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  Abstract:   There is increasing interest in tuning the opti-

cal and optoelectronic properties of semiconductor nano-

structures using metal nanoparticles in their applications 

in light-emitting and detection devices. In this work we 

study the effect of a dielectric Al 
2
 O 

3 
 gap layer (i.e., spacer) 

on the interaction of ZnO nanowires with metal nanopar-

ticles. The Al 
2
 O 

3
  spacer thickness is varied in the range of 

1 – 25 nm using atomic layer deposition (ALD) in order to 

tune the interaction. It is found that ~5 nm is an optimum 

spacer thickness common for most metals, although the 

enhancement ratio of the near-bandedge emission differs 

among the metals. Consistent results are obtained from 

both photoluminescence (PL) and cathodoluminescence 

(CL) spectroscopies, with the latter being applied to the 

optical properties of individual semiconductor/metal 

nanoheterostructures. The interaction is primarily pro-

posed to be related to coupling of ZnO excitons with local 

surface plasmons of metals, although other mechanisms 

should not be ruled out. 
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1     Introduction 
 Radiative coupling between surface plasmons (SPs) and exci-

tons in a nanoscale optical emitter can lead to fundamental 

quantum optical phenomena, such as the Purcell effect [ 1 ] 

and vacuum Rabi or normal mode splitting [ 2  –  4 ]. SPs can 

increase the density of states and thus the spontaneous 

emission rate in semiconductors [ 5  –  8 ]. Modulations of the 

spontaneous emission in this SP coupling regime have been 

successfully realized in various quantum optical systems 

[ 9  –  13 ]. Semiconductor-dielectric-metal trilayers are arche-

typal systems for the study of exciton-plasmon-polaritons 

[ 14 ] or exciton-plasmon conversion [ 15 ], as well as enhance-

ment of spontaneous light emissions in, e.g., InGaN [ 10 ,  16 ]. 

In such systems the sandwiched dielectric layer modulates 

the coupling strength between the two semiconductor exci-

tons and metal SPs due to wave function overlap. 

 As a typical semiconductor emitter, ZnO has a direct 

band gap of 3.37 eV and a large exciton binding energy of 

60 meV at room temperature. Well-aligned ZnO nanowires 

(NWs) are being widely studied for their application in 

light emitting diodes, UV optical switches, and nanoscale 

lasers [ 17 ]. As-grown ZnO NWs usually have a high density 

of defects or impurities which will trap carriers and result 

in low luminescence efficiency [ 18 ,  19 ]. Recently, a number 

of groups have reported that, by coating ZnO with either a 

metal or dielectric layer, the near-bandgap emission (NBE) 

intensity can be either increased [ 20  –  26 ], or quenched 

[ 27  –  29 ]. In particular, direct metal capping appears to be 

an effective way of enhancing the NBE due to SP coupling 

[ 20  –  23 ,  26 ,  30  –  33 ]. At the same time, the direct contact 

of metal with ZnO complicates the interpretation of the 
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interaction mechanism. A number of possible physical pro-

cesses could occur at the metal-ZnO interface including, 

for example, charge transfer [ 24 ,  28 ,  29 ,  34 ], unintentional 

H doping [ 35 ], metal-induced gap states [ 36 ], and metal dif-

fusion [ 37 ]. It is known that in exciton-plasmon coupling 

for enhancement of fluorescence, a dielectric spacer layer 

is usually necessary to prevent emission quenching caused 

by coupling to lossy surface waves. An insulating dielectric 

layer inserted between ZnO and the metal layer, as adopted 

in the present study, will retard direct electron flow, and 

therefore be more appropriate for the study of exciton-plas-

mon coupling. So far there are limited studies dedicated 

to the localized SP-coupling-induced enhancement of ZnO 

luminescence. Lawrie and co-workers studied the effect of 

MgO spacers on the coupling of SP polaritons on Ag films 

with polycrystalline ZnO films, and established Purcell 

enhancement of NBE as well as visible band enhancement 

through dipole-dipole scattering [ 38 ,  39 ]. Very recently, Liu 

and co-workers reported the effects of Ag localized SPs on 

the UV electroluminescence from ZnO/GaN heterojunction 

light-emitting diodes by inserting MgO spacer layers, and 

found a similar enhancement trend [ 40 ]. No systematic 

investigation on the spacer-thickness dependence of the 

luminescence of ZnO NWs has previously been reported. 

