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Spontaneous symmetry breaking (SSB) occurs when noise triggers an initially symmetric system to evolve toward one
of its nonsymmetric states. Topological and optical SSB involve material reconfiguration/transition and light
propagation/distribution in time or space, respectively. In anisotropic optical media, light beam propagation and
distribution of the optic axis can be linked, thereby connecting topological and optical SSB. Using nonlinear soft
matter, namely uniaxial liquid crystals, we report on simultaneous topological and optical SSB, showing that spatial
solitons enhance the noise-driven transition of the medium from a symmetric to an asymmetric configuration, while
acquiring a power-dependent transverse velocity in either of two specular directions with respect to the initial wave-
vector. Solitons enhance SSB by further distorting the optic axis distribution through nonlinear reorientation, result-
ing in power-tunable walk-off as well as hysteresis in beam refraction versus angle of incidence. © 2015 Optical Society

of America

OCIS codes: (190.6135) Spatial solitons; (190.5940) Self-action effects; (190.4420) Nonlinear optics, transverse effects in; (160.3710)

Liquid crystals; (190.1450) Bistability; (190.3100) Instabilities and chaos.
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1. INTRODUCTION

Spontaneous symmetry breaking (SSB) is known in physics, e.g.,
during phase transitions in matter, each of them related with a
different symmetry. Topological SSB occurs in symmetrically
arranged soft matter; in particular, it can affect the director dis-
tribution of nematic liquid crystals under quasi-static electric or
magnetic fields [1–5], driving the generation of defects [6].
Optical SSB has been investigated in the framework of the
nonlinear Schrödinger equation (NLSE), where nonlinearity is
a macroscopic description of the underlying many-body physics
(see, e.g., Ref. [7] and references therein). In addition to various
theoretical studies and predictions, including directional couplers
[8,9], �1� 1�D and �2� 1�D solitons [10–12], and Bragg
gratings with defects [13], SSB’s destabilizing effect has been ob-
served experimentally on temporal pulses in planar waveguides
[14], on beam profiles in a photonic lattice [15], and in passive
([16,17], and references therein) as well as active resonators
[18–21].

Here we introduce a novel manifestation of optical and topo-
logical SSB in a passive system, based on nonlinear optics of aniso-
tropic soft matter: SSB determines both the final configuration of
the dielectric and the direction of propagation of a self-confined
light beam. An axisymmetric and bell-shaped beam initially prop-
agates along the optic axis of a homogeneous uniaxial; noise

triggered SSB of the left/right parity results in a distortion of
the medium accompanied by beam propagation in either of two
(equivalent but opposite) energy-flow directions (i.e., transverse
velocities) at the walk-off angle. In the self-focusing highly non-
linear regime, the beam self-confines into a spatial soliton, which
in turn enhances the distortion of the nonlinear medium and de-
termines the size of its own power-dependent walk-off, the latter
limited by the birefringence. We illustrate this combined optical/
topological SSB in nematic liquid crystals, i.e., uniaxial soft
matter with a giant self-focusing nonlinear response that
supports stable spatial solitons. In the highly nonlinear regime
we model solitons accompanied by power-tunable walk-off and
demonstrate for the first time, to the best of our knowledge,
the soliton enhancement of SSB in this material system,
presenting model, numerical simulations and experimental re-
sults. In addition, we demonstrate experimentally that the non-
local self-focusing character of the material further enables a
novel type of optical hysteresis in beam refraction versus angle
of incidence.

