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Abstract: Structured lights, particularly those with tunable and controllable geometries, are
highly topical due to a myriad of their applications from imaging to communications. Ray-wave
duality (RWD) is an exotic physical effect in structured light that the behavior of light can be
described by both the geometric ray-like trajectory and a coherent wave-packet, thus providing
versatile degrees of freedom (DoFs) to tailor more general structures. However, the generation of
RWD geometric modes requires a solid-state laser cavity with strict mechanical control to fulfill
the ray oscillation condition, which limits the flexiblility of applications. Here we overcome this
confinement to generate on-demand RWD geometric modes by digital holographic method in
free space without a cavity. We put forward a theory of generalized ray-wave duality, describing
all previous geometric modes as well as new classes of RWD geometric modes that cannot be
generated from laser cavities, which are verified by our free-of-cavity creation method. Our
work not only breaks the conventional cavity limit on RWD but also enriches the family of
geometric modes. More importantly, it offers a new way of digitally tailoring RWD geometric
modes on-demand, replacing the prior mechanical control, and opening up new possibilities for
applications of ray-wave structured light.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Light can be modelled as both ray and wave representations, with the ray a fundamental concept
in geometric optics and used routinely in lens design, while waves apply to wave optics to
describe the phenomena such as interference and diffraction. Feynman path integral theory
uses the representation theory in classical optics and builds a bridge between ray and wave
descriptions [1]. However in recent years, ever-increasing mesoscopic physical phenomena with
exotic structured light are outdoing the scope of conventional geometric and wave optics, e.g. the
wave-chaotic modes in microcavities [2,3], the dynamics of optical catastrophe [4], the structured
caustics light [5,6], and ray-optical Poincaré sphere for structured Gaussian beams [7]. In order
to interpret these abnormal optical modes, some new physical effects were proposed for pursuing
generalized theories combining the ray-wave optics and quantum optics, such as the ray-wave
duality (RWD). The effect of RWD was presented to characterize the abnormal laser mode
[8–11], playing as a macroscopic manifestation of wave-particle duality in laser oscillation. The
behavior of RWD geometric modes can be described on one hand by the classical ray trajectory
[8], and on the other hand by a coherent wave-packet, revealing its nature parallel to the quantum
coherent state where the probability wave-packet is coupled with the classical movement of the
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Hamiltonian [12–15]. Recently, more and more exotic RWD geometric modes were generated
based on the SU(2) coherent state [16,17], which is coupled with the classical trajectory of
various linear cluster structures yielded by SU(2)-Lie algebra. For instance, the multi-path and
vector geometric mode can be obtained based on the periodic oscillating ray trajectory in the laser
cavity [18–20], while the emitting planar geometric mode can be transformed into structured
vortex beam carrying orbital angular momentum (OAM) and coupled with the classical trajectory
located on a hyperboloidal ruled surface [21,22]. By replacing the fundamental light that couples
with the classical ray-orbit by the twisted light, the multi-path structured RWD geometric modes
can also be generalized into multi-vortex structure [23,24]. Furthermore, RWD geometric modes
with higher complexity can be realized with more controllable parameters in SU(2) coherent
state, such as the 3D coherent wave-packets located on the Lissajous curve and trochoidal
parametric surfaces [25–27]. These exotic RWD geometric modes largely enrich the family of
structured lights with more DoFs [20]. The DoFs of RWD geometric modes include wave-packet
shape, central OAM, partial OAM and coherent-state phase, and all DoFs are determined by
multi-parameters of RWD geometric modes. Once multi-parameters of RWD geometric modes
being freely modulated, such RWD geometric modes with salient quantum-classical coupled
properties would surely broaden the related applications such as optical manipulation [28,29],
quantum entanglement [30–33], particle trapping [34–36], communications [33,37], and security
encryption [38,39].
Until now, unfortunately, the only way to generate geometric modes with RWD is the output

