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Vector vortex beams are conventionally created as the superposition of orbital angular momentum (OAM) modes with
orthogonal polarizations, limiting the available degrees of freedom (DoFs) to 2, while their creation by complex optical
devices such as metasurfaces, liquid crystals, and interferometers has hindered their versatility. Here we demonstrate a
new class of vector vortex beam constructed from four DoFs as multiple ray-like trajectories with wave-like properties,
which we create by operating a simple anisotropic microchip laser in a frequency-degenerate state. Our new structure is
obtained by the superposition of two stable periodic ray trajectories, simultaneously fulfilling a completed oscillation
in the cavity. By a simple external modulation, we can transform our ray trajectories into vortex beams with large OAM,
multiple singularities, as well as exotic helical star-shaped patterns. Our experimental results are complemented by
a complete theoretical framework for this new class of beam, revealing parallels to hybrid SU(2) coherent states. Our
approach offers in principle unlimited DoFs for vectorial structured light with concomitant applications, for example,
in engineering classically entangled light and in vectorial optical trapping and tweezing. © 2020 Optical Society of America
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1. INTRODUCTION

Vector beams (VBs) with spatially nonseparable polarization
have attracted great interest and have recently hatched a myriad
of applications. In particular, cylindrical VBs [1] (e.g., radial or
azimuthal polarization structures) have been widely applied in
optical trapping [2], material processing [3], and communication
[4]. A popular method for their creation is to exploit spin-orbit
coupling to form the vector vortex beams (VVBs) carrying spin
angular momentum (SAM) and orbital angular momentum
(OAM), finding many applications [5,6]. Moreover, the space-
polarization nonseparable state in VVBs has exotic quantum-like
properties [7–12], which has also developed fruitful applications.
Using the nonseparable states of VVBs mimicking quantum states,
quantum channels can be characterized by classical light [13],
which can further realize optical communication with improved
capacity and stability [14–16]. The nonseparable state in the
interaction between complex VVBs with matter was studied for
developing high-speed kinematic sensing and metrology [17–
19]. Through generating, characterizing, and measuring more
elaborate nonseparable structures in VVBs, in situ detection of a
cooperative target was recently realized [20]. To date, there were

still rich treasures for exploring more applications in VVBs with
this quantum-classical connection.

Therefore, the creation of increasingly structured VBs and
VVBs is not only a fundamental scientific endeavor in itself, but is
also enabling the way for exciting novel applications. To this end,
new structured VBs and VVBs have been designed and tailored,
mostly restricted to the higher-order Poincaré sphere [21,22] and
hybrid-order Poincaré sphere [23,24], and produced directly from
lasers with exotic designs and customized optical elements [25],
but more commonly external to the source [6]. These include
entanglement-beating VVBs superposed by two general Laguerre–
Gaussian (LG) modes with opposite propagation direction to
produce an axially varying vector field [26], an SU(2) structured
VB as the orthogonally polarized SU(2) coherent states that was
generated with an exotic longitudinally varying SAM-OAM
coupling [27], and a generalized hyperboloid structured VVB
that was proposed to explore the polarization singularities and
longitudinal-transverse coupling effects in lasers [28,29]. VVBs
with exotic vector vortex lattices were generated, revealing deep
fundamental physics of superfluids and Bose–Einstein condensates
[30–32]. The photonic wheel structure was proposed to unveil the
focused VB with both longitudinal and transverse spin [33,34]. A
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novel skyrmion-like structure was recently generated in a focused
VVB field, which can be used to realize deep-subwavelength
super-resolution imaging [35].

In this paper, we demonstrate a new laser oscillating mechanism
together with an external modulation to create a new class of VVB
embedded with more degrees of freedom (DoFs). Our laser cavity
exploits ray-wave duality to lase on multiple ray-like trajectories,
akin to geometric paths inside the cavity, with differing coherent-
state phases and independently tunable polarizations. We achieve
these states by precise control of the cavity length and off-axis
pump position on the anisotropic crystal, the latter to realize
polarization control, inside an otherwise empty cavity. By external
transformation through simple geometric optics, we demonstrate
a new class of structured light with controllable DoFs in trajectory
shape, coherent-state phase, OAM, and polarization, producing
exotic states of structured light in four DoFs, surpassing the limit of
two-dimensional VVBs. We theoretically describe our structured
light as the superposition of SU(2) coherent states, revealing a rich
parameter landscape for further exploration. Our theoretical and
experimental results demonstrate that the prominent hybrid SU(2)
geometry of our new beams provide new DoFs for developing new
theories and applications of structured beams.