2. OPTICAL SSB IN A UNIAXIAL MEDIUM

The propagation of light beams in anisotropic media depends
on the wavevector direction and the polarization of the
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electromagnetic wavepacket. In uniaxials, the anisotropy affects
extraordinary eigenwaves (e-waves), resulting in a refractive index
ne that varies with the propagation direction (wavevector or phase
velocity) and an energy flow (Poynting vector or group velocity in
space) that is noncollinear with the latter. The angular departure
of the group velocity from the phase velocity of an e-wave is
known as walk-off δ [Fig. 1(a)]. Naming ϵ⊥ and ϵ∥ the dielectric
permittivities for (optical frequency) electric fields normal and
parallel to the optic axis n̂, respectively, if θ is the angle between
n̂ and the wavevector k, then ne � �cos2 θ∕ϵ⊥ � sin2 θ∕ϵ∥�−1∕2
and δ � arctan�ϵa sin�2θ�∕�ϵa � 2ϵ⊥ � ϵa cos�2θ���, with ϵa �
ϵ∥ − ϵ⊥ the optical anisotropy. It is apparent that ne�−θ� � ne�θ�
and δ�−θ� � −δ�θ�, i.e., mirror symmetry applies to light propa-
gation. The phenomena we address in this work encompass a
homogeneous distribution of the dielectric tensor, with optic axis
along the input wavevector k‖ẑ of a linearly polarized light beam
with even profile, resulting in θ � 0 everywhere [see Fig. 1(b)]:
left–right symmetry is satisfied and light propagates (as in iso-
tropic media) with phase velocity c∕no and no � n⊥ � ffiffiffiffiffi

ϵ⊥
p

.
In a medium with a Kerr-like optical response, as the wavepacket
power/intensity increases, the nonlinear polarization tends to
modify the orientation of the optic axis [22,23], with positive
or negative changes in θ (hence in δ) being energetically equiv-
alent and determined in sign by noise and in size by the nonlinear
distortion caused by the beam: due to SSB the initially symmetric
system (medium and beam) can spontaneously precipitate in
either of two mirror-symmetric states about the z axis, breaking
the left–right parity and assuming an asymmetric distribution of
the optic axis with the beam traveling either upward (y < 0) or
downward (y > 0) [Fig. 1(c)]. In self-focusing media the forma-
tion of spatial solitons via self-trapping enhances the local inten-
sity and results in light-induced waveguides along angles adjusted
by the input power [24].

A. Nematic Liquid Crystals: Sample and Model

In order to observe soliton-enhanced SSB in both the material
(orientation of the optic axis) and the transverse velocity of
the beam as described above, the nonlinear medium has to possess
two main features: a large optical anisotropy leading to an appre-
ciable walk-off and a high all-optical response in order to access
the nonperturbative nonlinear regime and give rise to spatial sol-
itons at modest powers. An excellent candidate to this extent is
nematic liquid crystals (NLCs), organic soft matter in a state with
the elongated molecules randomly distributed in position but sta-
tistically aligned in a specific direction (the molecular director)
coincident with the optic axis of the macroscopic uniaxial, typ-
ically with ϵa > 0.5 in the visible/near-infrared. NLCs have been
widely investigated in the last few decades owing to tunability
under external stimuli, low dielectric permittivity, and wide trans-
parency [23]. Their nonlinear reorientational response stems from
dipole excitation and subsequent molecule rotation in the
presence of an intense electric field E , as the induced torque ∝
ϵa�n̂ · E��n̂ × E� acts on the director distribution and against the
elastic (intermolecular) forces to minimize the overall system en-
ergy. When field E of the beam and director n̂ are orthogonal to
one another, NLCs are subject to the optical Fréedericksz tran-
sition (OFT) [25], and all-optical reorientation can only occur
above a threshold excitation, with equal probability that the optic
axis rotates clockwise or countercloskwise with respect to its initial
alignment because of symmetry [1]. Thus, the sign of director
rotation at threshold is determined by electromagnetic noise as
well as thermal fluctuations, imperfections, or asymmetries, en-
abling SSB. Additionally, director rotations are associated with
changes in the local refractive index: intense bell-shaped e-wave
beams undergo self-focusing as the refractive index ne increases
with power, giving rise to self-lenses [26] and graded-index wave-
guides supporting spatial solitons or nematicons [27,28]. Beam
self-trapping with low-power beams in NLCs has been widely
explored [28], as the elastic interactions provide a reorientation
nonlinearity with a highly nonlocal character, which, in turn,
yields stable solitons even in two transverse dimensions [29,30].

