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ABSTRACT

We report the experimental demonstration of deeply subwavelength far-field optical microscopy of unlabeled samples. We beat the �k/2 diffrac-
tion limit of conventional optical microscopy several times over by recording the intensity pattern of coherent light scattered from the object into
the far-field. We retrieve information about the object with a deep learning neural network trained on scattering events from a large set of known
objects. The microscopy retrieves dimensions of the imaged object probabilistically. Widths of the subwavelength components of the dimer are
measured with a precision of k/10 with the probability higher than 95% and with a precision of k/20 with the probability better than 77%. We
argue that the reported microscopy can be extended to objects of random shape and shall be particularly efficient on object of known shapes,
such as found in routine tasks of machine vision, smart manufacturing, and particle counting for life sciences applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003330

The ability to image at the nanometer scale using visible light
remains a long-standing fundamental challenge for optics. Despite
over 400 years of developments in microscopy, subwavelength optical
imaging is only possible through the use of near-field probes1 or
fluorescent labels.2,3 Moreover, combining the latter with artificial
intelligence approaches has been shown to improve imaging resolu-
tion.4,5 However, fluorescence-based and near-field methods exclude
many applications. Several other techniques have been developed to
break through the “diffraction limit” of conventional microscopes,6–8

which, however, led only to modest enhancement of resolution in far-
field techniques.9,10

The distinction between far-field and near-field imaging techni-
ques is important. In the context of imaging, the near-field and far-field
zones are regions of the electromagnetic field around an object, result-
ing from radiation scattering on the object. The near-field consists of
non-propagating (evanescent) components with the wavevector larger
than that of free-space propagating light waves. These non-propagating
field components exponentially decay within a distance of a wavelength
from the object. Detecting the near-field is possible by converting

non-propagating components into propagating ones by placing a
small probe in the proximity of the object. Such detection is used in
high-resolution scanning near-field microscopy (SNOM). However,
SNOM is intrusive and does not allow imaging inside the object.
For that reason, imaging techniques that rely only on propagating com-
ponents of the scattered field are of considerable interest for many
applications in nanotechnology and biology.

In our recent theoretical paper,11 we introduced a type of micros-
copy, which reveals the fine structure of a physical object through its
far-field intensity scattering pattern under illumination by either a
coherent plane wave or topological superoscillatory coherent light. We
have shown that reconstruction of the object can be achieved by
machine learning using a neural network trained on a large number of
scattering events on known objects. In this earlier paper, we demon-
strated computationally that resolution far beyond the conventional
diffraction limit should be possible with either plane waves or supero-
scillatory illumination, with higher resolution being achievable in the
latter case. In computer modeling experiments, a dimer comprising
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two subwavelength opaque particles was imaged with a resolution
exceeding k/200.

Here, we report the first proof-of-principle laboratory experi-
ment, confirming that this imaging technique can provide deeply
subwavelength resolution. Using plane wave illumination, we imaged
a dimer sample cut in an opaque metallic film comprising a pair of
nanometer scale slits of unknown width and spacing between them.

In practical terms, the main challenge in the implementation of
deeply subwavelength optical microscopy is creating a reliable and
trustworthy training set for deep learning. Such a dataset can be either
virtual or physical. The virtual training dataset of imaged objects and
their diffraction scattering patterns can be generated by numerical
modeling (Maxwell solving) on a random set of a priori defined large
set of random virtual training objects. Here, the main challenge is to
ensure that the computer model is meticulously congruent with the
physical realization of the microscope to allow adequate imaging of
the real object, which may be problematic. Alternatively, a physical
dataset can be created by fabricating a number of real scattering ele-
ments followed by recording of their scattering patterns in the imaging
instrument. Generating a physical set is labor-intensive, but such a set
is naturally congruent with the imaging microscope. The choice of the
training dataset (physical or virtual) shall be made with the desired res-
olution and complexity of the microscope optical tract, and, in general,
higher resolution would require large training datasets.

