unseen slits have been averaged over the 100 realizations of 

the trained networks. The standard errors of the means related to training with randomized sets 

(~0.001 λ) were negligible in comparison to other random errors in the measurement compared 

to the ground truth data. 45 

The results of the validation experiments on 84 randomly selected slits of unknown dimensions 

are presented in Fig. 2. It shows the optically measured values of width of the slit against the 

ground truth values, measured in four independent experiments, at distances H = 0 λ,2 λ, 5 λ 
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and 10 λ from the sample. We trained 100 realizations of the network for each H independently. 

Here, the retrieved values are plotted as a function of the ground truth values as obtained by 

SEM analysis. The dashed red line represents perfect agreement, while deviation from the line 

indicates inaccuracies of the measurement. Fig. 2 (a) shows results that use only information 

on the power of transmitted light (WP), while Fig. 2 (b & c) shows the measurements results 5 

obtained by the analysis of the diffraction pattern (WD) by neural networks that are trained 

using known widths from either SEM inspection or from FIB-fabrication prescribed widths, 

respectively. Fig. 2 (d) compares widths from SEM inspection to widths from FIB-fabrication 

prescription. 

 10 

 

Fig. 2. Optical metrology of sub-wavelength slits. (a) The retrieved values of width WP of 

84 random slits when using only data on the total power of light transmitted through the slit 

integrated over the green rectangle section of the diffraction pattern (see Fig. 1). (b) 

Retrieved values of width WD-SEM plotted against width WSEM measured with scanning 15 

electron microscope. (c) Retrieved values of width WD-FIB plotted against width WFIB 

prescribed for FIB-fabrication. (d) Slit widths as measured with scanning electron 

microscope versus prescribed for FIB-fabrication. 

 

a) b) 

c) d) 
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Analysis of the diffraction patterns offers much better metrology than intensity measurements. 

Indeed, the standard deviations between slit widths measured optically and using the scanning 

electron microscope, when only information on the total power of light transmitted through the 

slit was used, 𝜎𝑃−𝑆𝐸𝑀 =34nm is much higher than the standard deviations between the slit widths 

measured optically and using the scanning electron microscope, when analyzing the diffraction 5 

patterns, 𝜎𝐷−𝑆𝐸𝑀 =6.7nm.  

 

To quantify the metrology performance, we calculated the standard deviations a) between slit 

widths measured optically and by the scanning electron microscope (𝜎𝐷−𝑆𝐸𝑀 =6.7nm); b) 

between the slit widths measured optically and prescribed for fabrication by focused ion beam 10 

milling (𝜎𝐷−𝐹𝐼𝐵 =6.0nm); c) between slit widths measured by the scanning electron microscope 

and prescribed for fabrication by focused ion beam milling 5.7nm). 

 

These standard deviations can be presented as resulting from the accumulated errors of the two-

stage processes. The deviation 𝜎𝐷−𝑆𝐸𝑀 results from the errors of measuring the ground truth slit 15 

widths optically (by analyzing the diffraction pattern),  𝜎𝐷−0, and the errors of measuring the 

slits width with scanning electron microscope, 𝜎𝑆𝐸𝑀−0. The deviation 𝜎𝐷−𝐹𝐼𝐵 results from the 

combined errors of measuring optically,  𝜎𝐷−0, and from the discrepancy between the actual 

values of the ground truth and those prescribed for fabrication by FIB, 𝜎𝐹𝐼𝐵−0. Therefore:  

𝜎𝐷−𝐹𝐼𝐵
2 = 𝜎𝐷−0

2 + 𝜎0−𝐹𝐼𝐵
2, 𝜎𝐷−𝑆𝐸𝑀

2 = 𝜎𝐷−0
2 + 𝜎0−𝑆𝐸𝑀

2, 𝜎𝑆𝐸𝑀−𝐹𝐼𝐵
2 = 𝜎0−𝑆𝐸𝑀

2 + 𝜎0−𝐹𝐼𝐵
2. From here, the 20 

standard deviations of the optical and scanning electron microscopy measurements and the 

deviations between the archived slit widths and those prescribed for fabrication by FIB can be 

readily evaluated: 𝜎𝐷−0 = 4.9nm, 𝜎𝑆𝐸𝑀−0 = 4.6nm, 𝜎𝐹𝐼𝐵−0 = 3.4nm. 

 

Now we shall note that the measurements taken at four different distances from the sample (at 25 

H = 0 λ,2 λ, 5 λ and 10 λ) are independent. They return similar value for 𝜎𝐷−0(𝐻 = 0) = 5.4nm; 

𝜎𝐷−0(𝐻 = 2𝜆) = 6.3nm; 𝜎𝐷−0(𝐻 = 5𝜆) = 5.6nm; 𝜎𝐷−0(𝐻 = 10𝜆) = 6.4nm. Correlations between data 

obtained in the measurements at different distances return very high coefficients with the 

average value of correlation coefficient between measurements at different distances, <r> = 

0.99876 (see supplementary information for details). Therefore, we argue that after performing 30 

K = 4 statically independent measurements at different distances, the accuracy of determining 

the slit width can be evaluated using  𝜎𝐷
2 =

1

𝐾2
(𝜎𝐷−0(𝐻 = 0)2 + 𝜎𝐷−0(𝐻 = 2)2 + 𝜎𝐷−0(𝐻 = 5)2 +

𝜎𝐷−0(𝐻 = 10)2) = (2.5nm)2, i.e. approximately a factor of 2 better than the one for a single-shot 

measurement at any of the used distances. 