from a solid-state laser cavity with a mechanical control at a frequency-degenerate state, where
the ratio of transverse and longitudinal frequency spacings should be a rational number, i.e.
∆ωT/∆ωL = P/Q (P and Q are coprime integers). It also requires an off-axis pumping control
in such a special cavity, so that the laser modes have preference to be localized on the periodic
ray trajectories based on the RWD effect [12,18]. Various structured RWD geometric modes
corresponding to various parameters in SU(2) coherent state were generated by precise control of
cavity and pumping parameters. However, this method has inevitable obstacles: (1) the solid-state
laser cavity with mechanical control devices is complicated and bulky, losing the flexibility and
compactness; (2) some conditions of complex SU(2) coherent states are too strict to realize. For
example, the Lissajous geometric modes need the precise control to realize a tiny difference
between the cavity lengths at x− and y− axis direction. Therefore, it is difficult and inconvenient
to generate Lissajous geometric modes. Moreover, the practical cavity length cannot be infinitely
short because of crystal, thus the cases for large Q are too strict to realize; (3) it is impossible to
cover all the frequency-degenerate states via cavity control, where the available values of Q are
very limited. Because the actual frequency-degeneracy is controlled by cavity parameters yielded
by P/Q = (1/π)cos−1(1 − L/R), where L and R are the length and radius of curvature of the
plano-concave hemispherical cavity [19], the cases for Q ≤ 2 would result into unsteady cavities.
To overcome all the drawbacks and inconveniences, it urgently calls for a free-of-cavity method
of generating RWD geometric modes, breaking the bottleneck of the degenerate cavity method.

In this paper, a generalized theory of RWD geometric modes is proposed, revealing the general
connection of classical trajectories and wave-packet of SU(2) coherent state, which not only
covers all the geometric modes generated in a frequency degenerate cavity but also includes
new classes of RWD geometric modes that cannot be produced from a cavity, e.g. the cases
with Q value of 0, 1, 2 and even negative integers. On that basis, we present a method to
experimentally generate the generalized RWD geometric modes by external digital holographic
control, which breaks the traditional paradigm of degenerate laser cavities, and proves to be much
more comprehensive, flexible, and simple. We experimentally obtained fruitful RWD geometric
modes by our digital way, which allows easy access to a myriad of new modes that are either out
of reach or extremely difficult to realize and control in the traditional intracavity method, thus
largely enriching the family of geometric modes. More importantly, the digital on-demand RWD
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generation scheme replacing the mechanical control opens up new possibilities for applications
of ray-wave structured light in optical trapping, optical tweezers, quantum entanglement and
optical communication.

2. Theory of generalized ray-wave duality

In this section, we outline the basic concepts involved in our work for a clear interpretation
before introducing the theoretical model. It is known that when a laser cavity is operated in a
frequency degenerate state with geometry fulfilling a ray-like periodic trajectory that oscillates
back and forth as geometric optics predicts, the laser wave-packet appears to be coupled with
the classical trajectory as the RWD effect [18]. Although ray-like, the laser mode can be
expressed by a superposed wave-packet of various free-space Hermite–Laguerre–Gaussian
(HLG) eigenmodes that demonstrated by SU(2) unitary transformation as a form of SU(2)
coherent states [16,17,19,21,22]. The classical trajectories coupled with corresponding RWD
wave-packet are formed by a cluster of geometric rays. Prior to this study, the actual beam shape
of this superposed wave-packet is determined by adjusting the length of cavity, cavity mirror
radius of curvatures, pump power and the position of the pump light, while the DoFs of the RWD
effect are all confined in the cavity geometry. Here, we update the theoretical model by exploiting
more quantum-classical connected properties of SU(2) coherent state and redefine the concept of
RWD, so that the RWD effect is generalized beyond the limit of laser cavity.

