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Space-time nonseparable pulses: Constructing isodiffracting donut pulses from plane
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Maxwell’s equations can be satisfied not only by plane electromagnetic waves, but also by more exotic space-
time nonseparable electromagnetic pulses which cannot be represented as a product of time- and space-dependent
functions. A family of such pulses with finite energy was identified by Ziolkowski [Phys. Rev. A 39, 2005
(1989)]. Later, Hellwarth and Nouchi [Phys. Rev. E 54, 889 (1996)] highlighted a subset of Ziolkowski’s pulses,
now known as flying donuts, a formation of polarization singularities of toroidal topology traveling at the speed
of light. Spurred by recent advances in ultrafast and topological optics, space-time nonseparable electromagnetic
excitations are now becoming the focus of growing experimental efforts as they hold promise for topological
information transfer, probing and inducing transient excitations in matter such as anapole and toroidal modes.
Here we demonstrate that the flying donut can be constructed from an ensemble of monochromatic plane
waves with continuous spatial and frequency spectrum and hence can be generated by converting broadband
conventional transverse electromagnetic pulses.
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I. INTRODUCTION

Flying donuts (FDs) are single-cycle pulses with toroidal
electromagnetic field configuration and unusual spatiotempo-
ral coupling [1]. FD pulses exhibit a fine topological structure
along with regions where energy back-propagation occurs [2],
while their interaction with simple homogeneous media is
nontrivial [3]. They form the free-space propagating coun-
terparts of toroidal excitations in matter, i.e., charge-current
configurations with donutlike topology [4,5]. In fact, it has
been shown that flying donut pulses can efficiently engage dy-
namic toroidal and anapole excitations in dielectric particles,
even when the latter does not possess toroidal symmetry [3,6].

Flying donuts were introduced in the context of Britting-
ham’s work on “focus wave modes” where he described a
new class of wide-band nondiffracting pulses, localized so-
lutions to Maxwell’s equations [7]. Soon after, Ziolkowski
showed that, although “focus wave modes” are unphysical
and have infinite energy [8], a finite-energy pulse can be
constructed from superposition of such modes [9]. In fact,
these finite-energy pulses originate from modified Gaussian
pulses that emerge as solutions of the scalar wave equation
with moving complex sources. An example of such a pulse is
the “splash pulse” [10]. In 1996 Hellwarth and Nouchi found
special cases of Ziolkowski’s solution, space-time nonsepa-
rable finite-energy linearly polarized “pancake pulses [11,12]
and flying donut pulses of toroidal symmetry [1].

*a.zdagkas@soton.ac.uk

Although the generation of electromagnetic and acoustic
analogs of localized pulses based on Ziolkowski’s solutions
has been presented in the literature [13–15], the genera-
tion of electromagnetic FDs only recently been demonstrated
[16,17]. The generation of FD pulses requires to address si-
multaneously their few cycle nature, toroidal symmetry, and
importantly space-time coupling (STC) that manifests as a
frequency dependent transverse profile. Although apparent in
the time domain, STCs can sometimes be more intuitively
studied in the frequency domain as space-spectrum couplings.
Evidently, a plane-wave expansion is highly desirable for the
generation and study of light-matter interactions of FD pulses.

In this work, we provide closed-form expressions for the
time-frequency Fourier transform of the pulse. We use the
derived analytical expressions to highlight the space-spectrum
couplings in the FD pulse. In fact, we show that in the
paraxial regime the pulse exhibits isodiffracting propagation,
i.e., in each cross section of the beam perpendicular to the
direction of propagation the spatial profiles of intensity for
every frequency component scale in the same way along the
trajectory of the beam. We expect that this type of propaga-
tion invariance will be useful for energy transfer applications
like free-space communications and micromachining. The
frequency domain expressions reported here facilitate the
generation and characterization of FDs [16,17], as well as
the study of their interactions with matter through efficient
Fourier propagation methods [18]. In addition, we present a
simple expression for the spatial Hankel transform that reveals
the focusing properties of FDs and leads to a semianalyt-
ical plane-wave expansion of the pulse. The latter is used
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to reveal hidden features of the pulse, such as the role of
back-propagating plane waves in the nonparaxial regime and
it provides an insight on how the simplest form of linear
polarized electromagnetic waves can be combined to generate
a pulse with complex spatiotemporal and vectorial structure.

II. TIME-FREQUENCY FOURIER TRANSFORM
OF THE FLYING DONUT

The flying donut pulse can exist in transverse electric (TE)
and transverse magnetic (TM) field configurations. In the
TE case, the electric field is azimuthally polarized, whereas
the magnetic is longitudinally and radially oriented. The TM
pulse can be derived from the TE by exchanging the electric
and magnetic fields as follows:

ETM =
√

μ0

ε0
HTE, (1)

HTM = −
√

ε0

μ0
ETE, (2)

and describes a radially polarized FD.
The FD pulse itself emerges from a scalar “seed function”

[1]

f (t, r) = f (t, ρ, z) = 1

ρ2 − [(ct − z) + iq1][(ct + z) + iq2]
(3)

which is a solution of the scalar wave equation. Here, ρ and
z are the radial and longitudinal coordinates, t is the time, c
is the speed of light in vacuum, while q1 and q2 are free pa-
rameters that, as will become apparent later in the text, define
the central frequency and the focusing strength of the pulse,
respectively. In a cylindrical coordinate system the electric (E)
and magnetic (B) fields of the TE FD pulse are derived from
the following equations [1,19]:

Eθ = μ0∂t∂ρ f ,

Bρ = μ0∂z∂ρ f ,

Bz = μ0

(
∂2

z f − 1

c2
∂2

t f

)
,

where ∂t , ∂ρ, ∂z are the partial derivatives with respect to t, ρ,
and z.

The azimuthally polarized TE FD pulse can therefore be
presented as [11]

Eθ = −4i f0

√
μ0

ε0

ρ(q1 + q2 − 2ict )

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (4)

Hρ = 4i f0
ρ(q2 − q1 − 2iz)

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (5)

Hz = −4 f0
ρ2 − (q1 + iτ )(q2 − iσ )

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (6)

where ε0 and μ0 are the vacuum permittivity and permeability,
respectively, τ = z − ct , σ = z + ct , and f0 a constant defin-
ing the amplitude and the units. The pulse is defined by q1 and
q2 and from now on we assume that q1 � q2. When compared

FIG. 1. Propagation of the single-cycle TE FD pulse. Owing to
the Gouy phase shift, a “1 1

2 -cycle” pulse (left) transforms into a “1-
cycle” pulse at focus (center), and resumes its “1 1

2 -cycle” duration
after propagating through the focal region (right). The fact that the
pulse acquires a π phase by traveling through the focus is also shown
from the phase reversal of the electric field, depicted by blue and red
colors.

to a Gaussian beam, q1 has the role of the wavelength and q2

the role of the Rayleigh length. Similarly to Gaussian pulses,
FD pulses can be focused. Both real and imaginary parts
are solutions to Maxwell’s equations, termed here “1-cycle”
and“1 1

2 -cycle,” respectively, reflecting their duration at focus
[see Figs. 1, 2(a) and 2(b)]. Owing to Gouy phase shifts, the
shape of the pulse at focus is different from that in the far
field [11] with the real (imaginary) part transforming from
“1 1