In the experiments we employed a standard planar NLC cell;
consistently, in the following we refer to the basic configuration in
Fig. 1. The input beam is a single-hump Gaussian, linearly po-
larized along ŷ with wavevector k parallel to ẑ. In the absence of
external excitations the molecular director is homogeneously ori-
ented along z as well, i.e., θ � 0 everywhere. For nonzero θ in the
plane yz, beam self-trapping into nematicons as well as self-steering
have been reported [28]. In the limit θ � 0 that we consider here,
conversely, light-induced reorientation is inhibited at small
powers due to the OFT [1,25]. Thus, nonlinear effects occur
in a nonperturbative regime [26], in which the walk-off δ also
depends on input power and so does the beam trajectory [24].
For a proper treatment of the strong nonlinear response we write
the (transverse) electric field of the e-wave beam as E t �
t̂�z�A�x; y; z�eik0n⊥z , with k0 the vacuum wavenumber, A the
slowly varying envelope, and t̂�z� � ŷ cos δ�z� − ẑ sin δ�z� the
pointwise unit vector normal to the energy flux. The electric field
also possesses a longitudinal component E s � ŝ�z� ine cos2 δk0ϵzz

∂yA
(with ϵzz � ϵ⊥ � ϵa cos

2 θm) to consider in configurations
subject to the OFT, where the subscript m refers to values at
the intensity peak [22]; the subscript s indicates the direction
ŝ � ŷ sin δ�z� � ẑ cos δ�z� of the real part of the complex
Poynting vector S � 1

2E ×H �. Considering a monochromatic

Fig. 1. Soliton-enhanced spontaneous symmetry breaking in uniaxials.
(a) Geometry of relevant quantities in a uniaxial medium supporting spa-
tial solitons: wavevector k (taken parallel to ẑ) at angle θ with the optic
axis n̂, electric field E , and Poynting vector S at angle δ with k. (b) Parity-
conserving beam propagation in the absence of noise. (c) Parity breaking
due to reorientation of the optic axis in the presence of input noise and
propagation of spatial solitons with walk-off.
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beam excitation in the stationary regime and defining the (rotated
frame) coordinates x 0 � x, y 0 � y − tan�δ�z, z 0 � z, nonlinear
propagation is governed by [22]

∂2A
∂z 02

� 2ik0n⊥
∂A
∂z 0

� ∂2A
∂x 02

� Dy
∂2A
∂y 02

� k20Δn2e �θ�A � 0; (1)

∇2θ� γ sin�2�θ − δ���jAj2 − jE sj2�
�2γ cos�2�θ − δ��Re�E tE�

s � � 0; (2)

where Δn2e �θ� � n2e �θ� − n2⊥ is the nonlinear change of the
extraordinary index, γ � ϵ0ϵa∕�4K � quantifies light–matter
coupling (K is an effective elastic constant [23]), and Dy �
n2e �θm�∕ϵzz is the diffraction coefficient in the yz plane (differing
from unity due to the anisotropy).

A direct inspection of Eqs. (1) and (2) confirms that the
solutions are unaffected by the transformation θ → −θ, with
δ�−θ� � −δ�θ� yielding specular trajectories with respect to ẑ in
the plane yz. As the beam power increases and overcomes the
OFT, reorientation can produce a change in θ either clockwise
or counterclockwise: the initial left/right symmetry of the director
distribution is determined in sign by electromagnetic and thermal
noise, as well as by unavoidable imperfections in the molecular
distribution/alignment. Once θ ≠ 0, beam self-focusing takes
place yielding spatial solitons that propagate in the uniaxial at
the corresponding walk-off, the latter upper limited by the
medium anisotropy but locally determined by the soliton power
through θ [24]. The topological SSB yields a final material con-
figuration (optic axis distribution) linked to optical SSB through
beam walk-off, with transverse velocity determined in sign (pos-
itive or negative walk-off in yz) by noise and in size by the soliton
power. The nonlinear beam provides a means to observe the ac-
quired topological asymmetry [Fig. 1(c)] and effectively increases
reorientation well beyond noise levels, thereby enhancing both
matter and light manifestations of SSB in the system.