2. HYBRID SU(2) GEOMETRIC ORBITS FROM A
LASER

A. Basic Concepts

We will first outline the basic concept behind our work before
placing it on a firm theoretical footing in the sections to follow.
It is known that when a laser cavity is operated in a frequency-
degenerate state, the mode appears to be the result of a ray-like
periodic orbit, forming a closed path that is ever repeating [see
Fig. 1(a)]. The shape and number of bounces in this trajectory
are determined by the cavity length, the cavity mirror curvatures,
and the position of the pump light. The output number of “rays”
and their directions are likewise determined by the internal tra-
jectories. Although ray-like, they are coherent modes exhibiting
a wave-like behavior—we will show that the formalism of SU(2)
coherent states is highly appropriate for their description, teasing
out the salient properties. Prior to this study, only single geometric
modes (trajectories) with a certain transverse size and oscillating
phase have been reported, described by just two DoFs. Here we
present a frequency-degenerate laser capable of generating two
geometric modes with different transverse sizes and oscillating
phases. Crucially, the two modes oscillate in opposing directions,
share the same number of rays, and share a trajectory inflection
point at the pump spot as shown in Fig. 1. This allows us to control
the polarization state of each by a judicious choice of gain crystal.
The result is a new vector state of light described by four DoFs and
produced directly from a simple laser.

B. Classical Analogy of a SU(2) Coherent State

First, we introduce the property of a quantum coherent state
because we will exploit its classical-resembling property that its
probability wave packet is coupled with a trajectory of classical
movement [36] and expand this property into its classical analogy,
i.e., the ray-wave duality of a geometric mode. The coherent state
under the SU(2) symmetry group is given by [37]

|φ〉 =
1

2N/2

N∑
K=0

(
N
K

)1/2

eiK φ
|K , N〉 , (1)

where |K , N〉 represent the set of eigenstates with a constant total
boson number of N and φ is termed the coherent-state phase.
The SU(2) symmetry applied here is the general geometric sym-
metry of paraxial light beams, which inspires us to propose this
for structured light as a classical analogy to the quantum coherent
state. To do so, we replace the quantum eigenstates by free-space
eigenmodes:
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where the eigenmode |ψ (α,β)

n,m,l 〉 can be generated by applying SU(2)
ladder operators to a fundamental-mode Gaussian beam |ψ0,0,l 〉:∣∣∣ψ (α,β)
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where (a †
x , a †

x ) are the linear ladder operators to generate various
high-order transverse modes, (α, β) are the two parametric angles
in a SU(2) unitary matrix, (n,m) are the transverse-mode indices
at the (x , y ) plane, and l is the longitudinal-mode index. When
β = 0 or β = π , |ψ (α,β)

n,m,l 〉 is reduced to a Hermite–Gaussian (HG)
mode; when α = β = π/2, it becomes a LG mode [38], and so
on. For the superposition to be valid (coherent superposition), the
two integers P and Q yield that the eigenmodes |ψ (α,β)

n+QK,m,l−PK〉

in Eq. (2) should have a constant eigenfrequency. Akin to the
quantum-classical coupling in a coherent state, the classical beams
of Eq. (2) have the similar interesting property that the beam wave
packet is coupled with the SU(2) geometric ray trajectory, namely,
ray-wave duality, as a macroscopic manifestation of quantum
wave-particle duality.

C. Manipulating SU(2) Geometric Modes

In this section we introduce how to realize these classical SU(2)
coherent states as ray-wave geometric beams from a laser. For con-
structing the well-defined coherent superposition as in Eq. (2), the
key issue is the accommodation of a set of eigenmodes with differ-
ent orders but at the same frequency in a single optical resonator,
namely, a frequency-degenerate state. This must satisfy the criterion
that the ratio of the transverse- and longitudinal-mode frequency
spacing is a simple rational number �=1fT/1fL = P/Q,
where P and Q are co-prime integers, and the basic eigenmodes
|ψ

(α,β)

n+QK,m,l−PK〉 construct a frequency-degenerate family (see
detailed proof in Section 1 of Supplement 1).

When an optical resonator is close to a frequency-degenerate
state, the laser mode and output power would drastically change
[39]. Recently, it has been experimentally and theoretically
verified that the lasing modes in an off-axis-pumped frequency-
degenerate laser cavity have a preference to be localized on periodic
ray trajectories. This fulfills the SU(2) re-entrant condition of
a two-dimensional coupled oscillator, the trajectories of which
for various degenerate states |�= P/Q〉 are shown in Fig. 1(a).