2 -cycle” (“1-cycle”) away from focus to a “1-cycle” pulse
(“1 1

2 -cycle”) at focus (see Fig. 1).
To date, exact closed-form expressions for the FD pulse

have only been defined in the time domain. Although the
time domain expressions (4)–(6) allow to describe the FD
pulse in a compact fashion, frequency domain expressions
are crucial for generating and understanding the propaga-
tion dynamics of FDs. We have derived analytically such

FIG. 2. (a), (b) Time-radius cross sections of the electric field of
the “1-cycle” and “1 1

2 -cycle” TE pulses, respectively, at their focus
for q2 = 100q1. (c), (d) Radial distribution of spectral power (c) and
spectral phase (d) of the TE “1-cycle” pulse. The spectral phase is
−π/2 for negative and π/2 for positive frequencies.
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expressions for both the real and imaginary parts of the TE
and TM pulses (see Appendix A). Here, we focus on the real

part of the TE FD pulse (the “1-cycle” azimuthally polarized
pulse):

Ere(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 f0
√

μ0/ε0
[
iπ ω

c2
ρ

q1
e− ω(q2+q1 )

2c
e

iω
2c

√
A(2ci+ω

√
A)+e− iω

2c
√

A(−2ci+ω
√

A)
2A3/2

]∗
, ω > 0

4 f0
√

μ0/ε0iπ ω
c2

ρ

q1
e

ω(q2+q1 )
2c

e− ωi
2c

√
A(−2ci+ω

√
A)+e

ωi
2c

√
A(2ci+ω

√
A)

2A3/2 , ω < 0

0, ω = 0

(7)

with

A ≡ A(ρ, z, q2) = − (−q1 + q2 − 2ρ − 2iz)

× (−q1 + q2 + 2ρ − 2iz). (8)

Equation (7) allows us to examine the spectral phase of
the FD pulse. From Eq. (8) one can see that at focus

√
A is

either real ρ � (q2 − q1)/2, or imaginary ρ < (q2 − q1)/2,
and in both cases it leads to an imaginary field in the fre-
quency domain for any radius. Since the field has flat spectral
phase θ (ρ, ω) = ±π/2 [see Fig. 2(d)], the pulse described
by Eqs. (4)–(6) is bandwidth limited. Away from the focus,
the spectral phase has terms exponential on ω

√
A, and since

A is a quadratic function of ρ, these terms are nonseparable
functions of frequency ω and coordinate ρ.

In Fig. 2(c), we plot the radial distribution of spectral
power of the pulse at focus, z = 0, where the space-frequency
coupling becomes apparent. The spectrum is broad at the
central part of the pulse and narrows towards the peripheral
parts, where lower-frequency components are prominent. FDs
belong to the class of isodiffracting pulses in which the in-
tensity transverse spatial profiles scale along the trajectory of
the pulse in the same way for all frequency components. The
isodiffracting nature of FD becomes clear in Fig. 3 where the
FD and a nonisodiffracting pulse composed of Hermite-Gauss
beams are compared. A false color image made of all the
composing frequencies of the pulse and a plot with the trace
of the position of the maximum intensity for each frequency
are plotted. The isodiffracting nature of the FD leads to a
separation of the wavelengths with the maxima of the longer
wavelengths located at larger radii and the shorter wave-
lengths closer to the center at any propagation distance, as it
is also shown in Fig. 2(c). In contrast, in the nonisodiffracting
Hermite-Gauss pulse the maxima of the longer wavelengths
are strongly focused resulting in different lateral spectral pro-
files for different propagation distances. The isodiffracting
nature of the FD pulse can be rigorously derived in the case of
well-collimated pulses (q2 � q1) (see Appendix B).

III. SPATIAL HANKEL TRANSFORM
OF THE FLYING DONUT

Owing to its toroidal field configuration, the FD pulse is
rotationally symmetric and thus can be expanded in cylindri-
cally symmetric single-cycle pulses by virtue of the Hankel
transform [18]. The Hankel transform of the electric field for
the TE pulse can be derived as (see Appendix C)

Eθ (kρ ) = −π f0

√
μ0

ε0
(q1 + q2 − 2ict )

k2
ρ

α
K1(kρα)θ̂, (9)

with α = √
(q1 + iz − ict )(q2 − iz − ict ) and K1 the first-

order modified Bessel function of the second kind. The
transforms of the real and imaginary parts, or the 1-cycle and
1 1

2 -cycle, are given by

Ere,θ (kρ ) = Eθ (kρ ) − E∗
θ (kρ )

2
, (10)

Eim,θ (kρ ) = Eθ (kρ ) + E∗
θ (kρ )

2i
, (11)

respectively.
The closed-form expression is a well-behaved function in

contrast to the numerical Hankel transform that is inaccurate
close to the axis of symmetry [20]. It also simplifies the study
of the pulse in momentum space which provides information

FIG. 3. (a), (b) False color representation of x-z cross sections at
y/q1 = 0 of the electric field intensity of the spectral components of
the isodiffracting FD pulse and of a nonisodiffracting Hermite-Gauss
beam, respectively. The range of presented frequency components
spans the full bandwidth of the FD pulse. The brightness repre-
sents the intensity distribution in space while color corresponds to
the different wavelengths. Blue and red colors present shorter and
longer wavelengths, respectively. (c), (d) Traces of the position of
the maximum intensity for each wavelength for the FD (c) and a
nonisodiffracting Hermite-Gauss beam (d). In the case of the FD
pulse the intensity maxima of different wavelength components do
not mix upon propagation with high frequencies (blue lines) domi-
nating at the center of the pulse and the lower frequencies (red lines)
at the periphery. For the nonisodiffracting Hermite-Gauss beam the
spectral components mix at focus with the lower frequencies being
tightly focused and hence later being strongly diffracted [see areas
highlighted by the red squares in (b) and (d)].
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FIG. 4. Amplitude and phase of the Hankel transforms of the “1-cycle” (a), (b), and “1 1
2 -cycle” (d), (e), electric fields at focus, t = 0, and

for q2 = 100q1. The phase at (b) and (c) alternates between 0 and π . (c), (f) The imaginary part of the Hankel transform of the “1-cycle” and
“1 1

2 -cycle” pulses at three different values of kρ as indicated by the horizontal lines in (a) and (d).

about its focusing properties. Figure 4 shows the electric field
Hankel transforms of the 1-cycle [Figs. 4(a) and 4(b)], and
1 1

2 -cycle [Figs. 4(d) and 4(e)] pulses at focus (t = 0) for
q2 = 100q1. The former is antisymmetric with respect to the z
coordinate and vanishes at z = 0 and t = 0 [see Fig. 4(c)]. On
the other hand, the Hankel transform of the 1 1

2 -cycle pulse is
symmetric with respect to z and peaks at z = 0.

