
FULL PAPER
www.advancedscience.com

Unlabeled Far-Field Deeply Subwavelength Topological
Microscopy (DSTM)

Tanchao Pu, Jun-Yu Ou, Vassili Savinov, Guanghui Yuan, Nikitas Papasimakis,
and Nikolay I. Zheludev*

A nonintrusive far-field optical microscopy resolving structures at the
nanometer scale would revolutionize biomedicine and nanotechnology but is
not yet available. Here, a new type of microscopy is introduced, which reveals
the fine structure of an object through its far-field scattering pattern under
illumination with light containing deeply subwavelength singularity features.
The object is reconstructed by a neural network trained on a large number of
scattering events. In numerical experiments on imaging of a dimer, resolving
powers better than 𝝀/200, i.e., two orders of magnitude beyond the
conventional “diffraction limit” of 𝝀/2, are demonstrated. It is shown that
imaging is tolerant to noise and is achievable with low dynamic range light
intensity detectors. Proof-of-principle experimental confirmation of DSTM is
provided with a training set of small size, yet sufficient to achieve resolution
five-fold better than the diffraction limit. In principle, deep learning
reconstruction can be extended to objects of random shape and shall be
particularly efficient in microscopy of a priori known shapes, such as those
found in routine tasks of machine vision, smart manufacturing, and particle
counting for life sciences applications.

1. Introduction

The development of label-free far-field superresolution mi-
croscopy, beyond the half-wavelength limit of the conventional
microscope, remains one of the main challenges for science
and technology. Indeed, the ability to image at the nanometer
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scale using visible light will open un-
precedented opportunities in the study of
biochemical, biomedical, and material sci-
ences, as well as nanotechnology. How-
ever, despite persistent research efforts,
deep subwavelength resolution is only pos-
sible using techniques, such as STED[2]

and SMLM / STORM[3,4] that require la-
belling of samples with luminescent ma-
terial that is not acceptable for many in
vivo biomedical applications due to toxicity
and label introduction complexity and is not
suitable for nanotechnology applications
(e.g., imaging of semiconductor chips).
Very recently, it was demonstrated that far-
field, noncontact, label-free, optical, high-
resolution imaging can be achieved by an-
alyzing intensity patterns of light scattered
by the object using artificial intelligence.[5,6]

Here we demonstrate by virtue of numer-
ical and proof-of-principle real-life experi-
ments that further improvement in reso-
lution can be achieved by illuminating the

object with topologically structured light. The improved resolu-
tion results from the interactions of the object’s fine features with
singularities of highly structured topological light. We term our
method deeply subwavelength topological microscopy (DSTM).

To justify the term of DSTM, we note that broadly speaking,
in the contemporary context, “imaging is the representation or
reproduction of an object’s form.”[7] Historically, for centuries
imaging was a technique for representing an object’s form by cre-
ating a light pattern resembling the object, in the same way that
a conventional microscope creates a light pattern on the retina
of the observer’s eye or a screen. The proliferation of computers
and image processing techniques has often replaced such light
patterns by patterns on the computer screen, or data stored in
the computer memory. This is now common practice in modern
optical imaging techniques, such as confocal imaging, SNOM,
STED, as well as for most electron-beam imaging techniques.
We argue that the technique described in this work is a computer-
enabled imaging technique that provides a comprehensive repre-
sentation of the object’s form including all its dimensions and, in
principle, allows full reconstruction of its shape. Our technique
is also a form of microscopy according to the common definition
of microscopy as “the technical field of using microscopes to view
objects …that cannot be seen with the naked eye (objects that are
not within the resolution range of the normal eye).”[8]
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Recent microinterferometric experiments[9] confirmed the
theoretical observations[10] that complex coherent optical fields
contain highly localized intensity hotspots and zones of energy
backflow. They also revealed that near topological singularities in
such optical fields, the phase varies on a distance orders of magni-
tude smaller than the wavelength of light. Such optical fields with
rapid phase variation are known as superoscillatory fields and can
be generated through interference of multiple waves diffracted
on a complex grating[11] or purposely designed masks.[12] Here,
we show that DSTM can reveal the fine subwavelength structure
of an object through the recording of intensity profiles of a num-
ber of far-field scattering patterns under superoscillatory illumi-
nation. Our approach exploits the significant changes of the far-
field patterns of scattered light that take place when the deeply
subwavelength features of the object overlap with the rapid spa-
tial variations of the illuminating topological field.

