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Abstract. It is shown that a new type of metamaterial, a 3D-array of toroidal
solenoids, displays a significant toroidal response that can be readily measured.
This is in sharp contrast to materials that exist in nature, where the toroidal
component is weak and hardly measurable. The existence of an optimal
configuration, maximizing the interaction with an external electromagnetic field,
is demonstrated. In addition, it is found that a characteristic feature of the
magnetic toroidal response is its strong dependence on the background dielectric
permittivity of the host material, which suggests possible applications. Negative
refraction and backward waves exist in a composite toroidal metamaterial,
consisting of an array of wires and an array of toroidal solenoids.

Toroidal moments were first considered by Zel’dovich in 1957 [1]. They are fundamental
electromagnetic excitations that cannot be represented in terms of the standard multipole
expansion [2]. The properties of materials that possess toroidal moments and the classification
of their interactions with external electromagnetic fields have become a subject of growing
interest [2]–[15]. In particular, the unusual properties of non-radiating configurations, based on
toroidal and supertoroidal currents, have been discussed [4, 5, 10]. Non-reciprocal refraction
associated with an effective Lorentz force acting on photons propagating in a toroidal domain
wall material has recently been predicted [7]. Whereas the importance of toroidal moments in
particle physics was established some time ago (see [12] and the references therein), there is no
known observation of toroidal response in the classical electromagnetism [9]. This is because
the effects associated with toroidal response in materialsthat exist in natureare weak [7]–[9].
At the same time modern technology allows arrays of toroidal moments with sub-millimetre
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particle-size to be manufactured and characterized [13]. Therefore, a metamaterial specifically
designed to maximize thetoroidal componentof an interaction with an external electromagnetic
field may provide an outcome that can open up new possibilities for observation of toroidal
response and its applications.

The aim of the present paper is to provide an estimate for the magnitude of the response
of an array of toroidal moments to an external electromagnetic field. The model is valid in
a quasistatic regime (the size of each metaparticle is much smaller than the wavelength) and
with the assumption that auniform current is induced in each metaparticle. It is shown that
a toroidal metamaterial—an array of toroidal solenoids—shows a significant electromagnetic
response and has intriguing electromagnetic properties. A characteristic feature is the strong
dependence of the response bandwidth on the dielectric properties of the host material, which
suggests possible applications. Backward waves and negative refraction exist in a composite
toroidal material consisting of an array of wires and an array of toroidal metaparticles.

It should be emphasized that the term ‘anapole’ (often used in nuclear physics problems)
and the term ‘toroidal moment’ refer to physically different objects (see the relevant discussion
in [11]). Indeed, an anapole does not radiate electromagnetic energy and does not interact
with external electromagnetic fields. In contrast, toroidal moments interact withtime-dependent
electromagnetic fields and radiate (scatter) electromagnetic energy. Hence, an array of toroidal
moments can act as an electromagnetic medium in the same way in which an array of split-ring
resonators (SRRs) does.

The discussion begins by considering a metaparticle in the form of a toroidal solenoid as
shown in figure1. A conducting wire is wrapped around the toroid so that there areN turns
between the entrance and the exit points for the uniform current flowing through the wire. The
two ends of the wire are connected through a capacitorC and through an additional loop in
the equatorial plane of the structure to compensate thez-component of the magnetic dipole
moment associated with the azimuthal component of the current flowing in the toroidal section
of the winding. An alternative way to eliminate the latter is to use double winding, as shown in
figure1(b) [15]. It will be shown that the magneticquadrupolemoments of both the structures
shown in figure1 are equal to zero.

Indeed, the toroidal dipole moment of a current density distributionj(r, t) is avectorgiven
by [2, 12, 14]

T =
1

10

∫ [
(j · r) r− 2r 2j

]
dV. (1)

On the other hand, the magnetic quadrupole moment of the same system is thesecond-rank
tensor[14, 16]

Q̂=
1

3

∫
[(r× j) r +r (r× j)] dV. (2)

A toroidal coil, assumed to be made of infinitely thin wire can be generated using the following
equations

x = (d − RcosNϕ) cosϕ, (3a)

y = (d − RcosNϕ) sinϕ, (3b)

z = RsinNϕ. (3c)
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Figure 1. (a) Toroidal moment—a toroid is wound continuously with wire
and an extra loop of radiusR1 = d

√
1 + 0.5(R/d)2, compensating the magnetic

dipole moment of the toroidal section is introduced in the equatorial plane.L
is the inductance of the solenoid and< is its loss resistance.C is an externally
introduced capacitor. The origin of the co-ordinate system is the geometric center
of the toroid.Sk ≈ S(1rk/|1rk|), whereS= π R2 and|rk| = d. (b) A double-
wound toroidal solenoid has a zero net magnetic dipole moment. (c)d andR are
the larger and the smaller radii of the toroidal surface(

√
x2 + y2 − d)2 + z2

= R2,
respectively.