3. SIMULATIONS AND PREDICTIONS

Equations (1) and (2) yield shape-preserving solitary wave solu-
tions with a flat phase profile in the plane xy (i.e., normal to the
wavevector along z) and energy flux along ŝ. Since the full three-
dimensional �2� 1�D model [Eqs. (1) and (2)] is computation-
ally demanding, we resorted to a simplified model retaining all the
features essential to analyze SSB in anisotropic uniaxials. We si-
mulated nonlinear light propagation using a �1� 1�Dmodel and
the beam propagation method (BPM), addressing the role of the
boundaries and accounting for strong anchoring at the cell inter-
faces. Since beyond OFT the beam essentially evolves in the plane
yz as dictated by the input polarization and the NLC orientation,
in Eq. (1) we could neglect the derivatives along x. For the re-
orientational Eq. (2) in �1� 1�D we had to keep the same non-
locality range of the original system, the latter range depending on
the cell geometry [31]. To this extent we added a Yukawa-like
term with a screening length equal to the thickness Lx across
x; the resulting equation ruling nonlinear reorientation becomes

∇2
yzθ −

�
π

Lx

�
2

θ� γ sin�2�θ − δ���jAj2 − jE sj2�

�2γ cos�2�θ − δ��Re�E tE�
s � � 0; (3)

where the second term on the LHS is the effective screening.
Consistently with the actual NLC cell used in the experiments,

we assumed the orientation angle θ to be zero at both input
(z � 0) and output facets (z � 1 mm). We launched input
beams with profiles corresponding to shape-preserving solitary
waves in infinitely extended samples (see Supplement 1,
Section S3). Figure 2 shows the results for three excitation values
P, with P the equivalent (1D) density power. At low powers,
diffractive spreading dominates the beam dynamics in propaga-
tion along the symmetry axis z. In the case of a beam with P �
0.81 Wmm−1 [Fig. 2(a)], appreciable reorientation takes place
close to the input interface, but it cannot ensure self-confinement
for large z. At higher powers, self-trapping gives rise to breathing
solitons propagating with either positive (y > 0) or negative
(y < 0) transverse velocities depending on noise realizations,
consistently with SSB for P � 0.99 [Fig. 2(b)] and P �
2.95 Wmm−1 [Fig. 2(c)]. Figure 3 summarizes various beam
properties versus power and propagation distance. Figure 3(a) in-
dicates an abrupt transition in reorientation between P � 0.8
and P � 1.0 Wmm−1, confirming that the OFT is first-order
because of self-focusing [32,33] (see Supplement 1). Figure 3(b)
shows the power-dependent trajectories, whereas Fig. 3(c) (blue
line) illustrates the monotonic trend of the transverse velocity
(hence output position) of the beam versus power P once parity
symmetry is broken (with jθmj > 45° after OFT [31]).

The smoking gun of SSB is the appearance of (at least) two
specular local minima in the overall system energy (lightwave
and NLC elastic deformation), each corresponding to broken
system symmetry. A classic example is the so-called Mexican-
hat potential [34]. Following Landau’s standard approach to phase
transitions and applying it to molecular director dynamics in
liquid crystals [32], the free energy of the whole system versus
θm � max�jθj�sgn�θ� reads

F � ακ2θ2m
2

� n⊥P
2c

−
n2e �θm�P
2cn⊥

� γZ 0 sin�2�θm − δm��
4πcn⊥ cos2 δm

dne
dθ

����
θm

P2 � 2P
ck20w

2
sol

; (4)

where P and ws are beam power and width, respectively, and Z 0 is
the impedance of vacuum. The product ακ2 depends on the sol-
iton width wsol (thus on θm), on the material, and on the geom-
etry (as detailed in Supplement 1, Section S4). The first term in
Eq. (4) stems from the elastic energy, a contribution independent

Fig. 2. Simulated soliton-enhanced SSB. Realizations of beam evolu-
tion in yz (upper panels) and corresponding NLC director distribution
(lower graphs); the legends above indicate the input power densities.
Stochastic white noise was added to the initial molecular distribution
in order to initiate director motion.
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from beam power. The second and third terms in Eq. (4) originate
from light–matter coupling in the limit of infinitely narrow
beams, whereas the fourth term accounts for the finite width
of the soliton. The last term proportional to w−2

sol imposes a lower
bound on soliton width owing to diffraction.