In contrast to a conventional microscope that forms the im-
age of the object in a single exposure and is limited in resolu-
tion at about half wavelength of the light used for illuminating
the object, prior to imaging DSTM requires a training process,
which involves advanced processing of multiple scattering field
patterns. We show that a convolutional neural network trained
on a large number of scattering events can reliably retrieve infor-
mation about the object with deeply subwavelength resolution.
Moreover, our analysis shows that the high resolution of our mi-
croscopy technique is tolerant to detector noise and is achievable
with low dynamic range light intensity sensors.

A direct reconstruction of an imaged object is possible if the
intensity and phase of the scattered field is known on a closed sur-
face encompassing the object (Kirchhoff–Helmholtz integral).
Recently developed monolithic optical microinterferometry[9]

can, in principle, detect the phase of the field everywhere around
an isolated scattering object, but the technique is extremely chal-
lenging for routine microscopy.[13] Although the field intensity of
scattered light is much easier to measure, as no interferometry is
required, image reconstruction from only the intensity profiles is
an ill-posed inverse problem.[13]

Interference-based methods that allow the retrieval of partial
phase information have been shown to increase the resolution
of low numerical aperture imaging systems.[14] Different itera-
tive feedback algorithms have been developed enabling the re-
construction of an image from intensity of scattering patterns
of optical, deep UV and X-ray radiation with resolution essen-
tially limited by the wavelength of the illuminating light in most
cases,[15,16] and around 5-times higher when compressed sens-
ing techniques for imaging sparse objects are used.[17,18] Arti-
ficial intelligence methods have been used to improve conven-
tional machine vision[19,20] and microscopy[21,22] focusing on re-
ducing both the acquisition time and light intensity required for
imaging labeled samples. However, opportunities that arise from
using deeply subwavelength features of topologically structured
light have not yet been explored.

The numerical and proof-of-principle experiments reported
here show that label-free imaging with deeply subwavelength res-
olution is possible by detecting only the intensity profile of the
scattered light. We also show that illumination with topological
light gives access to higher resolution than conventional plane
wave illumination. We reconstruct the spatial dimensions of the
object from the intensity profiles of scattered light with a deep

learning neural network trained on a large number of scatter-
ing events. We demonstrate DSTM by imaging of a dimer, a pair
of randomly positioned subwavelength particles of arbitrary size
and separated by arbitrary distance, an important task that ap-
pears often in bioimaging and nanotechnology (e.g., cell divi-
sion).

2. Results

In our modelling microscopy experiments (see Figure 1), we con-
sider 1D imaging of a dimer consisting of two totally absorbing,
nonscattering elements of widths A and C with gap B between
them. The dimer’s location from the center of the object plane is
represented by distance D. The scattered light is detected by an
intensity detector array that is placed at a distance of H=10𝜆 from
the object plane, over its center. Here 𝜆 is the wavelength of the
free-space radiation used in the modeling. We assume that the
detector array is 10𝜆 long. Since the scattered field reaching the
detector array is formed by free-space propagating waves, in a real
experiment it can be imaged by a conventional lens at any magni-
fication without loss of resolution, by simply adjusting the magni-
fication to ensure that the detector pixels are smaller than the re-
quired resolution, as has already been realized experimentally.[9]

We therefore assume that the detector array can image the inten-
sity profile of the diffracted/scattered light without limitations to
spatial resolution and conduct our modelling for a detector array
containing five thousand pixels. As we will discuss below, DSTM
is remarkably resilient to limitations in the detector’s dynamic
range and the presence of noise.