The Hankel transform decomposes the FD pulse into a
set of pulses with different focusing strengths. As a result,
Figs. 4(c) and 4(f) illustrate that the FD is composed out of
weakly focused (low-kρ) single-cycle pulses (magenta col-
ored line) and strongly focused (high-kρ) blueshifted broader
pulses (yellow line). It exhibits a flat radial spectral phase pro-
file at z = 0 [Figs. 4(b) and 4(e)] indicating that at focus the
FD pulse can be decomposed in a set of in-phase cylindrically
symmetric pulses. Away from focus the sign of the phase alter-
nates with increasing spatial frequency, a trait which is related
to the isodiffracting nature and fine topological structure of
the pulse [2].

IV. PLANE-WAVE EXPANSION OF THE FLYING
DONUT PULSE

The Hankel transform allows to readily expand the FD
pulse into plane waves. Indeed, for the plane-wave expan-
sion of the FD pulse, two spatial [(ρ, z) → (kρ, kz )] and one
temporal [t → ω] transform is required, of which only one
at a time can be derived analytically (either time-frequency
Fourier or Hankel transform). Since the radial transform is
given by a simple analytical expression, the Fourier trans-
form of the two remaining dimensions, time and longitudinal
position, can be easily performed numerically. The result of
the plane-wave decomposition is presented in Fig. 5 for three
different cases: q2 = 2q1, q2 = 10q1, and q2 = 100q1. The
decomposition is given at the surface of a cone that repre-

sents the cone of light (defined by ω = c|k|). Only positive
kρ are presented since the pulse is azimuthally symmetric.
The first row depicts the projection of that cone in the kρ-kz

plane, the third row depicts the projection in the frequency-
radial spatial frequency ν-kρ plane, while in the middle row a
three-dimensional (3D) view of the plane-wave expansion is
presented. The colors represent the squared amplitude of the
plane-wave components. The plot is given only for positive
frequencies.

Figure 5(a) indicates that in the extreme nonparaxial
regime, where q2 � q1, backward propagating waves are
present in the FD pulse. This is revealed by the appearance
of negative kz for positive frequencies. However, by increas-
ing q2 with respect to q1, we notice that the contribution of
backward propagating waves rapidly vanishes. Moreover, we
observe a decrease of kρ in favor of kz, indicating that the
pulse is weakly focused and hence it propagates as a parax-
ial pulse (q2 � q1). The existence of forward and backward
propagating waves emanates from Eq. (3) as discussed in
Refs. [9,21]. The space-time nonseparability reveals itself in
the k-ω domain, where low (high) frequencies correspond
to small (large) range of radial wave vectors indicating that
they are weakly (strongly) confined in the transverse plane.
In addition, we note that small (large) radial wave vectors
kρ are accompanied by a narrower (broader) bandwidth, as
is evident in Fig. 5(h). This behavior is in accordance with the
isodiffracting nature of the FD pulse (see also discussion in
Sec. II).

The presented decomposition of the pulse into plane waves
illustrates how the simplest form of electromagnetic waves
with linear polarization can be combined to generate a pulse
with complex spatiotemporal and vectorial structure. Previous
analysis of localized waves, in particular “focus wave modes,”
has highlighted the importance of considering the description
and generation of space-time coupled pulses in the frequency
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FIG. 5. Plane-wave decomposition of the FD pulse presented on the surface of a half-cone, representing the cone of light (ω = ck).
(a)–(c) The kρ-kz projection of the decomposition. (d)–(f) Full three-dimensional presentation of the plane-wave spectrum on the light cone.
(g)–(i) The ν-kρ projection of the decomposition. The colors represent the squared electric field amplitude of the plane waves in arbitrary units.
Only positive frequencies are considered.

domain [22,23]. In these works, plane waves whose amplitude
is described by a nonseparable equation in k-ω space can
be combined to form space-time coupled solutions of the
scalar wave equation. A weighted superposition of such waves
also results in a space-time coupled solution. In a similar
manner, the plane-wave expansion of the FD provides an
invaluable tool for the study of its propagation dynamics and
light-matter interactions and will inform the development and
implementation of generation and detection schemes for FD
pulses.

V. SUMMARY

In this paper we have presented a series of decompositions
of the FD pulse. We have derived closed-form expressions
for the Fourier transform and provided a frequency domain
description of the FD pulse. The Fourier transform expression
indicates that the FD pulse is space-spectrum nonseparable
and in fact very close to an ideal isodiffracting pulse, a prop-
erty that ensures the preservation of its spectral profile upon
propagation. In addition, the Fourier decomposition of the
pulse into monochromatic beams facilitates the study of its
propagation properties by enabling the use of efficient fre-
quency domain propagation techniques [18]. Moreover, such

a decomposition can be used not only for the study of the
pulse propagation dynamics, but also for the description of
the interaction of the FD pulse with matter. The Hankel trans-
form derived here allows to describe the radial spectrum in
momentum space and hence reveals information related to the
focusing properties of the pulse. It can provide an accurate
picture of the spatial frequency distribution of the pulse and
hence allows for the decomposition of FDs into plane waves.
The plane-wave expansion reveals the properties of the com-
plex FD pulse by breaking it down to simple linearly polarized
waves. It provides a complementary representation to the time
domain one and can reveal properties, such as the degree
of focusing of the FD pulse and the existence of backward
propagating waves in the strongly nonparaxial regime.

The spatiotemporal description of FDs in different repre-
sentations provides a framework for the generation, detection,
and study of light-matter interactions of such complex pulses.
Pulses whose spatiospectral profile does not change upon
propagation could be important in all applications involving
pulsed energy transfer, such as free-space telecommunica-
tions, spectroscopy, and manufacturing by light.

The data from this paper can be obtained from the Univer-
sity of Southampton ePrints research repository [24].
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APPENDIX A: FOURIER TRANSFORM

In this Appendix a step-by-step derivation of an analytical
expression for the time-frequency Fourier transform of the FD
pulse is presented. The following Fourier transform pair is
used:

F(r, ω) =
∫ ∞

−∞
eiωt F(r, t )dt, (A1)

F(r, t ) = 1

2π

∫ ∞

−∞
e−iωt F(r, ω)dω. (A2)

For the transverse electric field (TE) we have [1]

Eθ = −4i f0

√
μ0

ε0

ρ(q1 + q2 − 2ict )

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (A3)

Hρ = 4i f0
ρ(q2 − q1 − 2iz)

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (A4)

Hz = −4 f0
ρ2 − (q1 + iτ )(q2 − iσ )

[ρ2 + (q1 + iτ )(q2 − iσ )]3 , (A5)

with τ = z − ct and σ = z + ct . For convenience and gener-
ality, we will use dimensionless variables. More specifically,
we write everything with respect to q1 which has dimen-
sions of length. As such, we define ρ ′ = ρ/q1, z′ = z/q1,
q′

2 = q2/q1, t ′ = ct/q1, and ω′ = q1ω/c and we omit the co-
efficients 4 f0

√
μ0/ε0/q4

1 and 4 f0/q4
1 for the electric and the

magnetic fields, respectively. Finally, we omit the primes on
the new dimensionless variables for clarity. Now, the dimen-

sionless fields are given by the following equations:

Eθ = −i
ρ(1 + q2 − 2it )

[ρ2 + (1 + iz − it )(q2 − iz − it )]3
, (A6)

Hρ = i
ρ(q2 − 1 − 2iz)

[ρ2 + (1 + iz − it )(q2 − iz − it )]3
, (A7)

Hz = − ρ2 − (1 + iz − it )(q2 − iz − it )

[ρ2 + (1 + iz − it )(q2 − iz − it )]3
. (A8)

We will first work with the electric field. From now on
and for clarity we will refer to the electric field as E , but we
actually mean that we are using the θ component. The real
and imaginary parts of the field are quite complex expressions
to compute the Fourier integral. Thus, and because of the
linearity of the integral operator, we will calculate the Fourier
transform of the complex field and then we will take the real
and imaginary parts from the equations

Ere(ω) = E (ω) + E∗(−ω)

2
(A9)

and

Eim(ω) = E (ω) − E∗(−ω)

2i
. (A10)

Proof.