If r = (x, y, z) is the radius vector of an arbitrary point along the winding thenϕ is the angle
between thex-axis and the projection ofr onto thexy-plane. The assumption of a uniform
currentI flowing along the wire leads to the current elementj dV being defined asj dV = I dr.
Hence, given that dr =

dr
dϕ

dϕ , equations (1) and (2) become

T =
I

10

∫ 2π

0

[(
dr

dϕ
· r

)
r− 2r 2 dr

dϕ

]
dϕ (4)

and

Q̂=
I

3

∫ 2π

0

[(
r×

dr

dϕ

)
r +r

(
r×

dr

dϕ

)]
dϕ, (5)

respectively. Evaluatingdrdϕ
from (3), performing the integrations in (4) and (5) and assuming

N > 1 yields,

T =
π N IdR2

2
n (6)

and

Q̂= 0, (7)
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wheren= (0, 0, 1) [15]. As (6) and (7) clearly show, the quadrupole moment of a toroidal
solenoid is zero whereas its toroidal moment is nonzero. Although, as (1) and (2) suggest,T
andQ̂ are measured in the same units [A m3], they are physically different and this is reflected in
their properties. For example, a dc toroidal moment(I = const(t)) does not generate magnetic
field outside its own volume [15], whereas a dc quadrupole moment generates nonzero magnetic
field everywhere. In addition, the radiation pattern of an ac toroidal moment is the same as that
of an electric dipole [10, 15], which is not the case for a magnetic quadrupole moment. The
magnetic dipole moment of the toroidal coil

m=
1

2

∫
(r× j) dV =

I

2

∫ 2π

0

(
r×

dr

dϕ

)
dϕ (8)

is

m= πd2I

[
1 +

1

2

(
R

d

)2
]
n (9)

and, hence, this magnetic moment can be compensated by a loop of radiusR1 =

d
√

1 + 0.5(R/d)2 in the equatorial plane of the torus, carrying current uniform current−I ,
as shown in figure1(a). Note, that the magnetic quadrupole moment of this loop is zero and,
hence, the magnetic quadrupole moment of the coil shown in figure1(a) is identically zero.

A toroidal coil, wound in a direction opposite to that of the coil defined by the system (3)
relies instead upon the equations

x′
= (d − RcosNϕ) sinϕ, (10a)

y′
= (d − RcosNϕ) cosϕ, (10b)

z′
= RsinNϕ, (10c)

which are obtained from (3) by formally exchangingx andy in the latter. The toroidal, magnetic
dipole and magnetic quadrupole moments are nowT ′

= T ,m′
= −m andQ̂

′

= 0, so that it
can be concluded that a double-wound toroidal solenoid has a zero net magnetic dipole and
magnetic quadrupole moments, whereas the toroidal moment of the structure is twice that of
a single-wound torus (figure1(b)). The possibility of eliminating the magnetic dipole moment
of a toroidal coil by either adding a loop in the equatorial plane of the torus, or using a double
winding solenoid has been discussed earlier [15].

If either of the metaparticles shown in figure1 is placed in an externalinhomogeneous
magnetic fieldB(r) and the characteristic length scale of variation of the field is much larger
than the size of the metaparticle, then the leading-order response to the external field comes from
the toroidal moment. Indeed, since the currentI is uniform there is no charge accumulation and
the electric multipole moments are zero. The magnetic dipole moment of the system can be
eliminated as shown in figure1 and the magnetic quadrupole moment is zero, as it has been
demonstrated. Therefore, under these conditions, it is toroidal momentT that generates the
leading-order electromagnetic response of the system [2, 12, 14]. The net magnetic fluxΦ in
the solenoid can be written in the approximate form

Φ =

N∑
k=1

Bk ·Sk, (11)

New Journal of Physics 9 (2007) 324 (http://www.njp.org/)

http://www.njp.org/


5

whereBk =B(rk) is the flux density in the center of a given loop. SinceSk is a vector pointing
along the normal to this loop, thenSk can be approximated toSk ≈ S(1rk/|1rk|), where
S= π R2, provided thatN is sufficiently large. Now|1rk| ≈ 2πd/N, hence the flux (1) is

Φ ≈
SN

2πd

N∑
k=1

Bk · 1rk ≈
SN

2πd

∮
∂Σ

B · dr . (12)

In (12) the discreet distribution of loops has been approximated with a continuous one, which
is valid for a sufficiently largeN and∂6 is a circle of radiusd centered at the origin. Using
Stokes’ theorem, (12) can be rewritten as

Φ =
SNd

2
(n · [curl B]r=0), (13)

where once again the assumption for a weak magnetic field variation has been used. In (13)
[curl B]r=0 stands forcurlB evaluated atr = 0.