2.1. SU(2) coherent states with quantum-classical connection

The SU(2) coherent wave-packet is the specific quantum state most closely resembling the classical
state, while it is also a class of structured modes that superposed by various frequency-degenerate
eigenstates. The wave packet is coupled with the classical movement yielded by the corresponding
Hamiltonian. The coherent states under SU(2) symmetry group can be written as [9,16,17]:

|φ〉 = 1
2N/2

N∑
K=0

©«
N

K
ª®¬
1/2

eiKφ |K,N〉. (1)

where N is the total bosons number, the states |K,N〉 are the states with K bosons in the first
mode and (N − K) bosons in the second mode [16], and φ is the initial phase of coherent state.
The SU(2) coherent state with HLG eigenstates is given by [15,40]:

|Ψ(α,β,φ)n0,m0,l0〉
N

p,q
=

1
2N/2

N∑
K=0
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eiKφ |ψ(α,β)n0+pK,m0+qK,l0−PK〉. (2)

where the HLG eigenstates |ψ(α,β)n0+pK,m0+qK,l0−PK〉 of separable 3D harmonic oscillator with different
frequencies ωx = ω0 − q∆ω, ωy = ω0 + p∆ω and ωz along x-, y- and z- axes can be obtained, in
which p and q are integers, by applying SU(2) ladder operators to Gaussian fundamental modes
[15,40]:

|ψ(α,β)n,m,l 〉 =
(b†x)n√

n!

(b†y)m√
m!
(b†z )l√

l!
|0, 0, 0〉, (3)
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b†y
b†z


=


e−iα/2 cos(β/2) eiα/2 sin(β/2) 0

−e−iα/2 sin(β/2) eiα/2 cos(β/2) 0

0 0 1



a†x
a†y
a†z


, (4)

where a†i (i = x, y, z) are the creation operators for generating high order transverse and longitudinal
mode, (α, β) are the two parametric rotation angles in SU(2) symmetry along z-axis, (n, m) and l
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are transverse and longitudinal mode indices, respectively. Of particular note, when α(β) = 0 or
π, |ψ(α,β)n,m,l 〉 is reduced into HG modes; when α = β = ±π/2, |ψ(α,β)n,m,l 〉 is reduced into LG modes.
The eigenstates with SU(2) transformation can well represent various HLG eigenmodes. The
theoretical SU(2) coherent states with different rotation angles (α, β) and initial phase φ are
shown in Fig. 1(a) and (b), respectively.

Fig. 1. Intensity pattern of SU(2) coherent states. (a) |Ψ(α,β,0)20,20,l 〉5−1,5. (b) |Ψ
(0,0,φ)
20,20,l 〉102,2.

As a salient property of SU(2) coherent state, the probability wave-packet is coupled with
the classical movement [14,15]. The wave-packet of the SU(2) coherent state is always located
on the corresponding trajectory [8]. The trajectory of classical movement of the separable 3D
transversely symmetric harmonic oscillator (x±a,k, y±a,k, z±a,k) yields [41]:

x±a,k =
√

Nxw(z) cos
[
2πk

ωx

ωz
+ φx ± ϑ(z)

]
y±a,k =

√
Nyw(z) cos

[
2πk

ωy

ωz
+ φy ± ϑ(z)

]
z±a,k = z

(5)

where the integer k = 0, 1, 2, . . . is the running index for the caustics cluster of rays, (Nx,Ny)
and (φx, φy) are the intensities and initial phases of oscillator components at x- and y-axis
respectively, w(z) = w0

√
1 + (z/zR) is Gaussian beam waist parameter, and ϑ(z) = tan−1(z/zR) is

Gouy phase where zR is the Rayleigh range. Nx and Ny are positively correlated with n0 and m0,
and φx − φy = φ. The symbol + and − respresent the forward and backward rays, respectively.
Hereinafter, we omit the notation symbol ± of the classical trajectories.
The SU(2) transformation of the trajectory (xa,k, ya,k, za,k) is coupled with that of operator

transformation of Eq. (4), and the SU(2) coherent states wave-packet would be located along the
SU(2) classical trajectory of (xb,k, yb,k, zb,k) [14,15], demonstrating quantum-classical connection
[13]. Utilizing SU(2) transformation, the expression of (xb, yb, zb) can be expressed as:

xb

yb

zb


=


e−iα/2 cos(β/2) eiα/2 sin(β/2) 0

−e−iα/2 sin(β/2) eiα/2 cos(β/2) 0

0 0 1



xa

ya

za


, (6)