https://doi.org/10.6084/m9.figshare.12543113
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Fig. 1. Frequency degeneracy and SU(2) oscillating orbits. (a) For a concave mirror with a curvature of radius R and a cavity length of L that is precisely
controlled, different periodic oscillating trajectories in a cavity with different round-trip periods Q would emerge at some special cavity lengths correspond-
ing to various frequency-degenerate states |�= P /Q〉. (b) The distribution of frequency-degenerate states can be revealed by the fractal frequency spec-
trum, i.e., frequency difference ratio ( fn,m,l − fn0,m0,l0)/1fL as a function of L/R for the range of |n − n0| ≤ 12, |m −m0| ≤ 12, and |l − l0| ≤ 12, where
some degeneracy states |�= P /Q〉 are marked at corresponding positions. (c) A certain periodic trajectory is determined by not only the degenerate state
|�= P /Q〉 but also the phase state |φ〉. For the state |�= P/Q〉, an auxiliary circle with the vertices of an equilateral Q-gon located on it is helpful to
determine the starting points of oscillating orbits, where the starting points at the z= 0 plane corresponds to the projection of the vertices on the auxiliary
circle. For the two eigenphase states |φ = 0〉 and |φ = π〉, there are always coincident projected vertices. Rotating the auxiliary circle for an angle π/Q of
one eigen-phase-state will produce another eigen-phase-state. If the two trajectories of the eigen-phase-states are superposed together and sharing at least a
pair of coincident projected points, the hybrid SU(2) oscillating orbits can be obtained, where the yellow auxiliary lines connecting the Q-gon vertices on
the auxiliary circle contribute possible coincident projections and result in some equilateral star shape. The yellow dots marked in the hybrid trajectories
show the shared coincident projections corresponding to the actual positions of a pump spot in the experimental generation.

Based on this ray-wave duality, the ray-represented modes can also
be represented by the corresponding wave packet of the SU(2)
quantum coherent state, named SU(2) geometric modes [40–42].
Without loss of generality, hereinafter we consider a plano-concave
cavity with a length of L , a concave spherical mirror with radius
of curvature R (as the output coupler), and a flat mirror of high
reflectivity for the rear mirror. We set the paraxial propagation
direction as that of the z axis and the flat mirror as the (x , y )
plane with the original point located at the center to form the

Cartesian coordinate system. Ignoring the tiny difference between

the physical length and the geometric length, the longitudinal-

and transverse-mode spacings are given by 1fL = c/(2L) and

1fT =1fL [tan−1(L/zR)]/π , respectively, where the Rayleigh

range zR =
√

L(R − L). The eigenmode frequency of the res-

onator is the sum of the longitudinal- and transverse-mode

frequencies, i.e., fn,m,l = [l + (n +m + 1)�]1fL , where n,m,

and l are the orders of the transverse and longitudinal modes.
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The frequency degeneracy requires that the allowable eigen-
modes should have a constant frequency fn0,m0,l0 , and the SU(2)
coherent state just fulfills this condition. The distribution of vari-
ous degenerate states can also be revealed by topological joints
in the fractal spectrum [43], i.e., the frequency difference in the
neighborhood of the center indices as shown in Fig. 1(b), where
some special degenerate states |�= P/Q〉 are marked and coupled
with the periodic orbits in the corresponding degenerate cavities
in Fig. 1(a). In general, the ray trajectory should have a round-trip
period of Q for the |�= P/Q〉 state. However, the depicted tra-
jectory is just one instance of an infinite number of possible cases.
The shape of a certain trajectory is related not only to the frequency
degeneracy but also to the phase of the SU(2) coherent state [44].
Figure 1(c) shows the different trajectories at the two phase states
|φ = 0〉 and |φ = π〉 with opposite topological oscillations. For
instance, for the |�= 1/4〉 state, the trajectory is M-shaped when
|φ = 0〉 and W-shaped when |φ = π〉; for the |�= 1/5〉 state,
the trajectory is WI-shaped when |φ = 0〉 and IW-shaped when
|φ = π〉, and so on.

Note that the phase state |�〉|φ〉 only specifies the topological
shape of the oscillation but not the actual size of it. The actual geo-
metric modes can also have uncertain scales at a certain degeneracy
with phase state |�〉|φ〉, which should be determined by another
DoF, i.e., transverse order N [45]. For conveniently describing
more detailed geometric modes, we propose the concept of an aux-
iliary circle for determining the start points of the SU(2) oscillating
orbits in a degenerate cavity. The radius of the auxiliary circle

√
N

determines the scale of the geometric mode, which is also related to
the actual off-axis displacement of the pump light (see Section 1 of
Supplement 1). For the planar geometric mode in the degenerate
state |�= P/Q〉, there are Q auxiliary points on the auxiliary circle
with azimuthal angle θs = 2πs/Q + φx (s = 0, 1, 2, . . . , Q − 1)
forming a equilateral Q-gon (polygon with Q sides), while the
projected points on the z= 0 plane are just the start points for the
Qth periodic orbits as shown in Fig. 1(c). The auxiliary phase φx

is related to the coherent-state phase by φx = φ/Q. The evolution
of this state from φ = 0 to 2π corresponds to the rotation of the
auxiliary Q-gon from an angle of 0 to 2π , returning to the initial
state. The phase is actually related to the Gouy phase, which can be
modulated by astigmatic mode converter systems in experiments
[46]. Distinguished from other phase states, the two eigenphase
states |φ = 0〉 and |φ = π〉 have the same trajectory for the positive
and negative oscillations; also, there are always coincident projec-
tions of auxiliary points. For instance, in |�= 1/5〉|φ = 0〉, there
are two kinds of coincident projection, i.e., s = 1 with s = 4 and
s = 2 with s = 3; for |�= 1/5〉|φ = π〉, s = 0 with s = 4 and
s = 1 with s = 3; for |�= 1/6〉|φ = 0〉, s = 1 with s = 5 and
s = 2 with s = 4; for |�= 1/6〉|φ = π〉, there are three kinds of
coincident projection, i.e., s = 0 with s = 5, s = 1 with s = 4,
and s = 2 with s = 3 [see the dashed lines marked for various
projection pairs in Fig. 1(c)].