 To realize a homogeneous coating of NWs with a di-

electric spacer in this work, we applied atomic layer depo-

sition (ALD) to achieve fine control over the Al 
2
 O 

3
  spacer 

thickness for ZnO NW/plasmonic metal nanoparticle 

heterostructures. It is found, in complementary photo- 

and cathodoluminescence spectroscopic studies (of NW 

arrays and singular semiconductor/metal heterostruc-

tures, respectively) that the NBE can either be enhanced 

or quenched depending on the spacer thickness, and 

a maximum metal nanoparticle-induced enhancement 

occurs at around 5 nm ALD Al 
2
 O 

3
 . This observation (peak 

PL enhancement around spacer thickness of 5 nm) is pro-

posed to be a result of competition of a nanoscale hybrid 

plasmonic mode with other emission mechanisms [ 41 ].  

2    Experiments 

2.1    Sample preparation 

 Well-aligned ZnO NW arrays were grown from thoroughly 

mixed ZnO-graphite source powders on gold-coated 

GaN/ a -plane sapphire substrates via chemical vapor de-

position. Full details of the growth process can be found 

in Ref. [ 42 ]. The as-grown samples were cut into small 

pieces for subsequent depositions of Al 
2
 O 

3
  and metal. 

Coating with Al 
2
 O 

3
  to the desired thickness was realized 

by ALD (Beneq TFS-200), using trimethylaluminum (TMA) 

and water as the aluminum and oxygen sources respec-

tively, at 200 ° C with a film growth rate of ~0.13 nm/cycle. 

The thickness was determined based on the linear growth 

rate. The outer layers of metal nanoparticles were applied 

via DC sputtering (JFC-1600, JEOL). Some samples were 

directly sputtered with Au without the intermediate Al 
2
 O 

3
  

spacer for control experiments. The morphology of the 

NWs was observed using both scanning electron micro-

scope (SEM) and transmission electron microscope (TEM).  

2.2    Photoluminescence characterization 

 Room-temperature PL measurements were carried out 

using the 325  nm line of a continuous-wave He-Cd laser 

for excitation at an incident angle of 45 °  and spectra were 

recorded in the surface-normal direction. The laser power 

was 10 mW and the spot size around 1 mm 2 . At least three 

measurements were taken on each sample at different 

locations on the surface to verify uniformity.  

2.3    Cathodoluminescence characterization 

 The excitation of NWs for CL measurements was performed 

using an SEM (CamScan CS3200 with LaB6 cathode). All 

CL measurements were performed by exciting the sample 

with a 30 kV electron beam at a beam current of ~1.2 nA. 

Acquisition times varied from 0.01 to 0.5  s depending 

on the signal intensity: times of 0.5, 0.1 and 0.01  s were 

used for pristine ZnO NWs, ZnO/Al 
2
 O 

3
 /Pt, and ZnO/Al 

2
 O 

3
 /

Au NWs, respectively. The electron beam was focused 

onto the sample through a small hole in a short-working-

distance parabolic mirror mounted directly above the 

sample, which collected emitted light over approximately 

half of the available hemispherical solid angle. The mirror 

directs the light out of the SEM chamber to a hyperspec-

tral light collection system (spectrometer and liquid-nitro-

gen-cooled CCD detector). This arrangement allows one 

to build CL maps of the NWs with combined spatial and 

spectral information about the sample (each point in the 

map, which has a spatial resolution of ~20 nm, contains 

the full spectrum of the emitted light) [ 43 ,  44 ].   

3    Results and discussion 
 Vertically aligned ZnO NWs, with a diameters in the range 

of 80–140 nm and a typical height of 1  μ m, are fabricated 
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 Figure 1      Structure of the semiconductor/dielectric/metal array based on ZnO NWs. (A) SEM image of ZnO/Al 
2
 O 

3
  5 nm/Au trilayer NW array. 