The nonlinear propagation of an e-wave light beam can be
investigated by computing Eq. (4) for a given input power.
For low input powers the system energy exhibits a minimum
in θm � 0; i.e., no reorientation occurs because the OFT is
not overcome (Fig. 4). For larger powers two absolute minima
appear, symmetrically located with respect to θm � 0: the overall
energy landscape in Fig. 4 resembles the “‘sombrero”’ (Mexican-
hat) shape.

4. EXPERIMENTAL RESULTS AND DISCUSSION

To experimentally confirm the theoretical analysis, we prepared
a planar sample filled with the commercial E7 NLC and
launched y-polarized (e-wave) fundamental Gaussian beams at
λ � 1.064 μm. First we characterized the sample using input
beams slightly tilted at incidence angles β with respect to z. At
small β and for sufficient powers the beams reoriented the optic
axis and underwent negative refraction (i.e., when launched in
y � 0 its transverse velocity changed sign [35]; see Fig. 5) as well
as self-confinement into spatial solitons. The beam paths in Fig. 5
demonstrate the left/right symmetry of the system (with respect
to y � 0) as the incidence angle β was tuned from negative to
positive values.

At normal incidence (β � 0) reorientation took place at
powers P > 30 mW, a threshold higher than the theoretical value
due to scattering losses and longitudinal beam dynamics. Above
OFT we observed SSB of the beam evolution (transverse velocity
in yz), with results markedly dependent on the point of incidence
due to unavoidable errors in setting β � 0, beam astigmatism,
imperfect NLC alignment, nonuniform anchoring across the in-
put interface, sample inhomogeneities, NLC disclinations, and
defects. Such deterministic errors dominated over noise of electro-
magnetic and thermal origins, as is usually the case in soft matter
[5]. Moreover, as the power excitation approached the OFT
threshold, i.e., close to the homogeneous/inhomogeneous phase
transition associated with SSB, noise fluctuations showed a ten-
dency to diverge, with an increase in correlation length and the
formation of unequal orientation domains (opposite θ, as in Fig. 2
bottom graphs), similar to Weiss domains in ferromagnetic
media (see Supplement 1, Section S2). Correspondingly, despite
the long response time of the reorientational nonlinearity, near
the Fréedericksz transition we observed critical slowing down, in
analogy to earlier reports of order/disorder transitions in
photorefractives [36].

To experimentally assess soliton-enhanced SSB we have to re-
veal the presence of the two z-symmetric free energy minima at
normal incidence (Fig. 4), overcoming the deterministic bias.
This was accomplished by seeding the system, as illustrated in
Fig. 6(a). A slight tilt β of the input wavevector enabled us to
overcome OFT without instabilities, launching the beam with
a small transverse velocity. Then, the excitation was increased

Fig. 3. Synopsis of nonlinear beam properties. (a) Absolute value of
maximum soliton walk-off and orientation θ versus power density.
(b) Beam trajectories corresponding to the five powers marked by sym-
bols in (a): 0.8 Wmm−1 (blue line without symbols), 1.0 Wmm−1 (green
line with squares), 1.2 Wmm−1 (red with triangles), 1.8 Wmm−1 (cyan
with circles), and 2.9 Wmm−1 (magenta with crosses). (c) Absolute
output displacement across y (line with circles) and z-averaged width
(line with squares) of the beam versus power density.
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Fig. 4. Calculated free energy for four input powers (legends) versus
reorientation angle θm at the intensity peak. Oriented states are energeti-
cally favored for input powers above 20 mW.