Ere(ω) =
∫ +∞

−∞
eiωt Re[E (t )]dt

=
∫ +∞

−∞

eiωt E (t ) + [e−iωt E (t )]∗

2
dt

= E (ω) + E∗(−ω)

2
.

�
These correspond to the 1-cycle and 1 1

2 -cycle,respectively.
Returning now to Eq. (A6), it is apparent that we can apply

Jordan’s lemma since the power of t on the denominator is
five times bigger than that of the numerator. Thus, the Fourier
transform is given by the integral residues on the upper and
lower half-complex-plane [25]. One only has to find the poles
and determine when they are located in upper half or lower
half-plane.

From (A6), it is apparent that the equation has two triple
poles, thus only two distinct. Luckily, they are both located
in the lower half-plane, though the algebra to prove this is
elaborate. We are going to prove this explicitly, though an
alternative proof was presented on [12].

We start by writing the poles

t1 = 1
2 (

√
−(−1 + q2 − 2ρ − 2iz)(−1 + q2 + 2ρ − 2iz) − iq2 − i), (A11)

t2 = 1
2 (−

√
−(−1 + q2 − 2ρ − 2iz)(−1 + q2 + 2ρ − 2iz) − iq2 − i). (A12)

It is useful here to define

A ≡ A(ρ, z, q2) = −(−1 + q2 − 2ρ − 2iz)(−1 + q2 + 2ρ − 2iz)

= 4z2 + 4ρ2 − (q2 − 1)2 + 4(q2 − 1)iz. (A13)
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Now we want to prove that

Im

(
t1
t2

)
=1

2

{
− 1 − q2 ± {(4z − 4zq2)2 + [4ρ2 + 4z2 − (q2 − 1)2]2}1/4 sin

[
1

2
Arg(A)

]}
(A14)

is negative for every q2 � 1, ρ � 0, and z. We will prove it for t1.
Proof.

Arg(x + iy) = atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
( y

x

)
, x > 0

arctan
( y

x

) + π, x < 0 and y � 0

arctan
( y

x

) − π, x < 0 and y < 0

+π
2 , x = 0 and y > 0

−π
2 , x = 0 and y < 0

undefined, x = 0 and y = 0.

(A15)

(i) For q2 = 1 or z = 0, it is immediately apparent from (A11)
that Im(t1) < 0.

(ii) For z < 0, Arg(A) < 0 and thus Im(t1) < 0.
(iii) For z > 0, we make use of the trigonometric identity

sin[arctan(x)] = x
1+x2 and some other more common identi-

ties. It can be shown that all the remaining cases
(a) 4z2 + 4ρ2 − (q2 − 1)2 > 0,
(b) 4z2 + 4ρ2 − (q2 − 1)2 < 0,
(c) 4z2 + 4ρ2 − (q2 − 1)2 = 0 give Im(t1) < 0. �
A similar analysis holds for the second pole as well. Know-

ing that the poles are located in the lower half complex plane,
the integral can be calculated from the integral residues

∫ +∞

−∞
eiωt E (t )dt = 2π i

∑
i

Res[eiωt E (t ), ti]I, (A16)

with I denoting the sign of the contour (positive for anticlock-
wise). In general we have

E (ω) = −2π i{Res[eiωt E (t ), t1] + Res[eiωt E (t ), t2]},
(A17)

and from (A9) the following cases arise.

(i) (ω > 0):

E (ω) = 0, (A18)

E∗(−ω) = (−2π i{Res[e−iωt E (t ), t1] + Res[e−iωt E (t ), t2]})∗.

(A19)

(ii) (ω < 0):

E (ω) = −2π i{Res[eiωt E (t ), t1] + Res[eiωt E (t ), t2]},
(A20)

E∗(−ω) = 0. (A21)

There are no poles in the upper half-plane, but reversal
of the sign of ω is equivalent to integrating over the path of
the lower half-plane. It is advisable to calculate the residues
for higher-order poles (triple in our case) using a computer
algebra system (like Mathematica) in order to avoid mistakes
in the trivial but error-prone procedure of computing the
derivatives. Finally, the residues are

Res[eiωt E (t ), t1] = −e
ω
2 (1+q2+i

√
A)ωρ(2i + ω

√
A)

2A3/2
, (A22)

Res[eiωt E (t ), t2] = −e
ω
2 (1+q2−i

√
A)ωρ(−2i + ω

√
A)

2A3/2
, (A23)

Res[e−iωt E (t ), t1] = −e− ω
2 (1+q2+i

√
A)ωρ(−2i + ω

√
A)

2A3/2
,

(A24)

Res[e−iωt E (t ), t2] = −e− ω
2 (1+q2−i

√
A)ωρ(2i + ω

√
A)

2A3/2
.

(A25)

For ω = 0, the choice of the contour does not alter the
result and knowing that there are no poles in the upper half-
plane and the line of real values, the calculus of residues gives
immediately the answer of having a zero integral. That is,
there are no dc components in the field.

Finally, the Fourier transform for the TE 1-cycle pulse is
given by the equation

Ere(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
iπωρe− ω(q2+1)

2
e

iω
2

√
A(2i+ω

√
A)+e− iω

2
√

A(−2i+ω
√

A)
2A3/2

]∗
, ω > 0

iπωρe
ω(q2+1)

2
e− ωi

2
√

A(−2i+ω
√

A)+e
ωi
2

√
A(2i+ω

√
A)

2A3/2 , ω < 0

0, ω = 0

(A26)

with

A ≡ A(ρ, z, q2) = −(−1 + q2 − 2ρ − 2iz)(−1 + q2 + 2ρ − 2iz), (A27)
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which can be simplified to a single line, given that for the Fourier transform of a real function, it holds that F (ω) =
F ∗(−ω).