Inset is the cross-sectional schematic of a NW. (B) TEM image of a single NW after Al 
2
 O 

3
  coating by ALD, revealing its smooth surface. 

(C) TEM image of the ZnO/Al 
2
 O 

3
  5 nm/Au NW array. (D) TEM image of the ZnO/Al 

2
 O 

3
  5 nm/Ag NW array.    

via epitaxial growth on lattice-matching GaN layers. As-

grown ZnO NWs have very smooth surfaces, which are 

maintained after application of Al 
2
 O 

3
  spacer layers by 

virtue of the ALD process. After metal sputtering, the NW 

surfaces are decorated with a discontinuous layer of nano-

particles, as shown in  Figure 1 . In this example the gold 

nanoparticle diameter is about 5 nm (produced by sputter-

ing at 10 mA for 20 s); the metal particle size increases with 

higher sputtering currents and/or longer sputtering times. 

   Figure 2  presents a comparison of the PL spectra from 

various stages of the NW production and coating process: 

for a pristine ZnO NW array; a ZnO NW array coated by 

ALD with Al 
2
 O 

3
 ; an array coated with an Al 

2
 O 

3 
 spacer layer 

and metal nanoparticles; and an array coated directly 

with metal nanoparticles (i.e., without an Al 
2
 O 

3
  spacer). 

Results are presented here for gold nanoparticles, but 

the pattern of behavior is similar for other metals. The 

as-grown, pristine ZnO NWs exhibit extremely weak UV 

emission at 378 nm and strong broadband defect emission 

centered at 510 nm. This is likely due to a high density of 

surface defect states within the bandgap, which leads to 

strong band bending and a significant reduction in the 

rate of radiative exciton recombination [ 8 ,  18 ,  41 ]. After 

coating with Al 
2
 O 

3
 , the visible defect-related emission is 

somewhat suppressed, while the level of UV emission 

remains unaffected. In previous PL studies of thinly Al 
2
 O 

3
 - 

or polymer-coated ZnO NWs [ 25 ,  45 ], a surface passivation 

effect was proposed to explain a slight enhancement of 

UV emission with or without a decrease in visible emis-

sion. In the present study, the PL spectra show only a 

slight change in NBE after Al 
2
 O 

3
  or direct metal coating, 

indicating that surface passivation is a marginal effect in 

relation to the optical properties. 

  When the NWs are directly coated with Au nano-

particles, the UV emission of the ZnO/Au structures is 

enhanced slightly while the visible emission is drastically 

quenched. This is consistent with previous reports on 

direct metal capping of ZnO nanostructures [ 26 ,  30 ,  34 ]. 

Finally, the ZnO/Al 
2
 O 

3
 /Au samples present a UV peak that 

is significantly enhanced at an optimal dielectric thick-

ness of 5 nm. This gigantic increase in the NBE intensity is 

also observed for other metals (Al, Ag and Pt). 
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 The defect-related surface states of the as-grown ZnO 

NWs cause strong band bending and charge depletion, 

therefore reducing the chances for exciton recombina-

tion near the surface. With Al 
2
 O 

3
 /metal coating, the defect 

emissions are reabsorbed by the metals, and simultane-

ously the plasmon/exciton coupling increases the recom-

bination probability between electrons outside the deple-

tion region and holes within the depletion region. 

 It is found that the broad visible emission of as-

grown ZnO NWs is almost completely eliminated when 

the metal nanoparticle layer is present, with or without 

the ALD spacer. The quenching is independent of the 

thickness of the Al 
2
 O 

3
  spacer from 0 to at least 25 nm (see 

more below), indicating that the mechanism responsible 

for the quenching of visible emissions is not related to 

SP coupling, but more likely to metal plasmonic absorp-

tion. As the metal nanoparticles have a broad plasmonic 

absorption peak covering the visible range, the ~500 nm 

emissions from the ZnO NW core can be absorbed by the 

metal particles. 

 In order to systematically study the thickness effect 

of the spacer layer on UV emission, ZnO NWs were coated 

with different ALD Al 
2
 O 

3
  spacer thicknesses (5, 10 and 

25 nm) and sputter-coated with one of four different metals. 