We mark all such point pairs by connected lines in Fig. 1(c),
which can form exotic star-shaped patterns. Beyond aesthetics,
the coincident projected points have a clear physical significance,
namely, the inflection point of the bouncing orbit at the flat mirror
in the cavity. In an off-axis pumped degenerate cavity, a coincident
projected point is usually located at the pump spot rather than
the isolated projected point due to the mode matching [44,47].
Therefore, we can adjust the location of the coincident projected
point of a geometric mode by off-axis pumping so as to control the

transverse scale parameter N. In other words, this mathematical
and geometric representation has practical relevance: from it we
understand where to pump the crystal in order to excite specific
combinations of trajectories with associated sizes.

Figure 2(a) illustrates control of an SU(2) oscillation in our
experiment with a resonator configured for the |�= 1/4〉 degen-
erate state, while the pump spot can be adjusted to some desired
coincident projected point to adjust the transverse scale. The gain
medium was a thin-slice c-cut Nd:YVO4 crystal with an inner
surface antireflective (AR) coating for the laser light and an outer
surface AR coated for the pump light and high-reflective coated
for the laser light. This allows anisotropic refractive indices and
stimulated emission cross sections in (x , z) plane [48]. Therefore,
the geometric orbit oscillations in our cavity undergo trajectory-
dependent polarization modulation in addition to transverse
adjustment. To realize vector geometric beams, we exploit the bire-
fringence dependence on the incident angle, shown in Fig. 2(b).
Finally, using an astigmatic mode converter constituted by the
two cylindrical lenses shown in Fig. 2(c), a planar geometric
mode can be converted into a vortex geometric mode. For the
vortex geometric modes, the SU(2) rotational symmetry can be
directly observed in natural space, which is also a macroscopic
manifestation of OAM. Thus, the spatial twisted trajectories can
be directly measured via scanning by a charge-coupled device
(CCD) camera (see Section 7, Methods, for more details), in con-
trast to the conventional circular vortex beams where the twisted
effect cannot be directly observed and requires other techniques,
e.g., interferometry.

In summary, a planar geometric mode in a degenerate cav-
ity should be completely determined by a SU(2) coherent state
|�〉|N〉|φ〉 with three DoFs: frequency-degeneracy �, transverse
order N, and phase φ. After mode conversion, a planar geometric
mode is transformed into vortex mode represented by |�〉|`〉|φ〉,
where the OAM index ` replaces the transverse order of the planar
mode.

D. Hybrid SU(2) Geometric Modes

Next, we demonstrate a hybrid-trajectory state by forcing the laser
to oscillate on two different trajectories with orthogonal transverse
orders and coherent-state phases simultaneously, to form the new
nonseparable state

|ψ〉 = |ψ1〉 + |ψ2〉 = |�〉|N1〉|φ〉 + |�〉|N2〉|φ + π〉. (5)

The transverse orders of the two component modes N1 and
N2 yield a mathematic relationship enabling the two decomposed
trajectories to share at least a point of coincident projection, that
is, Ni/N j = cos2(2π/Q)/cos2(π/Q) with {i, j } = {1, 2}, while
the larger N corresponds to the outer trajectory and the smaller
the inner. This state is achieved by locating the pump light at the
shared coincident projection of the two trajectories. The hybrid
SU(2) orbits can only exist when Q ≥ 5, because you cannot find
the shared coincident projection when Q ≤ 4 (see Section 2 of
Supplement 1 for detailed derivations). The diagrams in the third
column of Fig. 1(c) illustrate the formation of hybrid SU(2) orbits
with the help of the auxiliary circle demonstrating the shared
coincident projected point. Similar to the pure SU(2) geometric
modes, the hybrid SU(2) geometric modes can also be converted
into vortex beams carrying OAM. Figures 2(d) and 2(e) depict the
converted vortex trajectories for the degenerate states |�= 1/5〉

https://doi.org/10.6084/m9.figshare.12543113
https://doi.org/10.6084/m9.figshare.12543113
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Fig. 2. Controlling planar and vortex SU(2) geometric orbits. (a) The experimental setup of generating a SU(2) geometric mode in a degenerate cavity.
This is a case of the |�= 1/4〉 state, and the period-4 oscillating orbits are schematically depicted in the cavity. (b) A schematic of the birefringent effects
for the geometric beams in c-cut Nd:YVO4. I. The index ellipsoid is depicted for determining the effective refractive index of an input beam. II. For an
obliquely incident beam, the vertical and horizontal polarized components yield ordinary and effective refractive indices, respectively, and this difference
can introduce a polarization modulation effect in the light beam. III. For normal incidence, there would not be a polarization modulation because there is
always an ordinary refractive index. (c) The planar geometric modes can be converted into corresponding vortex geometric modes via focusing it into an
astigmatic mode converter constituted by two cylindrical lenses. The illustrations of the formation of hybrid SU(2) trajectories for both cases of planar and
vortex geometric modes are theoretically depicted at degenerate states (d) |�= 1/5〉 and (e) |�= 1/6〉, where the plot range of the z axis is from 0 to L .