It is now clear from Eqs. (A6)–(A8) that the magnetic fields satisfy the necessary conditions to apply Jordan’s lemma and that
they have the same poles with the electric field. Hence, the exact same approach can be used, leading to the following frequency
domain expressions for the magnetic field:

Hρ,re(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
(q2 − 1 − 2iz)πρe

−ω(q2+1)
2

(− e
ωi
2

√
A(−12+6i

√
Aω+Aω2 )

2A5/2 + e
−ωi

2
√

A(−12−6i
√

Aω+Aω2 )
2A5/2

)]∗
, ω > 0

(q2 − 1 − 2iz)πρe
ω(q2+1)

2
(− e− ωi

2
√

A(−12−6i
√

Aω+Aω2 )
2A5/2 + e

ωi
2

√
A(−12+6i

√
Aω+Aω2 )

2A5/2

)
, ω < 0

0, ω = 0

(A28)

Hz,re(ω) =

⎧⎪⎪⎨
⎪⎪⎩

[−π ie
−ω(q2+1)

2
( e

ωi
2

√
A[Ar2ω2+(A−6r2 )(2−i

√
Aω)]

A5/2 + e− ωi
2

√
A[−Ar2ω2+(A−6r2 )(−2−i

√
Aω)]

A5/2

)]∗
, ω > 0

−π ie
ω(q2+1)

2
( e− ωi

2
√

A[Ar2ω2+(A−6r2 )(2+i
√

Aω)]
A5/2 + e

ωi
2

√
A[−Ar2ω2+(A−6r2 )(−2+i

√
Aω)]

A5/2

)
, ω < 0

0, ω = 0.

(A29)

Of course, one has to return to dimensional variables and insert the omitted coefficient in order to have the actual fields as
follows:

Ere(ω) =

⎧⎪⎪⎨
⎪⎪⎩

4 f0
√

μ0/ε0
[
iπ ω

c2
ρ

q1
e− ω(q2+q1 )

2c
e

iω
2c

√
A(2ci+ω

√
A)+e− iω

2c
√

A(−2ci+ω
√

A)
2A3/2

]∗
, ω > 0

4 f0
√

μ0/ε0iπ ω
c2

ρ

q1
e

ω(q2+q1 )
2c

e− ωi
2c

√
A(−2ci+ω

√
A)+e

ωi
2c

√
A(2ci+ω

√
A)

2A3/2 , ω < 0
0, ω = 0

(A30)

Hρ,re(ω) =

⎧⎪⎪⎨
⎪⎪⎩

[
4 f0πρ

(q2−q1−2iz)
q1c2 e

−ω(q2+q1 )
2c

(− e
ωi
2c

√
A(−12c2+6i

√
Aωc+Aω2 )

2A5/2 + e
−ωi
2c

√
A(−12c2−6i

√
Aωc+Aω2 )

2A5/2

)]∗
, ω > 0

4 f0πρ
(q2−q1−2iz)

q1c2 e
ω(q2+q1 )

2c

(− e− ωi
2c

√
A(−12c2−6i

√
Aωc+Aω2 )

2A5/2 + e
ωi
2c

√
A(−12c2+6i

√
Aωc+Aω2 )

2A5/2

)
, ω < 0

0, ω = 0

(A31)

Hz,re(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[− 4π i f0

q1c e
−ω(q2+q1 )

2c

( e
ωi
2c

√
A[Ar2ω2/c+(A−6r2 )(2c−i

√
Aω)]

A5/2 + e
−ωi
2c

√
A[−Ar2ω2/c+(A−6r2 )(−2c−i

√
Aω)]

A5/2

)]∗
, ω > 0

− 4π i f0

q1c e
ω(q2+q1 )

2c

( e− ωi
2c

√
A[Ar2ω2/c+(A−6r2 )(2c+i

√
Aω)]

A5/2 + e
ωi
2c

√
A[−Ar2ω2/c+(A−6r2 )(−2c+i

√
Aω)]

A5/2

)
, ω < 0

0, ω = 0

(A32)

with

A ≡ A(ρ, z, q2) = −(−q1 + q2 − 2ρ − 2iz)(−q1 + q2 + 2ρ − 2iz). (A33)

Because now of the analyticity of Eqs. (A3)–(A5), with
respect to time, the real and imaginary parts (or, equivalently,
the 1-cycle and 1 1

2 -cycle) form Hilbert transform pairs, which
means that they share the same spectrum with a change only
in phase, as it is clear from the following relations [12,26]:

Eim(ω) = i sgn(ω)Ere(ω) (A34)

and

Him(ω) = i sgn(ω)Hre(ω), (A35)

with

sgn(ω) =
⎧⎨
⎩

1, ω > 0
−1, ω < 0
0, ω = 0.

(A36)

Finally, regarding the TM pulses, the frequency domain
equations can be derived by a substitution of the TE formulas

to the following equations:

ETM =
√

μ0

ε0
HTE, (A37)

HTM = −
√

ε0

μ0
ETE. (A38)

APPENDIX B: PROOF OF ISODIFFRACTION FOR
WELL-COLLIMATED DONUT PULSES

We now prove that in the paraxial regime of well-
collimated pulses q2 � q1, the FD pulse is isodiffracting. We
show that, far from the focus, in each cross section of the
beam perpendicular to the direction of propagation the spatial
profiles of intensity for every frequency component of the
beam scale along the trajectory of the beam in the same way.
This is achieved by tracing the radial position of the maxima
of each spectral component ρmax(ω) and showing that the
ratio of these radial positions between any two monochro-
matic beams is independent of the propagation distance z,
ρmax(ω2)/ρmax(ω1) = const, and that smaller wavelengths are
always closer to the center of the beam. We finally derive
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an approximate expression for the divergence angle of each
spectral component where we show that it is proportional
to the square root of its wavelength. A comparison with the
divergence angle of Gaussian beams shows that such de-
pendence corresponds to isodiffracting beams and thus all
spectral components of the FD share the same Rayleigh length
that it is shown to be proportional to q2.

Since the spectrum is symmetric with respect to the z = 0
plane, which is the focal plane, we can prove the isodiffracting
property of the pulse for z > 0 without loss of generality.
The same is true for ω and hence we restrict our analy-
sis to z > 0 and ω > 0. It turns out that in this case the
Fourier transform of the pulse is simplified to the following
equation:

E∗
re(ω) = iπωρe− ω(q2+1)

2
e− iω

2

√
A(−2i + ω

√
A)

2A3/2
. (B1)

That is because Im(
√

A) > 0 and hence the positive exponen-
tial of Eq. (A30):

e
iω
2

√
A = e

iω
2 Re(

√
A)e

−ω
2 Im(

√
A) (B2)

is negligible compared to the negative exponential

e
−iω

2

√
A = e− iω

2 Re(
√

A)e
ω
2 Im(

√
A) (B3)

and thus it can be ignored. The spectrum of the electric field
is now given by the following equation:

Ire(ω) = Ere(ω)E∗
re(ω)

= π2ω2ρ2e−ω(q2+1) eω Im(
√

A)[4 − 4ω Im(
√

A)+ω|A|]
2|A|3 .