The classical trajectory (xb, yb, zb) with different values of (α, β) corresponds to the SU(2)
coherent state wave-packet with HLG eigenstates of Eq. (2).
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In short, the eigenstates of 3D separable harmonic oscillators are HG modes in the Cartesian
coordinate system, and the corresponding classical motion trajectory is the Lissajous curve,
while the coherent state wave-packet with HG eigenstates is coupled with the classical trajectory.
The general HLG eigenstate between HG and LG eigenstate can be obtained by applying
SU(2) unitary transformation on ladder operators, and the coherent state with HLG eigenstates
can be called as SU(2) coherent state. Meanwhile, the family of the classical trajectory with
continuous-transformation orbits between Lissajous and trochoidal curves can be obtained by
applying SU(2) transformation on the Lissajous curve [41]. Hereto, the SU(2) coherent states
with classical quantum coupling have been clarified.

2.2. Generalized ray-wave duality

Based on the SU(2) coherent states of Eq. (2) with the coupled SU(2) classical trajectory given
by Eq. (5), we can propose our new definition of RWD. When the ratio of ωx/ωz or ωy/ωz is an
irrational number, the trajectories of (xb,k, yb,k, zb,k) would not be overlapped to each other and
can constitute a continuous spatial surface with the running of k to infinity [12], thus no RWD
effect in this case. Whereas if the ratios of ωx/ωz and ωy/ωz are rational numbers, the trajectory
of (xb,k, yb,k, zb,k) just represents a ray cluster with a limited number of rays because the trajectory
would coincide with itself having k running for certain period, with the examples of classical
trajectory shown in Fig. 2, and the spatial wave-packet of corresponding SU(2) coherent state
is localized on this trajectory, which embodies the quantum-classical connection and namely
the RWD effect. In general, the RWD effect reveals the coupled effect of light ray trajectory
and wave-packet, the definition and working principle of which is independent of laser cavity.
Meanwhile, SU(2) coherent states are a rich class of RWD geometric modes.
Hereinafter we derive some special sets of the RWD geometric modes:
1. Lissajous-to-trochoidal parametric surface mode : For the special case of ω0/ωz = P/Q

and ∆ω/ω0 = M1/M2 where (P,Q) and (M1,M2) are two pairs of coprime integers, it can
be derived that ωx/ωz = P/Q(1 − qM1/M2) and ωy/ωz = P/Q(1 + pM1/M2) are two rational
numbers, and the classical trajectory as described by Eq. (5) is reduced into a caustics cluster
with limited rays. As shown in the first row of Fig. 2, the SU(2) classical trajectory (xb,k, yb,k, zb,k)
(k = 0, 1, 2, . . . , |QM2 | −1) with different values of (α, β) represents respectively a caustics cluster
including |QM2 | rays uniformly distributed on a Lissajous parametric surface (α = β = 0) [25],
trochoid parametric surface (α = β = π/2) [26] and the topological SU(2) surface interposed
between Lissajous and trochoidal parametric surfaces (the case shown with α = π/2, β = π/4).
The general expressions of the illustrated three scenarios of classical trajectory are given in
the first row as well. Moreover, at a certain transverse plane, the transverse pattern illustrates
multiple dots uniformly distributed on a certain Lissajous and trochoid curve. The corresponding
SU(2) coherent states (as shown in the fourth row of Fig. 2) as denoted by Eq. (2) harnesses the
wave-packet located on the 3D Lissajous-to-trochoidal parametric surface, and the wave-packet
cross section located on the corresponding contour curve of the Lissajous-to-trochoidal parametric
surface [40]. Especially, the wave-packet of Lissajous parametric surface modes with different φ
have different shape, as shown in Fig. 1(a). Meanwhile, the wave-packet of trochoidal parametric
surface modes with different φ are rotating with each other. The total OAM of Lissajous and
trochoidal parametric surface mode are 0 and |n0 + pN − m0 − qN |, respectively.