We consider two closely related situations, where the position
D of the dimer at the imaging plane is either known or un-
known. We assume that the dimer with unknown position is
located anywhere within a chosen interval. In the former case,
the microscopy returns the dimensions of A, B, C of the dimer,
whereas in the latter the position D is returned in addition to
the dimer dimensions. We use topological light illumination in
the form of a superoscillatory wavefront generated by a planar
Pancharatnam–Berry phase metasurface that was developed in
ref. [1], which creates a superoscillatory subwavelength hotspot
at a distance L = 12.5𝜆 from the plane of the metasurface (su-
peroscillatory field generator). Here, we consider only the cen-
tral part of the superoscillatory field, where the hotspot is flanked
by singularities and zones of high phase gradient (see Figure 1).
Similar patterns can be synthesized by spatial light modulators
and this will be used in the proof-of-principle real experiment
described below. For comparison, we also used plane wave illu-
mination. The scattered field of the dimer is recorded at eleven
positions by moving the superoscillatory hotspot across the ob-
ject in intervals of 𝜆/5, from the −𝜆 position to the +𝜆 posi-
tion in the object plane. The corresponding diffraction patterns
are then recorded, and the full set of diffraction patterns is ana-
lyzed by a convolutional neural network[23] trained with the Adam
stochastic optimization method[24] (see Supporting Information).
The training dataset contained 20000 samples of dimers with
known dimensions. It was generated by creating dimers of ran-
dom sizes and placing them on the object plane with the dimer
center coordinate D randomly chosen in the interval from –𝜆/2
to 𝜆/2 (in the case of unknown dimer position). The widths of the
dimer components (A and C) and the gap between them (B) were
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Figure 1. Deeply subwavelength topological microscopy (DSTM) schematic. The imaged object (a dimer A–B–C) is illuminated with a superoscillatory
light field. The intensity profile of the diffraction pattern resulting from scattering of the superoscillatory light field on the imaged object is detected by
the detector array. A number of different diffraction patterns are recorded when the illuminating field is scanned against the object. Left and right panels
show maps of intensity and phase profiles of the illuminating field and indicate the presence of hotspots and phase singularities, where m indicates the
winding number of the singularity.

independently and randomly chosen between 0.002𝜆 and 𝜆. The
diffraction pattern on the detector array was then calculated by
the Fourier propagation method for the transverse component of
the electric field.

The results of our numerical microscopy experiments are pre-
sented in Figures 2 and 3. To evaluate the resolution of the
method, we imaged ∼7 × 105 dimers with randomly selected di-
mensions (0.01𝜆 ≤ A,B,C ≤ 𝜆) and position (−𝜆/2 ≤ D ≤ 𝜆/2). We
analyzed the results statistically by grouping the retrieved values
for each of the dimer parameters, A, B, C, and D, in bins each
containing 5000 results and calculating the median and spread
within each bin.

We found that the dimensions of the dimer and its position
can be retrieved with deep subwavelength resolution. Indeed, on
Figure 2 the solid red and blue lines correspond to the median of
the true values as a function of the retrieved value, whereas the
black solid line is the bisector of the first quadrant (y = x) repre-
senting perfect agreement between true and retrieved values. A
departure of the median from the bisector represents a system-
atic bias in the retrieval process. When the position of the dimer
is known, we obtain remarkably accurate retrieval of all dimen-
sions both for plane wave (red lines) and topological superoscilla-
tory illumination (blue lines), with the systematic bias of ≈𝜆/100
or smaller. Here, superoscillatory illumination gives similar re-
sults to plane wave illumination for the size of dimer’s element
A, but provides over a factor of ×2 smaller systematic bias for

dimer gap B. When the dimer position is a priori unknown, the
systematic bias increases but remains sub-𝜆/100 with superoscil-
latory illumination still giving better results for retrieval of dimer
gap B and position D than plane wave illumination.