(B4)

For z � q2 we can write

|A| = 4(z2 + ρ2) (B5)

and

Im(
√

A) =
√

|A| sin

[
1

2
Arg(A)

]

=
√

|A| sin

[
1

2
arctan

(
4(q2 − 1)z

4z2 + 4ρ2 − (q2 − 1)2

)]

= (q2 − 1)z√
z2 + ρ2

(B6)

since sin(x) � x and arctan(x) � x for x 
 1. In addition,
|A| � Im(

√
A) and |A| � 4 leading to a simplified expression

for the spectrum in the far field

Ire(ω) = π2ω3ρ2e−ω(q2+1) e
ω(q2−1)z√

z2+ρ2

32(z2 + ρ2)2
. (B7)

The general shape of the spectrum is the same for any fre-
quency and propagation distance since it is given by the
same equation. This equation has only one extrema which
is the maximum of the intensity. That is easy to see since
the function is actually the product of a decreasing exponen-
tial with the ratio of a second-degree parabola and a shifted

fourth-degree parabola. The ratio has only one maximum and
the exponential is simply shifting this maximum in space.
Hence, we only have to find the position of this maximum.
That is the zero of the derivative of the intensity with respect
to the radius dIre (ω,ρ)

dρ
|ρmax = 0, which is given by the solution

of the following equation:

4x3 − [4 + ω2(q2 − 1)2]z2x2 − 4z4x + 4z6 = 0 (B8)

with ρmax = √
x0, where x0 is the only real solution of

Eq. (B8). However, in the paraxial case, the radial expansion
of the beam increases with a much smaller rate than the
propagation distance z. Hence, the first term of the polyno-
mial x3 = ρ6 will be very small compared to the rest terms
containing z and thus it can be ignored. Finally, the equation
to be solved becomes

[4 + ω2(q2 − 1)2]x2 + 4z2x − 4z4 = 0 (B9)

and the radial position of the maximum electric field ampli-
tude for each spectral component in the far field is given by
the following simple equation:

ρmax = z

√
−2 + 2

√
5 + (q2 − 1)2ω2

4 + (q2 − 1)2ω2
. (B10)

The ratio of the radial position of the maxima between two
different wavelengths is easily obtained as

ξ (ω2) = ρmax(ω2)

ρmax(ω1)

=

√√√√√
[
4 + (q2 − 1)2ω2

1

][ − 2 + 2
√

5 + (q2 − 1)2ω2
2

]
[ − 2 + 2

√
5 + (q2 − 1)2ω2

1

][
4 + (q2 − 1)2ω2

2

]
(B11)

and is independent of the propagation distance z. In addition,
it is easy to prove that Eq. (B10) is a monotonically decreasing
function of ω.

To illustrate the validity of Eq. (B11), we plot the radial
position of the maximum intensity of the FD pulse for each
wavelength and increasing propagation distance z/q1 with
q2 = 100q1 [see Fig. 6(a)]. Then, we use as a reference fre-
quency the smallest frequency on the plot ω1q1/2πc = 0.1
and calculate the ratio of the position of the maxima for all
frequencies up to ωq1/2πc = 0.8, ρmax(ω)

ρmax(ω1 ) . We do this for
various values of propagation distance z/q1 [Fig. 6(b)] and
parameter q2 [Fig. 6(c)]. For z � q2 and q2 � q1 the value
of the ratio is similar to the theoretically predicted value from
Eq. (B11) verifying its validity. Additionally, we note that the
ratio is always smaller than unity, which indicates that the
shorter wavelengths exhibit peak values of spectral intensity
at smaller radii in accordance with Fig. 2(c) of the main
text. As predicted by Eq. (B11), away from focus the ratio
is independent of the propagation distance [see Fig. 6(b)].
From Fig. 6(b) we also notice that the ratio ξ varies very
little even at focus which is an indication that the FD pulse is
isodiffracting. From Fig. 6(c) and for q2 � q1 we notice that
the ratio becomes independent of the parameter q2, meaning
that for very well-collimated beams the ratio of the position
of the maxima between two frequencies can be described by a
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FIG. 6. (a) Trace of the position of the maximum intensity for each wavelength. (b) Numerical calculation of the dimensionless ratio of the
radial position of the maxima between a reference frequency ω1q1/2πc = 0.1 and a variable frequency ω, for q2 = 100q1 and for increasing
propagation distance z/q1. The white dashed line indicates the position of the focus. (c) Numerical calculation of the same ratio for fixed
distance z/q1 = 1000 and for increasing q2. For z � q2 and q2 � q1 the value of the ratio is similar to the theoretically predicted value from
Eq. (B11). The yellow dashed line indicates the limit of q2/q1 below which Eq. (B11) deviates from the actual value.

very simple expression that is proportional to the ratio of the
frequencies.

Finally, Eq. (B10) is true for z � q1 and thus is appropriate
for the calculation of the divergence angle of each beam. Since
all our calculations are for the paraxial regime q2 � q1, the
angle of divergence is small and can be given approximately
as

div � arctan

(
ρmax

z

)
�

√
−2 + 2

√
5 + (q2 − 1)2ω2

4 + (q2 − 1)2ω2

�
√

2

q2ω
. (B12)

The important thing to notice here is the similarity with the
expression of the divergence angle of a Gaussian beam div �√

λ/zRπ , where zR is the Rayleigh length [27]. It is now clear
that the parameter q2 has the role of the Rayleigh length and
since it does not depend on the wavelength the beams that
compose the FD pulse are isodiffracting.

APPENDIX C: HANKEL TRANSFORM

By using Jordan’s lemma in a similar way with Appendix
A, an analytical expression for one of the spatial coordinates
of the FD pulse can be derived. However, it is clear that the
pulse does not depend on the polar angle θ . This symmetry
can be exploited and a Hankel transform can be applied for
the calculation of the spatial frequencies in a transverse plane
r, θ [18]. In our case, the intensity of the pulse is circularly
invariant but the field is not. It has a polarization singularity at
the center leading to a sign inversion of the field across a line
passing through the center of the pulse.

In this Appendix we derive a closed-form expression for
the Hankel transform of the electric field of the TE pulse. A
similar analysis can be applied for the TM pulse. In order to
deal with the polarization we start by projecting the θ̂ depen-
dence of the field to the x̂, ŷ plane. The following relations
between Cartesian and polar coordinates will be used:

ρ =
√

x2 + y2, ρ̂ = cos θ x̂ + sin θ ŷ,

θ = arctan

(
y

x

)
, θ̂ = − sin θ x̂ + cos θ ŷ,

x = ρ cos θ, x̂ = cos θ ρ̂ − sin θ θ̂,

y = ρ sin θ, ŷ = sin θ ρ̂ + cos θ θ̂ (C1)

for the real space and

kρ =
√

k2
x + k2

y , k̂ρ = cos kθ k̂x + sin kθ k̂y,

kθ = arctan

(
ky

kx

)
, k̂θ = − sin kθ k̂x + cos kθ k̂y,

kx = kρ cos kθ , k̂x = cos kθ k̂ρ − sin kθ k̂φ,

ky = kρ sin kθ , k̂y = sin kθ k̂ρ + cos kθ k̂φ (C2)

for the k space. From the above we have

E(ρ, θ ) = − sin θEθ (ρ)x̂ + cos θEθ (ρ)ŷ. (C3)

It is now clear that each polarization of the field is separable in
the polar coordinates. In that case, the Fourier transform can
be expressed as an infinite sum of weighted Hankel transforms
[18]. Let F and H denote the Fourier and Hankel transforms
of a function, respectively, and g(ρ, θ ) = gθ (θ )gρ (ρ) being
the separable function to be Fourier transformed. Then, we
can write

F[g(ρ, θ )] =
∞∑

−∞
cm(−i)meimkθHm[gρ (ρ)], (C4)
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with

cm = 1

2π

∫ ∞

0
gθ (θ )e−imθ dθ, (C5)

H[gρ (ρ)] = 2π

∫ ∞

0
ρgρ (ρ)Jm(kρρ)dρ (C6)

and Jm the m-order Bessel function of the first kind. If the
azimuthal part of the field gθ (θ ) has some kind of azimuthal
symmetry, as in our case, then only a few terms of the infinite
sum will contribute to the result making the problem tractable.