2. Multi-axis Hermite–Laguerre–Gaussian mode: For a special case of p = Q, q = 0, and
s = −P, the SU(2) classical trajectory is no longer along a Lissajous-trochoidal curve but reduced
to compose multiple linear oscillation orbits in a certain transverse plane. The SU(2) classical
trajectory has the axes located on a main uniparted hyperboloid ruled surface [23], composing
a SU(2) symmetric structure, as shown in the second row of Fig. 2. The corresponding SU(2)
coherent states wave-packet (as shown in the fifth row of Fig. 2) harnesses multi-axis HLG mode,
where the multiple sub-HLG modes propagating along the |Q| axes are uniformly distributed
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Fig. 2. The evolution of theoretical wave-packets and classical trajectories of RWD
geometric modes from I = 0 to I = !), where ! = I' tan[c%/(? + @)] (I' is the
Rayleigh range of eigenstate). Classical trajectories ((G1,: , H1,: , I1,: )) can be derived
by plugging corresponding ((G0,: , H0,: , I0,: )) and (U, V) into the Eq. 6. The general
Lissajous-to-trochoidal (L-T) parametric surface mode degenerates to multi-axis HLG
mode with the parameters (?,@,=0,<0), then to planar-to-vortex (P-V) multi-path
geometric mode, even to eigenstate (& →∞) respectively. The 2D wave patterns and
phase distributions presented here are corresponding to transverse modes in I = 0 plane.
(Colormap: darkness to brightness means 0 to 1 a.u. for intensity, and −c to c for
phase.)

coherent states wave-packet (as shown in the fifth row of Fig. 2) harnesses multi-axis HLG mode,
where the multiple sub-HLG modes propagating along the |& | axes are uniformly distributed
on the main uniparted hyperboloid ruled surface. Specially, the topological charge of a sub-LG

Fig. 2. The evolution of theoretical wave-packets and classical trajectories of RWD
geometric modes from z = 0 to z = L), where L = zR tan[πP/(p + q)] (zR is the Rayleigh
range of eigenstate). Classical trajectories ((xb,k, yb,k, zb,k)) can be derived by plugging
corresponding ((xa,k, ya,k, za,k)) and (α, β) into the Eq. (6). The general Lissajous-to-
trochoidal (L-T) parametric surface mode degenerates to multi-axis HLG mode with the
parameters (p,q,n0,m0), then to planar-to-vortex (P-V) multi-path geometric mode, even to
eigenstate (Q→∞) respectively. The 2D wave patterns and phase distributions presented
here are corresponding to transverse modes in z = 0 plane. (Colormap: darkness to
brightness means 0 to 1 a.u. for intensity, and −π to π for phase.)
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on the main uniparted hyperboloid ruled surface. Specially, the topological charge of a sub-LG
mode vortex is equal to m0 in the multi-axis LG mode (α = β = π/2), the center topological
charge of the main vortex is equal to n0, and that for the partial phase singularities is |QN | that lie
at the midpoint of the line between the two adjacent rays. The total OAM of multi-axis HG and
LG modes are 0 and |n0 + QN − m0 |, respectively.

3. Planar–to-vortex multi–path geometric mode: For a more special instance of Ny = m0 =
q = M1 = 0, p = Q, the corresponding SU(2) trajectory is shown in the third row of Fig. 2,
which is actually the |Q| rays uniformly distributed on a uniparted hyperboloid ruled surface
[19]. Meanwhile, the corresponding SU(2) coherent states wave-packet (as shown in the sixth
row of Fig. 2) can be obtained by replacing the sub-HLG beams in the multi-axis HLG modes
by fundamental Gaussian beams. For a vortex multi-path geometric mode (α = β = π/2), the
topological charge of the center vortex and the partial phase singularities is same with multi-axis
LG mode. The total OAM of planar and vortex multi-path geometric modes are 0 and |n0 + QN |,
respectively.