and |�= 1/6〉, where the first two columns show the pure SU(2)
trajectories for the two eigenphase states, and the third column
shows the hybrid trajectories. According to SU(2) rotational sym-
metry, the evolution of phase state |φ〉 for vortex geometric modes
just corresponds to the axial rotation with an angle ofφ/Q. Yielded
by the coincident projection principle, the inner and outer orbits at
a propagation plane of a hybrid trajectory just form the equilateral
star shape corresponding to the star-shaped auxiliary lines shown in
Fig. 1(c).

Figure 3(a) shows the experimental observation of planar
hybrid SU(2) geometric modes with corresponding theoretical
simulations. In the experiment, we used a series of Fourier lenses
to focus the geometric beams with a beam waist outside the cav-
ity. The lenses were adjusted with a controlled Gouy phase of 0
or π so as to keep the decomposed trajectory at eigenphase state
|φ = 0〉 or |φ = π〉. Then we moved the CCD camera along the
z axis to record the transverse patterns at various propagation dis-
tances. Figures 3(b) and 3(c) show the evolution of hybrid SU(2)
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vortex geometric modes at |�= 1/5〉 and |�= 1/6〉, respectively.

There were two kinds of evolutions of hybrid SU(2) trajectories

in our experiment. The first case was observed in the |�= 1/5〉

state, where the outer trajectory was superposed in the process of

enlarging the inner trajectory by increasing the pump’s off-axis

displacement. The second case was in the |�= 1/6〉 state, where

the trajectory with phase state |φ〉 can be switched into another

eigenphase state |φ + π〉 from the process of increasing the pump’s

Fig. 3. Generation of hybrid SU(2) geometric modes. (a) The simulated and experimental results of the evolution from a pure SU(2) geometric mode
to a hybrid SU(2) geometric mode are shown for the |�= 1/5〉 and |�= 1/6〉 states. For the |�= 1/5〉 state, the hybrid SU(2) orbits appear at the tran-
sition from smaller-scale to larger-scale |φ = 0〉 orbits, where the |φ = 0〉 orbit is continuously varying and a larger-scale |φ = π〉 orbit is added, forming
the hybrid orbit. For the |�= 1/6〉 state, the hybrid SU(2) orbits appear at the transition from the smaller-scale |φ = 0〉 to the larger-scale |φ = π〉 orbits,
where the |φ = 0〉 orbit is switched into another |φ = π〉 orbit and they exist simultaneously at the transition state. (b) The simulated and experimental
results of the evolution of hybrid SU(2) geometric modes for the |�= 1/5〉 state (see the experimentally recorded dynamic process in Visualization 1) and
(c) that for the |�= 1/6〉 state (see the experimentally recorded dynamic process in Visualization 2), where the experimental patterns are marked with the
corresponding actual pump off-axis displacement1x , and the experimental results in figures (b) and (c) are captured near the beam waist with the white
bars marked at the bottom left showing the scale for reference of the beam size [unit: micrometers (µm)].

https://doi.org/10.6084/m9.figshare.10282079
https://doi.org/10.6084/m9.figshare.10282082
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off-axis displacement, and the hybrid trajectory can be obtained by
the superposition of the two pure trajectories during the switching.
The first-case hybrid trajectory appeared at the region of1x from
490 to 610 µm for the |�= 1/5〉 state. There are two regions
of the second case where the hybrid trajectory appeared around
1x = 620 µm and 1x = 700 µm, respectively. It is proved that
the hybrid SU(2) geometric modes can be stably operated in the
corresponding hybrid-trajectory regions. The dynamic processes
of generating hybrid SU(2) geometric modes were recorded in
Visualization 1 and Visualization 2. The theoretical methods
for hybrid SU(2) vector geometric modes are demonstrated in
Section 3 of Supplement 1. The detailed experimental and theo-
retical analysis for the polarization and mode evolution for the
SU(2) beams are discussed in Section 4 of Supplement 1.