The deeply subwavelength topological microscopy reported
here retrieves the dimer’s geometric dimensions probabilisti-
cally. Thus, we define as the resolution of DSTM the spread of re-
trieved values around the real value as quantified by the interquar-
tile range (IQR), which indicates the interval within which 50%
of the retrieved values are found (see Figure 3). Since IQR does
not vary significantly with the dimensions of the dimer, we use its
mean value as the method’s resolution. Remarkably, in the case of
known position and superoscillatory illumination, the resolution
of the imaging process exceeds 𝜆/200 for all dimer dimensions.
When the position of the dimer is not known, the resolution de-
creases to ≈𝜆/80 for superoscillatory illumination. In both cases,
superoscillatory illumination provides a resolution enhancement
of >50% over plane wave illumination (see the Supporting Infor-
mation).

The results presented in Figure 3 were obtained by using the
field amplitude of the diffracted pattern resolved with 16-bit pre-
cision corresponding to a dynamic range of 96 dB. Here the dy-
namic range is defined as 10·log10(Imax/Imin), where Imin and
Imax are the minimum and maximum intensity levels that can be
recorded. Although such dynamic range is achievable with high-
quality photodetectors, the resolution of the method is weakly
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Figure 2. Deeply subwavelength topological microscopy of a dimer. a) The dimer consists of two elements with different sizes A and C separated by a
gap (edge-to-edge) B. It is positioned in the object plane at distance D from the x = 0 points of the object plane (see Figure 1). Two different regimes are
presented, where the dimer position is either b,c) known (fixed at D = 0), or d–f) unknown. b,c) The retrieved values of B and A presented against their
actual values, when D is known. Solid blue and red lines correspond to the median of the true values under superoscillatory (blue squares) and plane
wave illumination (red circles), while the red and blue colored bands indicate the corresponding interquartile (IQR) ranges (see also the Supporting
Information). In the case of unknown position, panels (d)–(f) show the retrieved values of D, B, and A presented against their actual values. Retrieved
values for size C are similar to size A.

dependent on the detector’s dynamic range. To illustrate this,
the detector’s dynamic range was deliberately reduced by round-
ing readings to lower values (Figure 3f). Nevertheless, resolution
at the 𝜆/100 scale is achieved even for 40 dB dynamic range,
whereas typical photodiode values are well above the 60 dB level.

Apart from the dynamic range of the detectors, resolution will
also be constrained by noise at the detector. However, our results
(see Figure S3 in the Supporting Information) indicate a remark-
able resilience of the method: even in the case of 5% random
noise (a very high value for high quality electro-optical systems),
a dimer can be imaged at a resolution of ≈𝜆/71 for the element
size, ≈𝜆/77 for the gap, and ≈𝜆/92 for the position.

In practical terms, the main challenge in the experimental im-
plementation of DSTM would be in creating reliable and trust-
worthy training sets for deep learning. Such datasets can be ei-
ther virtual or physical. The computer generated training dataset
of imaged objects and their scattering patterns can be rapidly and
accurately generated by computing scattering profiles on a ran-
dom set of virtual training objects. Here the main challenge is
to make the computer model congruent with the physical real-
ization of the microscope to allow adequate imaging of the real