4. From ray-wave duality to eigenstate: For an even further special case when |Q| → ∞, the
ratio of ω0/ωz is approaching an irrational number [12]. There would be infinite rays in the
SU(2) classical trajectory of Eq. (5) covering the whole internal region of a hyperbola, and the
corresponding SU(2) coherent states is reduced into an eigenstate HG mode. After the SU(2)
transformation, the rays in the SU(2) classical trajectory (xb,k, yb,k, zb,k) would cover the whole
surface of an uniparted hyperboloid, and the corresponding SU(2) coherent states is reduced into
an eigenstate HLG or LG vortex mode (α = β = ±π/2). This process subtly reveals the nature of
photons traveling along straight lines in arbitrary formation of various basic vortex modes in
free-space.
Hereto, we have introduced four types of SU(2) coherent state with different (p, q), (n0, m0)

and N. All the Lissajous-to-trochoidal parametric surface modes, multi-axis Hermite-Laguerre-
Gaussian modes, planar-to-vortex multi-path geometric modes, and eigenstate modes can be
described by the generalized RWD theorem presented here. We have made further discussion on
the classical trajectory and the corresponding wave-packets for all above modes. In nature, the
SU(2) coherent states degenerates from Lissajous and trochoidal parametric surfaces mode state
into an eigenstate as the frequency-degenerate condition degrades (see Supplementary materials).

2.3. Breaking the limitation of frequency-degenerate cavity

We have established a generalized RWD theorem including many special characteristic RWD
geometric modes families that the spatial wave-packet of the structured beam is always coupled
with a cluster of rays. Here, we show that the generalized RWD geometric modes include the
new modes that cannot be generated by prior method. Conventionally, the realization of RWD
geometric modes must require a laser cavity with precise control. A certain frequency-degenerate
state is a necessity obtained by precisely adjusting the cavity length L and radius of curvature R
of concave mirror in the equivalent confocal cavity, thus the mode-spacing ratio is related to the
cavity parameters by [19]:

ω0
ωz
=

P
Q
=

1
π

cos−1
√
1 − L

R
. (7)

In this condition, multi-path geometric mode can be generated by adjusting the cavity and
pumping parameters to meet the periodic oscillation ray paths as shown in Fig. 3(a). However,
according to the stability requirement, the available range of L/R is limited as 0<1− L/R<1, thus
the ratio of P/Q is severely limited as 0<P/Q<1/2. In another word, it is impossible to generate
from cavity the RWD geometric modes with the ratio of P/Q beyond the range of (0, 1/2),
including several special and interesting conditions such as P/Q = 1/2, P/Q = 1/1, and even
Q value of zero or negative integers. Furthermore, in order to generate Lissajous-to-trochoidal
parametric surface modes in experiment, the previous method calls for demanding precise control
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to introduce astigmatism at two orthogonal directions. One can imagine that it is also impossible
to simultaneously control the cavity length both at x- and y-directions to fulfill all the values
of p and q, because very limited difference of cavity length can be realized in the experiment,
i.e. it should be ∆Lx � L and ∆Ly � L. Moreover, it suffers from the requirement that the
frequency-degenerate condition should always be met in the meantime of precise adjustment
of cavity. In addition, as far as we know, RWD geometric modes based on non-HG eigenstates
have not been obtained directly from the cavity, which depends on the astigmatic mode converter
outside the cavity.

Fig. 3. Schematic diagram of our digital modulation method for generating RWD geometric
modes, compared with that of cavity method.

In order to break the limit exerted by the stability criterion of frequency-degenerate cavity,
we put forward a free-of-cavity method to produce and tailor RWD geometric modes, which
enjoys much more degrees of freedom as well as dramatically enhanced flexibility, simplicity
and integrity. Furthermore, those exotic RWD geometric modes with extreme parameters such as
P/Q = 1/2, P/Q = 1/1, and even Q value of zero or negative integers are included in our new
theoretical model.

3. Realization of generalized ray-wave duality modes on demand

In this section, we demonstrate the realization of generalized RWD geometric modes experimen-
tally, free of limits exerted by the cavity. The SU(2) coherent states as described by Eq. (2) are
superposed by various frequency-degenerate eigenstates, and the shape of wave-packets depends
on the superposed transverse modes components. The idea of our method is to do complex
amplitude modulation to tailor superposed targeted transverse pattern, and the wave packet formed
during the propagation can be coupled with the corresponding classical trajectory, as shown in
Fig. 3(b). This mimics the mechanism of laser cavity: creating patterns and different angle of
propagation from the output coupler. The phase mask of arbitrary RWD geometric can generated
by the phase-only computer generated hologram (CGH) method [42,43], which break the cavity
limit. Specifically, in our method, as Fig. 3(b) shows, arbitrary RWD geometric modes can be
easily generated by modulating a fundamental Gaussian beam with a spatial light modulator
(SLM) that is loaded with the phase mask of required RWD geometric modes. Then the target
SU(2) coherent state beam can be obtained by separating it from the modulated Gaussian beam.