Another challenge in implementing deeply subwavelength optical
microscopy is in registering diffraction patterns with high spatial reso-
lution. However, since the diffracted field reaching the image sensor is
formed by free-space propagating waves, it can be imaged at any mag-
nification without the loss of resolution by adjusting the magnification
level necessary to ensure that the detector pixels are smaller than the
required resolution. Moreover, our analysis shows that the reconstruc-
tion of the scattering object by the deep learning neural network is tol-
erant to the dynamic range of the detector with the dynamic range of
40 dB being sufficient for deeply subwavelength imaging. However,
narrow-band coherent laser radiation shall be used to ensure the dis-
tinguishability of the diffraction patterns of different objects.
Therefore, conventional microscopy hardware with minor modifica-
tions can be used for proof-of-principle demonstrations of the deeply
subwavelength optical microscopy described above.

Our experiments were performed in a commercial dual optical
microscope. The imaging target was placed on the imaging plane of
the apparatus and illuminated with a laser diode at the wavelength of
k¼ 795nm through a low numerical aperture lens. Light diffracted on
the dimer was then imaged at a distance of h¼ 2k from the image
plane by a high-numerical lens with a 6�magnification changer and a
5.5-MP sCMOS camera, see Fig. 1. The imaging system of our appara-
tus had a magnification of 600 corresponding to an effective pixel size
of 10.8 nm on the image plane. The imaged dimer, placed in the center
of view, is characterized by the width of the two slits, A and C, and the
separation, B, between the two slits (edge-to-edge) [see Fig. 1(d)].

Dimensions of the unknown dimer are retrieved with a deep
learning neural network trained on a set of scattering events from
dimers of known dimensions. We chose to use a physical training set
of only 100 dimers, which, in our modeling, was sufficient to achieve
resolution beyond k/10. For that matter, we fabricated a set of 144
dimer slits of random size by focused ion milling on a 40nm thick
chromium film deposited on a glass substrate, see the SEM image of

the set in Fig. 2(a). In the set, parameters A, B, and C of the dimer
were randomly chosen in the interval from 0.1k to 0.6k (80 nm to
477 nm). Here, almost all dimer dimensions in the set are well beyond
the k/2 diffraction limit, and hence, their inner structure would be
beyond the diffraction limit of conventional microscopy.

Upon fabrication, the dimers were measured to nanometer preci-
sion using a scanning electron microscope. One hundred dimers from
this set were used for network training, while the rest were used as
imaged objects of unknown dimensions in the test microscopy experi-
ments. The diffraction patterns from the set of one hundred dimers
were recorded in the imaging apparatus and mutually aligned using a
position mark fabricated near each dimer. To increase accuracy, the
2D SEM images of the dimers and their diffraction patterns were aver-
aged along the length of the slits [vertical axis in Fig. 1(b)]. The diffrac-
tion patterns, together with their dimensions measured by the SEM,
formed the physical training set for the neural network.

The neural network consisted of four fully connected layers with
128, 512, 256, and 3 neurons [see Fig. 2(c)]. The first three layers were
activated by the Rectified Linear Unit (ReLU) activation function, while
the last layer is activated by the sigmoid function. To avoid over-fitting,
dropout layers with a rate of 20% are inserted after each of the first three
layers. The network was trained using the Adam stochastic optimization
method, and the mean absolute error loss function was monitored.

Upon completion of the training with 100 random dimers of
a priori known sizes, the apparatus was ready for imaging dimers of
unknown size. To quantify the effect of the relatively small size of the
training dataset on the imaging process, we repeated the training
process 500 times randomizing the training set. We have applied the
500 different realizations of the trained network in imaging unknown
dimers, which resulted in a distribution of 500 retrieved values for
each parameter (A, B, and C) of each dimer. We have undertaken a
statistical analysis of the distributions of retrieved values to determine
the resolution of microscopy.

FIG. 1. Imaging apparatus and the physical training set. The dimer to be imaged is
placed on the object plane and is illuminated by a coherent laser light source at the
wavelength of k¼ 795 nm through a low numerical aperture lens L1 (NA¼ 0.3).
The light diffracted on the dimer is imaged at a distance h¼ 2k from the dimer by
a high numerical aperture lens L2 (NA¼ 0.9) (a). The set of 12 � 12¼ 144 dimer
slits is fabricated by focused ion milling on a chromium film on the glass substrate
(b); slits of the dimers have random widths A and C and are randomly spaced by
distance B. A square alignment mark is fabricated near each dimer (c). The inten-
sity pattern of coherent light diffracted on each dimer is recorded. Plate (d) shows a
characteristic diffraction pattern of a dimer in a field of view 50k wide.
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The results of our experiments on 14 randomly selected dimers
of unknown dimensions are presented in Figs. 2(e)–2(g), where the
retrieved values (blue circles) are plotted as a function of the true
dimensions. Here, the dashed black line represents perfect imaging,
while dispersion of the points away from it indicates a divergence
between the true and retrieved values. For all three dimensions of the
dimers (A, B, and C), we observe that the retrieved values closely
follow the true value, which slightly diverge for the smallest values. To
quantify the resolution of imaging, we calculated the interquartile
range (IQR) of the distribution of retrieved values for each one of the
14 unknown dimers [see error bars in Figs. 2(e)–2(g)]. We observed
that the stochastic errors introduced by the network training process
do not exhibit a strong dependence on the dimer feature sizes.