object. Alternatively, a physical dataset can be created by nanofab-
rication of a number of real scattering elements by electron beam
lithography or focused ion beam milling followed by recording
of their real scattering patterns in the physical imaging micro-
scope. Generating a physical set is labor-intensive, but such a set
will be naturally congruent with the imaging microscope. The
choice of the training dataset (physical or virtual) shall be in-
formed by the desired resolution and complexity of the micro-
scope optical tract. In fact, we expect that the required dataset size
will scale with the complexity and dimensionality of the imaging
target and will depend on the a priori available information. In-
deed, objects of higher complexity or dimensionality (e.g., from
1D to 2D or 3D) will be described by a larger number of geo-
metric dimensions and thus, we argue that increasingly larger
training datasets will be required. For instance, if in dimer mi-
croscopy the required resolution is only 𝜆/10, a training set in-
volving only ≈100 objects is needed, while microscopy with reso-
lution exceeding 𝜆/200 may require training datasets comprising
scattering events on tens of thousands objects (see Figure S4 in
the Supporting Information). Depending on the size of the train-
ing dataset and the complexity of the imaging target training of
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Figure 3. Resolution of the deeply subwavelength topological microscopy. IQRs of measured values of the dimer dimensions, a,d) gap, B, b,e) element
size, A, and c) position, D, during numerical imaging experiments with a–c) unknown and d–e) known dimer position. Red and blue colored regions
correspond to plane wave and superoscillatory illumination, respectively, while red and blue solid lines mark the first and the third quartiles of the
corresponding error distributions. The horizontal dotted lines indicate the average value of the IQRs over the range of the true values of the respective
dimension. The vertical dotted lines in panels (a) and (b) indicate the geometric dimension’s true value below which the network returns predominantly
negative, nonphysical values. f) Dependence of resolution (in dimer gap B) as a function of the dynamic range of the photodetector.

the network may take considerable time (one hour in a multi-
GPU workstation in our demo numerical experiments described
above). However, once trained, image reconstruction is possible
with video frame rates.

We demonstrate the practicality of using physical datasets in
DSTM by proof-of principle experiments on imaging of dimer
slits fabricated in an opaque metallic film by focused ion beam
milling. Each dimer comprises a pair of nanometer scale slits of
unknown width in the range 0.26𝜆–1.10𝜆 and spacing between
them in the range 0.17𝜆–0.94𝜆 (see the Supporting Information
for experimental details).

For the experiment we use the framework of a conventional
dual microscope equipped with a sample piezo nanoposition-

ing stage with 100 nm resolution. The dimer is placed on the
object plane of the imaging apparatus and illuminated with co-
herent laser light at the wavelength 𝜆 = 488nm. Light diffracted
from the dimer is then imaged at a distance of H = 2𝜆 from
the object plane by a high-numerical lens (NA = 0.95) and a
2.1-megapixel sCMOS array. Since the diffracted field reaching
the detector array is formed by free-space propagating waves,
it can be imaged at any magnification without loss of resolu-
tion by adjusting the magnification level necessary to ensure
that the detector pixels are smaller than the required resolu-
tion. The imaging system of our apparatus had magnification
of 400 corresponding to the pixel size of 12.6 nm on the image
plane.
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Figure 4. DSTM proof-of-principle experiment. a,b) The statistical distribution of the retrieved results for the width of the a) dimer component A and
b) the dimer gap B presented as the difference between the retrieved value and the true value as measured with scanning electron microscope. Blue
lines correspond to results obtained with superoscillatory illumination, while red lines correspond to broad Gaussian illumination. The histogram is
calculated from retrieved parameters corresponding to 500 different realizations of the neural network.

We used two types of illumination created by a computer-
controlled wavefront synthesizer system based on spatial light
modulators.[25] In the DSTM modality, we used topologically
structured light illumination consisting of a superoscillatory sub-
diffraction hotspot surrounded by a halo of concentric rings. Re-
sults obtained with topologically structured illumination were
compared to Gaussian profile illumination with a focus larger
than the dimer. In the DSTM regime, the measurements
were performed at 21 different positions of the superoscillatory
hotspot on the dimer, by gradually shifting the hotspot with steps
of 𝜆/4.9 perpendicular to the slit direction in the object plane us-
ing the piezo nanopositioning stage.

The full experimental set consisted of 144 dimers, of which
115 dimers were used for neural network training, 14 dimers
for validation, and 15 dimers for our test imaging experiments.
Upon fabrication all dimers were measured to nanometer pre-
cision with a scanning electron microscope. The diffraction pat-
terns from the set of 115 dimers were recorded in the imaging
apparatus and together with their dimensions formed the neural
network training set.