For the Ex component we have gθ (θ ) = − sin θ and

cm = −1

2π

∫ 2π

0
sin θe−imθ dθ

= −1

2π

∫ 2π

0

e−iθ (m−1)

2i
dθ + 1

2π

∫ 2π

0

e−iθ (m+1)

2i
dθ

=
⎧⎨
⎩

− 1
2i , m = 1

1
2i , m = −1
0, m �= ±1

(C7)

and for the Ey, gθ (θ ) = cos θ and

cm =
{

1
2 , m ± 1
0, m �= ±1.

(C8)

Hence, from Eqs. (C3)–(C8) and by using the identity
J−n(x) = (−1)nJn(x) we have

Ex(kρ, kθ )x̂ = 2π i sin kθ

∫ ∞

0
ρEθ (ρ)J1(kρρ)dρ x̂ (C9)

and

Ey(kρ, kθ )ŷ = −2π i cos kθ

∫ ∞

0
ρEθ (ρ)J1(kρρ)dρ ŷ. (C10)

However, since x̂, ŷ, θ̂, k̂x, k̂y, and k̂θ are unit vectors in the
same coordinate system, x̂ = k̂x, ŷ = k̂y, and θ̂ = k̂θ leading
to a single azimuthally polarized equation without a kθ depen-
dence

E(kρ ) = −2π i
∫ ∞

0
ρEθ (ρ)J1(kρρ)dρ θ̂. (C11)

For the inverse transform we have to look first at the
definition of the forward transform that was used to derive
Eq. (C11):

E(kρ, kθ ) =
∫ 2π

0

∫ ∞

0
− sin θe−ikρρ(cos θ cos kθ +sin θ sin kθ )Eθ (ρ)ρ dρ dθ x̂

+
∫ 2π

0

∫ ∞

0
cos θe−ikρρ(cos θ cos kθ +sin θ sin kθ )Eθ (ρ)ρ dρ dθ ŷ. (C12)

In the same manner we can write the inverse as

E(ρ, θ ) = 1

4π2

∫ 2π

0

∫ ∞

0
− sin kθeikρρ(cos θ cos kθ+sin θ sin kθ )Eθ (kρ )kρdkρdkθ k̂x

+ 1

4π2

∫ 2π

0

∫ ∞

0
cos kθeikρρ(cos θ cos kθ+sin θ sin kθ )Eθ (kρ )kρdkρdkθ k̂y. (C13)

Finally, we define θ ′ = θ − π , hence, sin(θ ′ + π ) = − sin θ ′ and cos(θ ′ + π ) = − cos θ ′. The integral limits change to
(−π, π ) but since the integrand has a period of 2π this does not change the integral and hence there is no need to
change the limits. By ignoring the prime at θ ′ for clarity we end up with the following equation for the inverse Fourier
transform:

E(ρ, θ ) = 1

4π2

∫ 2π

0

∫ ∞

0
sin kθe−ikρρ(cos θ cos kθ +sin θ sin kθ )Eθ (kρ )kρdkρdkθ k̂x

+ 1

4π2

∫ 2π

0

∫ ∞

0
− cos kθe−ikρρ(cos θ cos kθ +sin θ sin kθ )Eθ (kρ )kρdkρdkθ k̂y. (C14)

It is now clear that by swapping ρ with kρ and θ with kθ , Eq. (C14) is identical to Eq. (C12) with the exception of the coefficient
1

4π2 and a minus sign. Hence, the inverse Fourier transform can be given from the following Hankel transform:

E(ρ) = i

2π

∫ ∞

0
kρEθ (kρ )J1(kρρ)dkρ θ̂. (C15)

Returning to Eq. (C11), we will solve the integral for the complex expression of the field. The transforms of the real and
imaginary fields are then simply taken from the following equations:

Ere,θ (kρ ) = Eθ (kρ ) − E∗
θ (kρ )

2
, (C16)

Eim,θ (kρ ) = Eθ (kρ ) + E∗
θ (kρ )

2i
. (C17)
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Proof.

Ere,θ (kρ ) = −2π i
∫ ∞

0
Re[Eθ (ρ)]J1(kρρ)ρ dρ

=
∫ ∞

0

−2π iEθ (ρ)

2
J1(kρρ)ρ dρ

−
[∫ ∞

0

−2π iEθ (ρ)

2
J1(kρρ)ρ dρ

]∗

= Eθ (kρ ) − E∗
θ (kρ )

2
and similar for the imaginary part, given that kρ and ρ are
real. �

For clarity, we rewrite the electric field expression as

Eθ = −4i f0

√
μ0

ε0

ρ(q1 + q2 − 2ict )

[ρ2 + (q1 + iz − ict )(q2 − iz − ict )]3

= coef
ρ

(ρ2 + α2)3 (C18)

with coef = −4i f0

√
μ0

ε0
(q1 + q2 − 2ict ) and α =

√
(q1 + iz − ict )(q2 − iz − ict ). The integral that we have to

solve now becomes

Eθ (kρ ) = −2π i coef
∫ ∞

0

ρ2

(ρ2 + α2)3 J1(kρρ)dρ. (C19)

The solution of an integral of the above form is known
when it satisfies some criteria and it is given from the form
[28,29]∫ ∞

0

ρν+1

(ρ2 + α2)μ+1 Jν (kρ)dρ = kμαν−μ

2μ�(μ + 1)
Kν−μ(kα)

(C20)

with Re(α) > 0 and −1 < Re(ν) < 2 Re(μ) + 3/2. Kν is the
ν-order modified Bessel function of the second kind and �

denotes the gamma function with its integral definition being
[25]

�(z) =
∫ ∞

0
t z−1et dt, Re(z) > 0. (C21)

The only properties of this function that we will need here are

�(z + 1) = z�(z), (C22)

�(1) = 1. (C23)

In our case, ν = 1 and μ = 2 and hence the second criterion is
satisfied. The first criterion requires Re(α) > 0 or |arg(α)| <

π/2. We will now show that |arg(α)| < π/2 is true in our
case and hence all the conditions needed to apply the above
formula are met.

Proof. We have

α =
√

q1q2 + z2 − c2t2 − i[ct (q1 + q2) + z(q1 − q2)],

β = α2 = q1q2 + z2 − c2t2 − i[ct (q1 + q2) + z(q1 − q2)].

We want to study when |arg(α)| < π/2 or, since α =√
β =

√
|β|eiθ = √|β|eiθ/2, when |arg(β )| = |arg(α2)| < π .

We write β = x + yi and, hence, arg(β ) = atan2(y, x). From
Eq. (A15) there is only one case that the criterion can be possi-
bly violated, the case arctan(y/x) + π with x < 0, y � 0. But
−π/2 < arctan(y/x) � 0 and, hence, the equality |arg(α)| =
π/2 can only happen when y = 0 and x < 0.