3.1. Experimental setup

In our experimental setup as shown in Fig. 4, a near-HG00 mode produced by the 1064-nm laser
source (2W) was adjusted to be s-polarized by passing through a linear polarizer and a half-wave
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plate in succession. Then the beam was expanded by a telescope (L1, focal length of 20 mm;
L2, focal length of 120 mm) with the magnification of 1:6 to become a near-plane wave. After
passing through a beam splitter (BS), the near-plane wave illuminated a reflective phase-only
SLM (Meadowlark Optics, 1920 × 1152 pixels, liquid crystal on silicon), which is loaded with
the hologram phase mask generated by CGH method. Finally, the light field modulated by SLM
was focused by a lens (L3) with the focal length of 120 mm and an aperture placed at the Fourier
plane, to extract the first-order spatial frequency as the target RWD beams. A charge-coupled
device (CCD) camera (Spiricon, M2-200s) was used to record the pattern of RWD geometric
modes in different axial position, with a lens (L4, focal length of 60 mm) to adjust the waist size
and position in z-axis. Limited by the modulation efficiency of CGH method, the power of RWD
geometric modes obtained is tens of milliwatts. Specifically, arbitrary RWD geometric beams
can be obtained by changing hologram phase mask in SLM in a digital way, which makes our
approach extremely flexible and stable. Figure 4 depicts an RWD beam (|Ψ(0,0,π/2)20,10,l 〉5−3,4) that
cannot be generated by the cavity method.

Fig. 4. Experimental setup. HWP, half-wave plate; LP, linear polarizer; L1-L4, lens; BS,
beam splitter; SLM, spatial light modulator; AP: Aperture; CCD, charge coupled device.

3.2. Results and discussions

Hereinafter, we demonstrate the experimental result of generalized RWD geometric modes,
including Lissajous and trochoidal parametric-surface modes, multi-axis HLG, planar-to-vortex
multi-path geometric modes and RWD geometric modes that break the bottleneck of cavity.
Beside, all set of parameters of the generalized RWD geometric modes described in Eq. (2) can
be controlled at will. The control of rotation parameters of SU(2) rotation angles α and β, the
initial transverse mode order n0, m0 and initial phase φ, transversely coupled parameters p and q,
and the total bosons number N are also demonstrated. In this manner, different RWD geometric
modes can be rapidly and successively generated at ease, simply by switching the SLM masks.

1. Realization of RWD geometric modes: Lissajous and trochoidal parametric-surface modes,
as the most general modes represented by SU(2) coherent states in Eq. (2), are obtained in the
experiment, as shown in Fig. 5(a, d). The left, middle and right rows of each sub-figure display
the classical trajectories, experimental and theoretical patterns respectively. The experimental
results of mode intensity distribution are obtained at every transverse plane, demonstrating the
mode pattern evolution along the propagation from z = 0 to z = L. These results all agree well
with the theoretical wave-packets and classical trajectories, verifying the validity and stability of
our method of realizing the quantum-classical connection without cavity.
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Figures 5(b, e) and (c, f) demonstrate the experiment results of multi-axis HLG mode and
planar-to-vortex multi-path geometric mode, respectively. There are Q sub-HLG and Q sub-path
Gaussian beams along the Q axes uniformly distributed on the cross section. It should be noted
that the multiple-axis HLG beams are coherently composed by multiple sub-HLG beams, while
the multi-path geometric beams are coherently composed by multiple sub-fundamental beams.
When the sub-HLG beams are replaced by sub-fundamental beams, the multi-axis HLG beams
are reduced into multi-path geometric beams. Specifically, multi-axis HLG and multi-path
geometric beams would rotate around the center axis when α , π/2 and β , π/2, indicating the
existence of OAM in the beam center.