3. HYBRID SU(2) VECTOR VORTEX BEAMS

Finally, we bring all the tools together, using multiple trajec-
tory control and polarization control to demonstrate a new
nonseparable state in multiple DoFs:

|ψ〉 = |ψ1〉 + |ψ2〉 = |�〉|N1〉|φ〉|H〉 + |�〉|N2〉|φ + π〉|V 〉,
(6)

where |H〉 and |V 〉 are the horizontal and vertical linear polari-
zation states. Again, the transverse order can be transformed into
OAM, resulting into the hybrid SU(2) VVB:

|ψ〉 = |ψ1〉 + |ψ2〉 = |�〉|`1〉|φ〉|H〉 + |�〉|`2〉|φ + π〉|V 〉,
(7)

and thus we open up new DoFs for our VVB in contrast to the con-
ventional VVB of |`1〉|H〉 + |`2〉|V 〉 mapped on a 2D Poincaré
sphere [21,23].

For |�= 1/5〉, when 1x ≤ 480 µm, the bouncing orbits in
the cavity have very small inclined angles such that the birefringent
modulation is weak; consequently, the horizontal and vertical
polarizations are nearly equal, and the output mode is circularly
polarized. When 1x is slightly greater than 480 µm, the outer
trajectory is horizontally polarized, while the inner is circularly
polarized. This is comprehensible as the two trajectories have
different transverse sizes coupled with different birefringent effects
in the anisotropic cavity. When1x is further increased to 610µm,
the outer trajectory can gradually change into a vertically polarized
state. When 1x is slightly larger than 610 µm, the outer trajec-
tory vanishes with a pure inner trajectory left. The polarization
switching phenomenon can still occur for the pure geometric mode
without a hybrid trajectory if1x is further increased.

Similarly, for |�= 1/6〉, when 1x ≤ 480 µm, the bouncing
orbits have very small inclined angles, and the components of
the horizontal and vertical polarizations are nearly equal. While
1x is further increased until 610 µm, the geometric mode is
gradually transformed into vertical linear polarization. When
1x is around 620 µm, the hybrid SU(2) trajectory is generated,
where the original inner trajectory gradually vanishes and the
outer trajectory emerges with the same vertical linear polarization.
During 640 µm≤1x ≤ 680 µm, the output mode is a vertically
polarized pure SU(2) geometric mode with a switched phase state
rather than the original state. When 1x is around 700 µm, the
hybrid SU(2) trajectory is generated again, where the original outer
trajectory gradually vanishes and the inner trajectory emerges
with a horizontal linear polarization, which is orthogonal to the
polarization of the immediately vanished inner trajectory. The

polarization switching phenomenon can still occur in the process
of further enlarging of the pure geometric trajectory if1x is further
increased.

Naturally, we can obtain some exotic VBs and corresponding
VVBs with a mode converter in the above process. Same as the
pure SU(2) vortex beams, where the OAM effect can be directly
observed by their twisted structure with SU(2) rotational sym-
metry along the propagation axis, the hybrid SU(2) vortex beams
also have the twisted structure in their spatial wave packets as
shown in Figs. 4(a) and 4(b). Figures 4(c) and 4(d) show our exper-
imental and theoretical results of four typical hybrid SU(2) vortex
beams generated at the |�= 1/5〉 state with 1x = 600 µm and
1x = 500 µm and at the |�= 1/6〉 state with 1x = 700 µm
and 1x = 620 µm, which are named beams A, B, C, and D,
respectively, for convenient description. The results show that
these four hybrid SU(2) vortex beams have different vectorial
properties with respect to each other. Beams A, B, and C are three
kinds of hybrid SU(2) VVBs, and beam D is a hybrid SU(2) scalar
vortex beam. For beam A [Fig. 4(c)], the inner orbits are circu-
larly polarized, and thus their beam intensities are independent
of the orientation of the polarizer; the outer orbits are vertically
linearly polarized, and thus their beam intensities vanish for the
horizontal orientation of the polarizer with a maximum for the
vertical orientation. For beam B [Fig. 4(d)], the inner orbits are
still circularly polarized, while the outer orbits are horizontally lin-
early polarized. In degenerate state |�= 1/6〉, we can observe the
interesting vector structure where the inner and outer trajectories
have orthogonal polarizations as illustrated in beam C. For beam C
[Fig. 4(e)], the inner orbits are horizontally polarized and the outer
orbits vertically polarized. Thus, the VB C would be reduced into
a horizontally polarized scalar SU(2) mode through a horizontally
orientated polarizer and another vertically polarized scalar SU(2)
mode with opposite phase state through a vertically orientated
polarizer. Besides the hybrid SU(2) VB, the hybrid SU(2) scalar
beam can also be obtained as beam D [Fig. 4(f )], which is a stable
vertically polarized scalar vortex beam.