Fig. 5. Measured refraction of the nonlinear beam. Acquired beam
trajectories at various powers for positive (β � 3°, solid lines) and neg-
ative (β � −3°, dashed lines) input tilts. The cases of 40 and 70 mW
correspond to power-driven negative refraction. The optical wavelength
is 1.064 μm, and the medium is the nematic E7.
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until negative refraction occurred via power-dependent walk-off
(see Fig. 5) [35]: the orientation θ was in the proximity of one of
the two absolute energy minima in Fig. 4. Once the beam wave-
vector was brought back to β � 0 (corresponding to k‖ẑ), the
refracted nonlinear beam kept track of its past whereabouts, re-
maining near the minimum corresponding to the previous (re)ori-
entation θ. Thanks to the (initial) symmetry of the system the
procedure held equally well for both negative and positive β
[see Fig. 6(a)], with two stable mirror states (opposite θ and
Poynting vector directions in the plane yz) available at the same
excitation, in agreement with SSB. Otherwise stated, (determin-
istic) wavevector deflections allowed us to mimic the role of
(stochastic) noise while probing the existence of a pitchfork
bifurcation in the system.

Figures 6(b)–6(d) show typical experimental results for normal
incidence of the input beam. A beam of power P � 2 mW, well
below the OFT, was launched along z and propagated straight
while diffracting [see Fig. 6(c)]. Then the input wavevector
was slightly deflected and the power increased above OFT well
into the self-trapping regime, forming a soliton; after relaxation
the beam was moved back to normal incidence at the same power.
Two stable states could be observed for the same excitation, as in
Figs. 6(b) and 6(d): the nonlinear beam propagated with either
negative [Fig. 6(b)] or positive [Fig. 6(d)] (walk-off ) angles in yz,
the actual sign of its direction being dictated by the sign of the
previous input tilt, i.e., according to its own earlier evolution.
Consistently with this highly nonlinear regime, Fig. 6(e) shows
power-dependent beam trajectories (Poynting vectors), with
two mirror-symmetric stable states with respect to y � 0 at each
power, corresponding to the two energy minima in Fig. 4.

Since e-wave nonlinear beams propagate in a system with
broken symmetry according to their previous evolution (self-
confinement and refraction), such memory effect can be expected
to lead to hysteresis and bistability [33,37]. To this extent we ex-
plored beam dynamics for powers above OFT as the incidence
angle was continuously varied along a close loop. We started with
a self-deflected spatial soliton excited at negative incidence β < 0,
thus propagating with positive walk-off and subject to negative
refraction (point a in Fig. 7). From this state, β was gradually
increased toward positive values (black dashes with squares in
Fig. 7), while we measured the output beam position yout at each
step. The beam shifted to the right (i.e., yout increased) and, even
after crossing the normal incidence limit β � 0 (i.e., k‖ẑ),
remained in the half-plane y > 0 evolving from negative to pos-
itive refraction, with yout getting larger with β. In essence, the
system was not able to escape from the local minimum of the
overall free energy. When β ≈ 2° (point b in Fig. 7), the output
position abruptly changed to negative values; i.e., the beam
switched from standard to negative refraction. Further increases
in β led to decreasing negative refraction (point c in Fig. 7), the
latter eventually vanishing for large enough angles of incidence.
The loop was then completed by decreasing β (red dashes with
circles in Fig. 7), and the beam path followed a trend similar to
the first half-cycle: yout remained negative up to β ≈ −2°, where
the beam switched from negative to positive yout with an abrupt
transition (point d in Fig. 7). Thus, for β in the range �−2° 2°� the
system showed bistable behavior stemming from the presence of
two symmetric minima with respect to θ � 0 in the overall free
energy plotted in Fig. 4, corroborating the observation of SSB as
discussed above. Noteworthy, the cycle was left–right symmetric