Fig. 5. Propagation evolution of classical trajectory, experimental and theoretical wave-
packets of Lissajous (a) and trochoidal (d) parametric-surface modes, multi-axis HLG
modes (b,e) and planar-to-vortex multi-path geometric modes(c,f) with different parameters.
(a) |Ψ(0,0,π/4)15,20,l 〉

10
−1,7. (b) |Ψ(0,0,π/2)10,3,l 〉5

4,0
. (c) |Ψ(0,0.π)10,0,l 〉54,0. (d) |Ψ(π/2,π/2,π/4)15,20,l 〉10

1,5
. (e)

|Ψ(π/2,π/2,π/2)15,3,l 〉5
4,0

. (f) |Ψ(π/2,π/2,π)10,0,l 〉54,0.

The RWD geometric mode generator and mode switch undoubtedly provides a powerful tool
for applications such as optical tweezers and macromolecule assembly, taking advantage of
the unique phase and intensity distribution of a variety of three-dimensional SU(2) coherent
states. The generalized RWD geometric modes naturally has multiple DoFs, which is extremely
advantageous for potential applications such as communications.

2. Realization of RWD geometric modes that break the bottleneck of cavity: The experi-
mental realization of the modes that are unprocurable from cavity method are demonstrated
in Fig. 6 for the cases of Q = 2, Q = 1 and Q = 0, along with the theoretical patterns. The
experimental results of mode evolution along the propagation from z = 0 to z = zR are obtained
because there is no corresponding length in a real cavity for Q 6 2. It can be seen that the
cone-like propagation trail, fidget-spinner-like beams, and square-shaped beams can be obtained
for the cases of Q = 2, 1 and 0, respectively. The results also show that OAM exists in several
modes, as revealed by the pattern rotation along the beam propagation. Especially, there are no
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classical trajectory for Q = 0, and SU(2) coherent state shows the characteristic of the propagation
in-variance. Moreover, there are still numerous peculiar beams as generalized RWD geometric
modes yet to be explored and unraveled, potentially opening broader space for the applications
of structured lights in the future. The most significant advantage of producing RWD geometric
modes without cavity is the flexibility and convenience. Experimental results of dynamically

Fig. 6. Experimental and theoretical results of the propagation evolution of transverse
patterns for Q = 2, Q = 1 and Q = 0 with different parameters. (a) |Ψ(0,0,π)10,0,l 〉

5
2,0

. (b)

|Ψ(0,0,π)10,10,l 〉
5
1,1

. (c) |Ψ(π/2,π/2,π/2)10,10,l 〉5−1,2. (d) |Ψ
(0,0,3π/2)
20,10,l 〉5−1,1.

Fig. 7. Experimental results as examples of digital parameter control on RWD geometric
modes. (a) |Ψ(α,β,0)20,20,l 〉5−1,5. (b) |Ψ

(0,0,φ)
20,20,l 〉102,2.
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controlling more parameters(α, β, φ) are provided in Fig. 7, as examples of our method of
generating and controlling RWD geometric modes on-demand.

4. Conclusion

In summary, the generalized RWD geometric modes are presented in theory and realized in
experiment, which cover not only the previous reported geometric modes such as Lissajous to
trochodial parametric, multi-axis HLG and multi-path geometric modes, but also new classes of
RWD geometric modes that cannot be generated from the cavity, e.g. modes with Q value of 0, 1,
2 and even negative integers, breaking the cavity limit on RWD geometric modes and enriching
the family of geometric mode. In addition, the peculiarity of trajectories and wave-packet of
SU(2) structured light are demonstrated. Moreover, our way of producing generalized RWD
geometric modes is surprisingly simple, employing the CGH method and a compact setup with
SLM. We also note that the holography generation scheme has large scalability, which are also
available to be realized by other hologram devices besides SLM such as the digital micromirror
devices [44,45]. The free-of-cavity method demonstrates a fundamental shift in paradigm of
obtaining and manipulating RWD geometric modes, and offers a way of tailoring, dynamically
and flexibly controlling the RWD geometric modes on-demand, which paves the route to extend
quantum coherence state modes as a powerful and customized toolbox into applications such as
quantum entanglement, optical tweezers, and optical communication.
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