4. POLARIZATION SINGULARITIES AND
TOPOLOGICAL PHASE

Hybrid SU(2) VVBs have exotic properties of polarization sin-
gularities and topological phase. For describing the topological
properties of the vectorial fields in hybrid SU(2) VVBs, we define
two kinds of phase parameters: (1) 21 = arctan(|E x |/|E y |) and
(2) 22 = arg(E x/E y ), where E x and E y are the horizontal and
vertical components of the electric field.21 reveals the distribution
varying different linear and circular polarization, ranging from 0 to
π/2. 21 = 0 and π/2 represent the horizontal and vertical linear
polarizations, respectively, and21 = π/4 the circular polarization.
22 can unravel more vector properties including the orientation
and chirality of polarization, ranging from −π to π , which can
depict the distribution of polarization singularities of the vectorial
field. For a scalar beam,22 is just reduced to the phase distribution
of the light field. Figures 5(a)–5(d) show the distributions of 21

for beams A–D. For each hybrid SU(2) VVB A–C [Figs. 5(a)–
5(c)], the different polarizations at the inner and outer trajectory
regions are clearly demonstrated with the critical region of chaotic
polarized states along a star-shaped line. For the scalar beams like
beam D [Fig. 5(d)],21 is a constant.21 can only reveal the basic
shape of polarization because it is expressed by the magnitude of
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Fig. 4. Vectorial properties of hybrid SU(2) vortex beams. (a),(b) The theoretical 3D wave packet of hybrid SU(2) vortex beams is plotted with clear
hyperbolic twisted structures for the (a) |�= 1/5〉 and (b) |�= 1/6〉 states, where the plot range of the z axis is from−2L to 2L . (c)–(f ) The experimen-
tal and theoretical results of the transverse patterns (first column) with a measure after a polarizer at four different orientations (2nd to 5th columns) for the
beams generated at (c) the |�= 1/5〉 state with1x = 600 µm and (d)1x = 500 µm, and at the (e) |�= 1/6〉 state with1x = 700 µm and (f )1x =
620 µm, where the white arrows indicate the linear polarizer orientations (vertical, diagonal, horizontal, and antidiagonal directions).

the electric field. An actual polarization state should be completely

described by the shape, orientation, and chirality; thus,22 related

by the full complex amplitudes of the electric components can

manifest a more refined topological structure in a vectorial field.

Figures 5(e)–5(h) show the distributions of 22 for beams A–D.

For beams A and B [Figs. 5(e) and 5(f )], almost all the polariza-
tion singularities are distributed in the outer trajectory regions,
while the singularities at the corresponding region essentially have
opposite topological charges because the outer trajectories just
have orthogonal polarization for the two hybrid SU(2) VVBs.
For beam C [Fig. 5(g)], whose inner and outer trajectories have
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Fig. 5. Polarization singularities and topological phase of hybrid SU(2) vortex beams. (a)–(d) The distributions of phase difference angle defined by
21 = arctan(|E x |/|E y |) for beams A–D, which show that the beams A–C are VBs and beam D is a scalar beam. (e)–(h) The distributions of phase dif-
ference angle defined by 22 = arg(E x/E y ) for beams A–D, which demonstrate the distribution of polarization singularities (for VBs A–C) and phase
singularities (for scalar beam D), where the insets show zoomed-in details.

orthogonal polarizations, the polarization singularities are fruit-
fully distributed over the entire field with a beautiful flower shape.
For each of the three beams A–C, the topological phase is induced
by a spin-to-orbital coupled effect because it is a superposition of
the two trajectories with different SAM and OAM. In the scalar
beam D [Fig. 5(h)], the SAM or polarization is separable, and22

is just the phase distribution of scalar light with multiple phase
singularities, where a large OAM is manifested. The clarification
of polarization singularities and topological phase is very helpful
for extending these new hybrid SU(2) structured beams in appli-
cations such as optical tweezers and assembly and exploration of
novel manipulating technologies.

5. DISCUSSION

If higher-order hybrid SU(2) trajectories with more oscillating
periods (Q ≥ 7) could be generated, more intriguing proper-
ties would be unveiled. As demonstrated above, a hybrid SU(2)
trajectory cannot be composed when Q ≤ 4, and there is only
one morphology of a hybrid SU(2) superposed trajectory when
Q = 5, 6. However, for higher-order degenerate states with Q ≥ 7,
there would be multiple possible cases of hybrid SU(2) trajectories
because more inflection points (in the decomposed trajectory) pro-
vide more combinations of sharing a pumping spot. Theoretically,
there would be two kinds of hybrid SU(2) trajectories for the
degenerate states of |�= 1/7〉 and |�= 1/8〉, and four kinds of

hybrid trajectories for |�= 1/9〉 and |�= 1/10〉, as shown in
Figs. 6(a)–6(d), respectively. We presented the theory for obtaining
the trajectory-combination number for an arbitrary degenerate
state shown in Section 2 of Supplement 1. Moreover, besides the
two-trajectory superposition, the hybrid superposition with multi-
ple SU(2) trajectories is also possible to form even higher-order
degenerate states, e.g., the three-trajectory-superposed hybrid
SU(2) mode shown in Fig. 6(e). Due to the limit of the crystal size
in our experiment, it is difficult to control higher-order hybrid
SU(2) trajectories when Q ≥ 7. Therefore, there is still a multi-
tude of exotic properties of hybrid SU(2) modes that need to be
theoretically and experimentally explored in the future.