The deeply subwavelength optical microscopy reported here
retrieves dimer’s parameters probabilistically. Therefore, resolution of
the technique shall be assessed from the point of view of how likely a
measured value is equal to the real value within the claimed resolution.
This can be easily evaluated from the distribution of retrieved values for
the measured dimers: the probability of retrieving individual dimensions
A and C with a precision of k/10 is better than 95%. The same parame-
ters are retrieved with a precision of k/20 with the probability better
than 77%. The dimer gap is be resolved with a precision of k/10 with
the probability of 87% and with a precision of k/20 in 70% of cases.

The experimentally observed resolution considerably exceeds the
k/2 diffraction limit of conventional optical microscopes. We, there-
fore, argue that the deep learning process involving a neural network
trained on a priori known objects creates a powerful and accurate
deconvolution mechanism, while sparsity and prior knowledge about
the object help the retrieval process, similar to how sparsity helps
“blind” compressed sensing techniques. Remarkably, such resolution
is achieved with a small physical dataset comprising just 100 dimers.
We expect that imaging more complex objects will require increasingly

larger datasets. Moreover, we argue that larger training datasets will
allow us to boost the resolution enhancement by at least another order
of magnitude11 reaching the molecular resolution.

In conclusion, we have experimentally demonstrated far-field
deeply subwavelength optical microscopy of unlabeled samples, which
employs artificial intelligence to retrieve, with resolution exceeding k/
10, parameters of a physical object from its scattering pattern.
Although so far, we demonstrate the concept for one-dimensional
imaging, it can be extended to two- and three-dimensional objects, as
well as objects of a priori unknown shape. We expect that much higher
resolution shall be possible with topological superoscillatory illumina-
tion as it will ensure much higher discrimination of small features of
the imaged object by the pattern of scattered light than conventional
illumination.

Finally, for centuries, imaging was a technique of representation
of an object’s form by creating a light pattern resembling the object,
in the way that a conventional microscope creates it on the retina of
the observer’s eye or a screen. The proliferation of computers and
image processing techniques has often replaced the light pattern rep-
resentation by patterns on the computer screen or data stored in the
computer memory. This is now common practice in modern optical
imaging techniques, such as confocal imaging, SNOM, and
Stimulated Emission Depletion Microscopy (STED), as well as for
most of the electron-beam imaging techniques. We argue that the
technique described in this work is a computer-enabled imaging tech-
nique that provides a comprehensive representation of the object’s
form including all its dimensions and allows full reconstruction of its
shape (see the contemporary definition of imaging in Ref. 12). Our
technique is also a form of microscopy according to the common def-
inition of microscopy as “the technical field of using microscopes to
view objects … that cannot be seen with the naked eye (objects that
are not within the resolution range of the normal eye).”13

FIG. 2. Imaging of unknown dimers. The intensity profile of the diffraction pattern (b) of an unknown dimer (a) is recorded. Dimensions A, B, and C of the dimer are retrieved
from the diffraction pattern by the trained neural network (c). Plates (e)–(g) present comparisons of the retrieved dimensions A (e), C (f), and B (g) of the dimers vs the true
dimensions. The true dimensions (red squares) are measured using a scanning electron microscope for a set of N¼ 14 measurements. The retrieved dimensions are evalu-
ated for 500 different trained networks, resulting in a distribution of retrieved values. Red squares represent the ground truth values of A, B, and C dimensions, while blue
circles correspond to the median predicted values. The blue error bars indicate the interquartile range of the distribution of predicted values. The dimers in this series are
“unseen”: they are of random size and have not been used in the network training process.
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