 35 

Therefore, the standard deviation of optical measurements, which is a measure of the 

technique’s accuracy, is 4.9nm or ~λ/130 (single-shot measurement) and 2.5nm or ~λ/260 after 

measurements at different distances (λ=633nm). This accuracy is comparable with the 

accuracies of the FIB milling (3.4nm) and SEM measurements (4.6nm) that we find. Here, the 

accuracies for FIB/SEM data suffer from the pixilation effects, finite sizes of the FIB/SEM 40 

hotspot, ion/electron beam current instabilities and charging artifacts. 

 

There is a crucial difference between the optical techniques and SEM technique. The SEM 

measurement requires raster scanning the sample followed by image analysis and can only be 

performed at a very low rate, up to ~7.5 frames per second at best. The optical measurements 45 

are single-shot and can be performed with a high repetition rate. In real-time mode, a kilohertz 

measurement rate can be archived, since it is only limited by the time needed for the neural 

network to process one diffraction pattern (in our case it was ~1ms). This rate can be much 

higher in the binning mode, with sequential storage of diffraction patterns in the camera 

memory. Indeed, ultra-high-speed cameras are currently reaching hundreds of megahertz frame 50 
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rates (12). The images might be sequentially processed by the neural network, achieving high-

rate metrology that allows the study of transient dynamic processes in nanostructures. 

 

To back up our claims of extraordinary level of single-shot accuracy in our optical experiments 

and to help understanding the sources of errors in it, we conducted a full computer modelling 5 

experiment. For this, we take the same number of slits for validation and training as in the 

experiment (84 and 756, respectively). The experimentally recorded diffraction patterns were 

substituted with diffraction patterns calculated using vector diffraction theory (13). The 

modelling experiment returns accuracy of ~λ/1000 (0.60nm in absolute terms) for the slit width 

W measured at distances H = 2 λ, 5 λ, 10 λ. The accuracy for the modeling experiment is one 10 

order of magnitude higher than the accuracy of the physical experiment. This is highly 

encouraging, since it indicates that the main factors limiting the experimental accuracy, such 

as mechanical instability of the apparatus, laser instabilities, and to a lesser extent, pixilation 

of the image sensor, can be improved and thus an accuracy surpassing λ/1000 can be achieved. 

We note that in our real and numerical experiments, we also measured the a priori unknown 15 

random offset of the slits. In a practical application, absolute positioning of the object in the 

field of view (FOV) with nanometric precision is impossible. Instead, we measure relative 

offsets from the center of the FOV (markers were used). Slit offset and width measurements 

can be obtained simultaneously from the same images. We found that the slit offset can be also 

retrieved with sub-wavelength accuracy (see supplementary information). 20 

The experimentally observed accuracy of width measurements ~λ/130 (or ~λ/260) exceeds, by 

a factor of 65 (or 130), the λ/2 “diffraction limit” of conventional optical microscopes. This 

brings artificial intelligence-enabled optical metrology to the nanoscale. This is an accuracy 

that challenges the resolution of advanced tools like focusing ion beam milling. We therefore 

argue that the deep learning process involving a neural network trained on a priori known 25 

objects creates a powerful and accurate measurement algorithm. Remarkably, such accuracy is 

achieved with a small physical dataset comprising of less than a thousand slits of a priori 

known sizes. Our numerical modelling indicates that single-shot sub-nanometric accuracy 

better than λ/1000 is possible, thus reaching molecular level dimensions. Moreover, using 

topologically structured light illumination accuracy will improve even further (11). However, 30 

further improvements of accuracy and precision will require larger training sets and 

considerable improvements in mechanical stability of the metrology apparatus.  

 

Finally, we highlight the simplicity of the optical instrument needed for the diffraction 

metrology (in comparison with complex and heavy instruments based on conventional 35 

interferometric techniques), the high throughput, and the ease of sample preparation (e.g. in 

comparison with SEM metrology, no vacuum is needed). The metrology technique is 

insensitive to where the object is placed in the field of view, the instrument does not involve 

moving parts and is therefore suitable for future smart-manufacturing applications with 

machine tools. Moreover, the demonstrated metrology is a subset of the more general ill-posed 40 

inverse scattering problem, that is the retrieval of the image from its diffraction pattern that 

mathematically can be reduced to the Fredholm integral equation. It has been proven 

mathematically (14) that neural networks are very efficient in solving this sort of problems. 

This is experimentally confirmed by achieving deeply sub-wavelength accuracy in our 

experiments reported here. The mathematically proven suitability of the connectionist 45 

approach to such tasks gives us confidence that our methodology will work with different types 

of objects and can be extended to simultaneous measurement of objects’ several dimensions. 

At the same time, we expect that for higher dimensional tasks larger training sets and more 

complex networks will be required to achieve the same level of accuracy. 
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(Supplementary Data). Following a period of embargo, all data from this paper can be obtained 

from the University of Southampton ePrints research repository 

[https://doi.org/10.5258/SOTON/XXXXX]. 
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