Upon completion of the training, the apparatus was ready
for imaging dimers of unknown size. We repeated the training
process for 500 different realizations of the neural network and
present the corresponding average values in Figure 4a,b. We ob-
served that:

1) The gap, B, and the widths of the slits, A and C, are retrieved
with subdiffraction resolution.

2) The resolution of retrieving the size of the gap and the width
of the slits is higher for topologically structured illumination
than for Gaussian profile illumination.

3) Even a small training set of 115 dimers has been sufficient
to achieve deeply subwavelength resolution of 𝜆/16 for the
gap and 𝜆/27 for the slit width (as quantified by the by the in-
terquartile range of the distribution) using topologically struc-
tured light illumination. At the same time Gaussian illumina-
tion only returned resolution of 𝜆/9 for the gap and 𝜆/13 for
the slit width.

We argue that the observed factor of ≈x2 improvement of
the resolution with topologically structured light illumination
in comparison with Gaussian illumination reported in this
proof-of-principle experiment can be improved much further
by increasing the number of different positions of the super-
oscillatory hotspot on the object (the step size in the current
experiment is 𝜆/4.9 = 100 nm). The fine scanning will take full
advantage of strong variations of the scattered field when the
structural features of the object overlap with that of the illumi-
nating field (see Figure 5 and discussion below). This would re-
quire a more precise sample positioning system and improved
mechanical stability of the imaging apparatus at the level of
AFM/STM instruments. Nevertheless, our results unambigu-
ously demonstrate the resolution advantages that topologically
structured illumination delivers.

3. Discussion

The numerical DSTM experiments performed with large train-
ing sets and the real proof-of-principle experiments conducted
with a small training set confirmed that artificial intelligence en-
abled retrieval of the imaging target dimensions from the inten-
sity patterns of the scattered field delivers deeply subwavelength
resolution. The deeply subwavelength level of resolution reported
here significantly exceeds the Abbe “diffraction limit” of resolu-
tion (≈𝜆/2). We have also observed, both in numerical and real-
life experiments, that using topologically structured illumination
increases the resolution of microscopy. We argue that several fac-
tors contribute to this improvement:

1) Recording of multiple scattering patterns during the training
process and imaging provides much more information on the
imaged object for the retrieval process than what is available
in the lens-generated single image for which the Abbe limit
has been derived.

2) The deep learning process involving a neural network
trained on a large dataset creates a powerful and accurate
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Figure 5. Sensitivity of far-field intensity patterns on the presence and position of an absorbing nanoparticle that is 𝜆/1000 in size. a,c) Normalized
change of the scattered field intensity profile caused by presence of the nanoparticle. b,d) Normalized change of the scattered field intensity profile
caused by shifting the nanoparticle in steps of 𝜆/2000 along the x direction. Panels (a) and (b) correspond to plane wave illumination; panels (c) and (d)
illustrate illumination with a superoscillatory field. Maps (e) and (f) show intensity and phase profiles of the illuminating superoscillatory field, where
light propagates along the positive z-axis.

deconvolution mechanism without using explicit information
on the phase of the detected signals.

3) Sparsity of the object and prior knowledge about the object
(dimer of unknown size and location) help the retrieval pro-
cess, similarly to how sparsity helps “blind” compressed sens-
ing techniques.[17]

4) Topological illumination ensures much higher sensitivity of
the pattern of scattered light to small features of the imaged
object than conventional illumination.