To ensure comparability across the samples, each batch of 

samples were cut from the same pristine ZnO NW sample. 

Data for gold and silver are presented in  Figure 3  (semi-log 

scale), as they are the two metals of most common interest. 

The spectra for Pt and Al show very similar trends and thus 

not presented herein. It is found that the  enhancement 

of UV emissions is most significant at an Al 
2
 O 

3
  thickness 
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 Figure 3      PL spectra of ZnO/Al 
2
 O 

3
 /metal NWs with different ALD 

Al 
2
 O 

3
  spacer thicknesses. The outmost layer of sputtered metal is 

gold for (A) and Ag in (B).    

0

10

20

400

600

800

P
L 

in
te

ns
ity

 (a
.u

.)

400

ZnO/Al2O3/M

500
Wavelength (nm)

ZnO

600

ZnO/Al2O3

ZnO/M

700

 Figure 2      Comparison of PL spectra for ZnO NWs at different stages 

of the growth/coating process (as labeled). The 5 nm Al 
2
 O 

3
  layer is 

applied by atomic layer deposition, and the metal nanoparticles 

(M = Au, Ag, Pt, Al) by sputtering. The spectra are obtained under 

identical measurement conditions. Those shown here correspond 

to gold (M = Au), but the picture is similar for other metals.    

of ~5 nm for all metals; further increase to 10 and 25 nm 

results in sharp reduction of emission intensity.  Table 1  

lists the enhancement ratios (defined as the ratio of UV 

emission intensity of the Al 
2
 O 

3
 /metal-coated NWs to that 

of the pristine ZnO NWs) for the four types of metal at the 

spacer thickness of  g  = 5 nm. Substantial PL enhancement 

in ZnO and other wide bandgap semiconductors by Ag 

and Al plasmons has been observed previously [ 10 ,  40 ]. 

Maximum enhancement is expected for resonant coupling 

between metal SPs and ZnO excitons when the plasmon 

frequency lies near 3.3 eV (380 nm). For Ag and Al which 

have localized plasma frequencies in the near UV range, 

the enhancement ratios are expected to be greater than for 

Au and Pt, which is not exactly the case in Table 1. The 

most likely reason for this discrepancy is the different par-

ticle size. Although the metals were sputtered under the 

same condition, the nanoparticle sizes and associated 

UV extinction coefficients vary significantly from one to 

the next (the particle sizes roughly estimated from TEM 

images are ~5 nm for Au, 15 nm for Ag, and 3 nm for Pt. 

As for Al, the size is indistinguishable probably because of 

oxidation). The observed PL enhancement of Al is nearly 

10 times that of other metals. This could be related to the 
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natural oxidation of the Al nanoparticles, which added an 

extra Al 
2
 O 

3
  layer surrounding the Al core and gave an extra 

enhancement. 

   To further examine how sensitively the enhancement 

depends on Al 
2
 O 

3
  spacer thickness, and to check if there 

exists a competing passivation effect at small ( g   <  5 nm) 

Al 
2
 O 

3
  thickness, a set of control samples with the same 

gold nanoparticles but different Al 
2
 O 

3
  thicknesses were 

prepared and characterized by PL spectroscopy.  Figure 4  

shows the UV peak intensity increases monotonically with 

increasing spacer thickness in the range of  g  = 1–5 nm, with 

the visible emission being heavily suppressed in all cases. 

  Combining the two sets of  g -dependent data above 

generates the plot shown in inset Figure 4. A transition of 

the enhancement ratios occurs near  g  = 5 nm, which is a 

very similar trend to that observed by Sorger et al. in the 

spacer thickness dependence of PL enhancement due to 

coupling with the waveguide plasmonic mode [ 41 ]. In the 

Sorger work, dye molecules were placed inside a nanow-

ire-film spacer with high optical localization, and the PL 

from the molecules formed a hybrid plasmonic polariton 

(HPP) waveguide mode. The PL enhancement peaked 

around  g  = 10  nm because of a dominating nanoscale 

HPP mode over other emission channels, and quenching 

at smaller  g  [ 41 ]. In our case, although the exact mecha-

nism for the PL enhancement may differ from Sorger et al. 

the observed shape in Figure 4 (inset) can also be quali-

tatively explained by two competing effects: i) enhance-

ment of the spontaneous emission rate with decreasing 

spacer thickness, and ii) an monotonically increasing 

coupling probability with increasing spacer thickness. 