Fig. 6. Experimental assessment of SSB. (a) Top: the beam is incident
normally to the uniform NLC with θ � 0 at powers below OFT. Center:
positive and negative tilts of the input wavevector in y � 0 can aid non-
linear reorientation, leading—at high enough powers (HP)—to beam
self-confinement and deflection with (power-dependent) negative refrac-
tion (the transverse velocity changes sign when crossing the input inter-
face in z � 0). Bottom: the wavevector is brought back to normal
incidence k‖ẑ keeping the input power above OFT: the beam maintains/
remembers self-confinement and self-deflection. The blue ellipses indi-
cate the local alignment of the molecular director. (b)–(e) Symmetry
breaking in beam propagation as the director distribution is distorted
through reorientation. (b), (d) Photographs of a P � 100 mW nonlinear
beam undergoing (b) negative and (d) positive walk-off, respectively.
(c) Linear diffraction for P � 2 mW. (e) Beam trajectories for various
input powers. The curved trajectories for P � 40 mW (green lines)
are caused by scattering losses that make optical reorientation fade
away along z.

Fig. 7. Hysteresis of beam position versus input tilt. Output beam
position yout versus increasing (black squares) and decreasing (red circles)
incidence angles β for an input power of 100 mW. The two (opposite)
angles corresponding to the transitions (points b and d ) depend on
power. The cycle was swept clockwise from a to d . The colored areas
mark positive (light blue) and negative (pink) refraction, respectively.
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within experimental accuracy, thus ruling out spurious effects and
artifacts due to misalignments.

5. CONCLUSIONS

We investigated SSB enhanced by spatial solitons in anisotropic
soft matter. We specifically considered a self-focusing uniaxial di-
electric initially possessing left–right symmetry: in the presence of
intense and linearly polarized light beams with electric field
orthogonal to the optic axis, the distribution of the latter can
undergo topological SSB as the optic axis rotates either clockwise
or counterclockwise, depending on noise. These two mirror states
correspond to specular directions of the beam’s Poynting vector in
the propagation plane, i.e., opposite walk-off angles. We used
NLCs, soft organic matter possessing a large reorientational re-
sponse and significant anisotropy, and analyzed soliton-enhanced
SSB by identifying two families of stable optical soliton solutions
traveling with opposite transverse velocities, each corresponding
to a distortion of the optic axis distribution with respect to the
initially symmetric one. Numerical beam propagation confirmed
that different noise realizations can trigger either member of the
mirror-symmetric families, consistently with the two symmetric
minima characterizing the free energy of the strongly coupled
beam–NLC system. In the experiments with a planar cell, we veri-
fied the existence of these two states with opposite orientations θ
and corresponding walk-off angles.

In addition, we demonstrated bistability of the two mirror-
symmetric beam configurations versus incidence angle, further
confirming the occurrence of soliton-enhanced SSB of the
medium and its manifestation through opposite transverse veloc-
ities of the beam. Our findings prove that strong light–matter
coupling through nonlinear light propagation in soft matter is
an ideal playground for the study of SSB and its properties, in-
cluding the interplay with optical self-trapping, anisotropy, and
nonlocality. Thanks to their high tunability, liquid crystals are
an excellent workbench for the experimental investigation of non-
linear dynamics, including, e.g., quantum phase transitions [38].

Since spatial solitons are light-induced waveguides able to con-
fine additional signals [27], soliton-enhanced SSB could find ap-
plications in all-optical switching, using a weak additional beam as
a perturbation (seed) to trigger SSB in lieu of noise and to route
the solitary waveguide (and guided signals) in either of the two
specular walk-off directions determined by soliton power.

Further developments can be foreseen in the search for the
equivalent of the Goldstone boson in this system [34] and in
the demonstration of similar effects in nonlinear materials such
as second-order parametric crystals and lattices in the cascading
regime [39,40], in novel media such as the newly introduced mag-
netoelastic metamaterials [41], and in the study of complex SSB
excitations with optical wavepackets carrying, e.g., spin
and/or orbital angular momenta [42,43].

Funding. Suomen Akatemia (Academy of Finland) (282858).
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