For y = 0 we have

ct = q2 − q1

q2 + q1
z. (C24)

For x < 0 we have

c2t2 > q1q2 + z2. (C25)

Substitution of Eqs. (C24) to (C25) leads to the following
statement:

−4q1q2

(q1 + q2)2
z2 > q1q2 (C26)

which is not true since q1 and q2 are both positive numbers.
Hence, |arg(α)| is always smaller than π/2. �

The Hankel transform is now given by the equation

Eθ (kρ ) = −2π i coef
k2
ρ

8α
K−1(kρα). (C27)

From the definition of the Kν it can be easily shown that
K−1(x) = K1(x), hence, we finally have

E(kρ ) = −π f0

√
μ0

ε0
(q1 + q2 − 2ict )

k2
ρ

α
K1(kρα)θ̂, (C28)

with α = √
(q1 + iz − ict )(q2 − iz − ict ).

Finally, an alternative route for this derivation can be fol-
lowed by starting from the definition of the scalar function
f [Eq. (3)]. This function can be written as a superposi-
tion of bidirectional waves [21] that are solutions of the
scalar wave equation and their integral representation di-
rectly leads to an integral for the Hankel transform of the
fields.

[1] R. W. Hellwarth and P. Nouchi, Focused one-cycle electromag-
netic pulses, Phys. Rev. E 54, 889 (1996).

[2] A. Zdagkas, N. Papasimakis, V. Savinov, M. R. Dennis, and
N. I. Zheludev, Singularities in the flying electromagnetic
doughnuts, Nanophotonics 8, 1379 (2019).

[3] T. Raybould, V. Fedotov, N. Papasimakis, I. Youngs, and N.
Zheludev, Focused electromagnetic doughnut pulses and their
interaction with interfaces and nanostructures, Opt. Express 24,
3150 (2016).

[4] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and
N. I. Zheludev, Toroidal dipolar response in a metamaterial,
Science 330, 1510 (2010).

[5] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and
N. I. Zheludev, Electromagnetic toroidal excitations in matter
and free space, Nat. Mater. 15, 263 (2016).

[6] T. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and
N. I. Zheludev, Exciting dynamic anapoles with electromag-
netic doughnut pulses, Appl. Phys. Lett. 111, 081104 (2017).

063512-12

https://doi.org/10.1103/PhysRevE.54.889
https://doi.org/10.1515/nanoph-2019-0101
https://doi.org/10.1364/OE.24.003150
https://doi.org/10.1126/science.1197172
https://doi.org/10.1038/nmat4563
https://doi.org/10.1063/1.4999368


SPACE-TIME NONSEPARABLE PULSES: CONSTRUCTING … PHYSICAL REVIEW A 102, 063512 (2020)

[7] J. Neill Brittingham, Focus waves modes in homogeneous
Maxwells equations: Transverse electric mode, J. Appl. Phys.
54, 1179 (1983).

[8] T. T. Wu and R. W. P. King, Comment on “focus wave modes in
homogeneous maxwell’s equations: Transverse electric mode”,
J. Appl. Phys. 56, 2587 (1984).

[9] R. W. Ziolkowski, Localized transmission of electromagnetic
energy, Phys. Rev. A 39, 2005 (1989).

[10] R. W. Ziolkowski, Exact solutions of the wave equation with
complex source locations, J. Math. Phys. 26, 861 (1985).

[11] S. Feng, H. G. Winful, and R. W. Hellwarth, Gouy shift and
temporal reshaping of focused single-cycle electromagnetic
pulses, Opt. Lett. 23, 385 (1998).

[12] S. Feng, H. G. Winful, and R. W. Hellwarth, Spatiotemporal
evolution of focused single-cycle electromagnetic pulses, Phys.
Rev. E 59, 4630 (1999).

[13] R. W. Ziolkowski, D. K. Lewis, and B. D. Cook, Evidence
of Localized Wave Transmission, Phys. Rev. Lett. 62, 147
(1989).

[14] R. W. Ziolkowski and D. K. Lewis, Verification of the localized-
wave transmission effect, J. Appl. Phys. 68, 6083 (1990).

[15] H. E. Hernández-Figueroa, M. Zamboni-Rached, and E.
Recami, Non-diffracting Waves (Wiley, Hoboken, NJ, 2013).

[16] N. Papasimakis, T. Raybould, V. A. Fedotov, D. P. Tsai, I.
Youngs, and N. I. Zheludev, Pulse generation scheme for flying
electromagnetic doughnuts, Phys. Rev. B 97, 201409(R) (2018).

[17] A. Zdagkas, N. Papasimakis, V. Nalla, H. Zhang, O. Buchnev,
and N. I. Zheludev, Generation of electromagnetic doughnut
pulses with a singular metamaterial converter, in Proceedings
Nanometa (2019), paper THU4s.2.; A. Zdagkas, Y. Hou, V.
Savinov, H. Zhang, O. Buchnev, N. Papasimakis, and N. I.
Zheludev, “Generation of topological space-time non-separable
light pulses,” in Conference on Lasers and Electro-Optics, OSA

Technical Digest (Optical Society of America, 2020), paper
FW3A.4.

[18] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill
Physical and Quantum Electronics Series (W. H. Freeman, San
Francisco, 2005).

[19] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[20] A. W. Norfolk and E. J. Grace, Reconstruction of optical fields
with the quasi-discrete hankel transform, Opt. Express 18,
10551 (2010).

[21] I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, A bidi-
rectional traveling plane wave representation of exact solutions
of the scalar wave equation, J. Math. Phys. 30, 1254 (1989).

[22] R. Donnelly and R. Ziolkowski, A method for constructing so-
lutions of homogeneous partial differential equations: localized
waves, Proc. R. Soc. London, Ser. A 437, 673 (1992).

[23] R. Donnelly and R. W. Ziolkowski, Designing localized waves,
Proc. R. Soc. London, Ser. A 440, 541 (1993).

[24] https://doi.org/10.5258/SOTON/D1644.
[25] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical

Methods for Physicists: A Comprehensive Guide (Elsevier, Am-
sterdam, 2012).

[26] F. W. King, Hilbert Transforms, Encyclopedia of Mathematics
and its Applications (Cambridge University Press, Cambridge,
2009), Vol. 1.

[27] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics,
2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New
York, 2007).

[28] Q.-G. Lin, Infinite integrals involving bessel functions by an im-
proved approach of contour integration and the residue theorem,
Ramanujan J. 35, 443 (2014).

[29] G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1944).

063512-13

https://doi.org/10.1063/1.332196
https://doi.org/10.1063/1.334289
https://doi.org/10.1103/PhysRevA.39.2005
https://doi.org/10.1063/1.526579
https://doi.org/10.1364/OL.23.000385
https://doi.org/10.1103/PhysRevE.59.4630
https://doi.org/10.1103/PhysRevLett.62.147
https://doi.org/10.1063/1.346896
https://doi.org/10.1103/PhysRevB.97.201409
https://doi.org/10.1364/OE.18.010551
https://doi.org/10.1063/1.528301
https://doi.org/10.1098/rspa.1992.0086
https://doi.org/10.1098/rspa.1993.0033
https://doi.org/10.5258/SOTON/D1644
https://doi.org/10.1007/s11139-013-9529-4