The last argument requires a more detailed comment. Super-
oscillatory fields contain zones of rapid phase gradients and high
local wave vectors. This could explain the high spatial resolution
through Fourier connection between spatial and reciprocal space.
Although this fact is reassuring, its full implications are diffi-
cult to analyze in the context of the multiple exposures and the
neural network deconvolution used in the DSTM technique. In-
stead, in Figure 5 we illustrate the sensitivity of the scattered field
pattern on placing a small absorbing nanoparticle in the illumi-
nating topological field. The nanoparticle, only 𝜆/1000 in size,
is positioned on the object plane at coordinate x0 (see Figures 1
and 5e,f) and illuminated with coherent light of wavelength 𝜆.
The intensity of the scattered light is detected at a distance H
= 10𝜆 from the nanoparticle at points with coordinates (x, z =
10𝜆). Maps (a) and (c) in Figure 5 illustrate sensitivity of scatter-
ing to the presence of the particle in the illuminating field for

plane wave and superoscillatory illumination, respectively. They
show the normalized change of the intensity of scattered light
(colormap, logarithmic scale) as a function of the particle posi-
tion x0 on the object plane and the detector’s coordinate x. Maps
(b) and (d) illustrate sensitivity of scattering to small displace-
ments of the particle. They show the normalized change of the
scattered field intensity (colormap, logarithmic scale) on displac-
ing the particle with step of 𝜆/2000 along the object plane with
the particle initially located at x0. From Figure 5, it follows that
scattering of the superoscillatory field is two to three orders of
magnitude more sensitive than in the case of plane wave illu-
mination to the presence and repositioning of the nanoparticle,
which we attribute to the presence of high intensity and phase
gradients in the superoscillatory field. This stronger sensitivity
of the superoscillatory field explains the enhancement of resolu-
tion comparatively to plane wave illumination. In particular (see
Figure 5c), placing the particle anywhere apart from the very nar-
row subwavelength singularity zone (black horizontally extended
area indicated by green dotted line) results in a strong change of
intensity across the detector plane. Figure 5d shows that when
the nanoparticle is repositioned away from the singularity point
in the object plane, a very narrow, deeply subwavelength zone is
created on the detector plane where no change of intensity is tak-
ing place. These features can be used to accurately retrieve the
particle position. We argue that enhancement of resolution with
topological light against plane wave illumination shall increase

Adv. Sci. 2020, 2002886 © 2020 The Authors. Published by Wiley-VCH GmbH2002886 (7 of 8)



www.advancedsciencenews.com www.advancedscience.com

with the number of positions at which the object is illuminated.
Indeed, fine scanning of the object in the topological field im-
proves chances of overlap between the fine features of the object
and zones of rapid phase variation that are crucial for high reso-
lution image reconstruction.

The deeply subwavelength topological microscopy (DSTM) re-
ported here shall be compared with confocal microscopy that
uses a superoscillatory subwavelength intensity hotspot for ob-
ject illumination.[25,26] The image is reconstructed point-by-point
by scanning the hotspot against the object while it is imaged by
a conventional lens through a confocal aperture. In this case,
the size of the superoscillatory hotspot determines the resolution
of the technique.[27] Although, in principle, the superoscillatory
hotspot can be arbitrary small, intensity in the hotspot rapidly
drops with its size, and resolution better than 𝜆/4 is difficult to
achieve. As we have shown here, the resolution of DSTM could
be orders of magnitude better than confocal microscopy with su-
peroscillatory hotspot illumination.

4. Conclusions

In conclusion, we have introduced and demonstrated the
new concept of deeply subwavelength topological microscopy
(DSTM), which employs artificial intelligence to retrieve, with
deeply subwavelength resolving power, dimensions of a physical
object from its scattering pattern upon topological illumination.
Although so far DSTM has been demonstrated for 1D imaging,
we argue that it could be readily extended to 2D and 3D objects,
as well as objects of random shape, and could be very efficient in
microscopy of a priori known shapes, such as found in routine
tasks of machine vision, smart manufacturing, particle counting
for life sciences application, etc. The technique does not require
labelling of the sample with luminescent materials, nor intense
laser illumination thus avoiding photodamage effects, is resilient
to noise and we expect that it can work in both transmission and
reflection mode depending on the imaging target. The technique
could lead to far-reaching consequences across a number of dis-
ciplines, such as biomedical sciences, materials science and nan-
otechnology.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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