The additional DoFs in our hybrid SU(2) VVB allow us to
break the two-dimensional limit inherent in conventional VBs,
opening up exciting prospects for applied and fundamental stud-
ies. For example, while their SU(2) description is complete, we
believe it may be possible to use techniques that map structured
beams to Poincaré-like spheres [49–51] to gain insight into how
to elegantly represent this new family of hybrid SU(2) VVBs
geometrically. That may yield insight into other relations and
dynamics, since multidimensional structured light has remained
largely unexplored. The strong trajectory nature of our light may
aid studies in trajectory-spin coupled processes in the spin-Hall
effect of light [52], while the nonseparability of our beam with
more DoFs opens for the first time the possibility to classically sim-
ulate multipartite high-dimensional quantum processes, including

https://doi.org/10.6084/m9.figshare.12543113
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Fig. 6. Complicated hybrid SU(2) modes with multiple trajectory-combination numbers and multitrajectory superposition. (a)–(d) The auxiliary-circle
representations of the possible hybrid trajectories for degenerate states (a) |�= 1/7〉, (b) |�= 1/8〉, (c) |�= 1/9〉, and (d) |�= 1/10〉. (e) The auxiliary
circle with intracavity oscillation trajectory representation for a complicated hybrid SU(2) mode superposed by three decomposed SU(2) trajectories at
|�= 1/8〉 state. The black dashed lines represent the coincident inflection points (shared pumping spots) of the three decomposed SU(2) trajectories in a
hybrid SU(2) mode.

Greenberger–Horne–Zeilinger (GHZ) states, NOON states, and
W states, all of which have been suggested theoretically [8] but not
yet demonstrated due to the inability to extend beyond just qubits
with vector states of light. Other possibilities include considering
the simulation of squeezed state in classical light, a detailed study
of polarization singularities and their families in such fields, and
propagation dynamics, all of which are logical next steps of study.

6. CONCLUSION

In conclusion, we proposed a new kind of vectorially structured
light in four DoFs and showed how to create it directly from a
simple laser cavity. Our hybrid SU(2) geometric mode is consti-
tuted by two decomposed pure SU(2) mode states with special
superposition conditions, fulfilling a complete ray-trajectory
oscillation condition, which largely enriches the general families
of both intracavity and free-space modes. We also experimentally
generated various examples of SU(2) VVBs in various degenerate
states (|�= 1/5〉 and |�= 1/6〉). The resulting light was tailored
to be exotic star-shaped geometric patterns with complex phase
and polarization singularities, which is the first demonstration
of such structured light beams to our knowledge. Importantly,
our hybrid SU(2) VVBs are represented and controlled in multi-
ple DoFs, surpassing the limit of two-dimensional conventional
VVBs. Besides conventional DoFs of amplitude, phase, OAM,
and polarization, many new DoFs are hatched such as ray-wave
orbits, coherent-state phase, and trajectory combination, offering
intriguing prospects of unlimited dimensionality controls in such
VVBs. Moreover, the simple and elegant at-the-source generation
scheme paves ways to extended applications, including simulations
of quantum processes with classical light.

7. METHODS

The front end was a laser oscillator where the cavity length can
be precisely controlled. Through controlling the off-axis pump-
ing position, various SU(2) geometric modes can be generated.
A 808 nm fiber-coupled laser diode (LD) (FOCUSLIGHT,
FL-FCSE08-7-808-200) was used as the pump source. With a
telescope system with magnification of about 1:1 constituted by
two identical AR-coated lenses (focal length F = 25 mm), the
pump light was focused into a c-cut Nd:YVO4 slice-like crys-
tal with dopant of 0.5 at.% and thickness of 5 mm, which was
wrapped in a copper heat sink and conductively water cooled at
18◦C. The outside surface of the crystal was AR coated at 808 nm
and high-reflective coated at 1064 nm, and the inner surface was
AR coated at 1064 nm. A plano-concave mirror was used as the
output coupler, where radius of curvature was 100 mm, and the
transmittance was 10% at 1064 nm for the inner surface and AR
for the outside surface. In our whole experiment, the pumping
power was fixed at about 5.5 W. For measuring the ray trajectories,
we used a CCD camera to capture and scan the transverse pattern at
different propagation distances along the z axis. In contrast to the
conventional circular vortex beams, the OAM of SU(2) structured
beams can be directly unveiled by the spatially twisted trajectories
captured by the CCD scanning (see more details in Section 5
of Supplement 1). The CCD camera (Spiricon SP620U) is
comprised of 1600× 1200 pixels with a pixel pitch of 4.4µm, cor-
responding to a charge-coupled screen size of 7.04× 5.28 mm2.
In the measurement, the beam diameter size within Rayleigh range
was confirmed to be less than 5 mm, so that we could scan the full
information of the measured beam propagating within the whole
Rayleigh range.

https://doi.org/10.6084/m9.figshare.12543113
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