The modal Purcell factor is the product of both and hence 

explains the maximum PL enhancement around 5 nm. 

The enhancement ratios approach zero at large ( g   >  10 nm) 

spacer thickness, which, as expected, can be understood 

by the evanescent nature of the electric field of the SPs 

across the dielectric layer. 

 To complement PL studies of NW arrays, CL spectros-

copy was employed to investigate the spatially-resolved 

luminescence properties of individual NWs ( Figure 5 ). 

The versatility and high spatial-resolution of CL spectros-

copy has established it as a powerful tool in the field of 

nanophotonics [ 46 ,  47 ], plasmonics [ 44 ,  48 ,  49 ], and more 

recently metamaterials [ 50 ]. The NWs were transferred 

 Table 1      Relative UV emission intensities of the metal-coated ZnO 

NWs with respect to that of pristine ZnO NWs. The ALD Al 
2
 O 

3
  spacer 

layer thickness is  g  = 5 nm for all metals.  

  Metal type   Au   Pt   Ag   Al 

  Enhancement ratio   590   470   420   3960 
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 Figure 4      PL spectra of ZnO/Al 
2
 O 

3
 /Au NWs with the ALD Al 

2
 O 

3
  spacer 

thicknesses (g) of about 1, 2, 3, 4, and 5 nm. Inset is the plot of the 

relative UV peak intensity as a function of the gap thickness in the 

range of 0-25 nm (Data of  g  = 10 and 25 nm are taken from Figure 3A). 

The solid line is a guide to the eye.    

from the growth substrates (GaN/sapphire) into an 

ethanol solution and then dispersed on Si substrates. To 

ensure consistency of electron beam excitation conditions 

for CL analysis, both as-grown ZnO and metal-capped 

ZnO NWs with Al 
2
 O 

3
  spacers were dispersed on the same 

Si substrate (see Figure 5A). CL spectra and corresponding 

intensity maps for bare ZnO NWs, ZnO NWs coated with 

5-nm Al 
2
 O 

3
 /Pt, and ZnO NWs coated with 5-nm Al 

2
 O 

3
 /Au 

are presented in Figures 5D–F. The spectra were calibrated 

by assuming the intensity is proportional to the spectrum 

acquisition time. The CL results for individual NWs cor-

respond well with PL data for NW arrays, revealing again 

the enhancement of UV emission is quenching of visible 

emission for metal-coated samples. The mapping result 

shows that defect emission is uniformly excited for elec-

tron injection points along the entire length of pristine 

ZnO NWs, but that UV emission is relatively less uniformly 

excited for all samples. This may indicate that the visible 

emissions originate mainly from the intrinsic defects on 

the NW surface while the UV emission intensity depends 

on the coating homogeneity of the metal particles.   

4    Conclusion 
 Through a systematic study of the photo- and cathodo-

luminescence properties of metal-coated ZnO nanowires 

with an intermediate dielectric (Al 
2
 O 

3
 ) spacer, we provide 

a strategy for tailoring the optical properties of ZnO NWs. 

Microscopic, spatially resolved cathodoluminescence 

measurements on individual NWs are entirely consistent 
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with macroscopic photoluminescence data for NW arrays. 

The enhancement of band edge luminescence is found 

to be highly sensitive to the presence and thickness of 

the Al 
2
 O 

3
  spacer: The metal-induced enhancement of UV 

emission with a dielectric spacer is dramatically larger 

than the case without spacer, and significant enhance-

ments are obtained at an optimum Al 
2
 O 

3
  thickness of 

~5 nm for the four metals studied (Au, Ag, Al and Pt). This 

drastic enhancement of NBEs and elimination of defect 

emissions by metal-dielectric coating ZnO nanowires may 

have positive effect on their applications in UV detector, 

light emitting diodes, biosensors, and photovoltaics.   
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