The net energyW of a toroidal metaparticle in an external magnetic field is the sum of the
contributions of each loop, hence

W = −I
N∑

k=1

Bk ·Sk, (14)

whereI is the strength of the current flowing in the solenoid. From (11), (13) and (14) W takes
the standard formW = −T · curlB [2]–[5], [11], whereT is given by (6). Suppose that the
external electromagnetic field acting on the metaparticle is that of a monochromatic plane wave
(E,H) ∝ exp(−iωt + ik · r), whereE is the electric field,H is the magnetic field,ω is the
angular frequency andk is the wavevector. Kirchhoff’s law implies that

L
dI

dt
+ I < +

Q

C
= −

dΦ ′

dt
. (15)

In (15) L and< are the inductance and the resistance of the solenoid, respectively,Q is the
electric charge accumulated by the capacitor and8′ is the flux (13), generated by the local
(microscopic) fieldH ′. The complex amplitude of the currentĨ is, therefore,

Ĩ =
iωτµ0

i((ωC)−1 − ωL) +<
(curlH ′)n, (16)

whereτ = (SNd)/2 andµ0 is the vacuum permeability. Consider now a toroidal metamaterial,
a 3D array of toroidal metaparticles (figure2) embedded in a background medium. Two different
types of host media are considered: ordinary isotropic dielectric media and arrays of long wires.
The former situation is referred to as a ‘toroidal metamaterial’ and the latter—a ‘composite
toroidal metamaterial’. It should be emphasized that if the wires do not cross the toroids, which
is the situation depicted in figure2(b), no interaction between the neighboring wires and toroids
is possible. This outcome flows directly from the expression for the interaction energy of a
toroidal moment with an external field. Indeed, sinceW = −T · curlB = −µ0T · j, wherej is
the source of the fieldB, it is clear, thatW is zero unless the locations of the toroidal moment
and the field source coincide. The external field induces in each solenoid atime-dependent
toroidal momentT that can be obtained from (6) and (16). In a similar way to the description
of an array of magnetic dipoles in terms of its effective magnetization, an array of toroids can
be characterized by an effective toroidization vectorΘ = κT whereκ is the number of toroids
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Figure 2. (a) Toroidal metamaterial—array of toroidal solenoids embedded in an
isotropic dielectric material with dielectric permittivityε. (b) Composite toroidal
metamaterial—array of toroidal solenoids and an array of long wires, parallel to
the axis of the toroids.

per unit volume. The macroscopic magnetizationM of the material is then [2, 4, 5, 11]

M = ∇ ×Θ. (17)

Using (6), (16) and the Lorenz–Lorentz formulaH ′
=H +M/3 allows (17) to be written as

M =
ω2c2(k×H)n

ω2
T

[
ω2

(
1 +k2

⊥
c2/

(
3ω2

T

))
− ω2

0 + iγω
](k×n), (18)

where the effective ‘toroidal’ frequencyω2
T = Lc2(µ0τ

2κ)−1 has been introduced,ω0 =

(LC)−1/2 is the resonant frequency,γ =R/L is the damping factor,c is the speed of light
in vacuum andk2

⊥
= k2

− (k ·n)2. The toroidal frequency plays a role similar to that of the
effective ‘plasma’ frequencyωp in metamaterials involving arrays of wires [17]. Equation (18)
clearly shows that the metaparticles are not responding like magnetic dipoles. Indeed, the
magnetic flux density vector in the constitutive relationships is not proportional to the magnetic
field locally, as is the case with metamaterials involving SRRs [17]–[19]. As (18) shows, in order
to maximize the electromagnetic response of the material one needs to minimize the toroidal
frequencyωT. GivenR andd the maximum value of the number density isκ = (8R(d + R)2)−1

(see figure3) and this corresponds to each toroid in figure2 being in contact with its nearest
neighbors. The toroidal frequency then is given by

ω2
T =

16c2(d + R)2

π2Rd3
(19)

and it does not depend on the number of windingsN. Note that in deriving (19), L =

µ0N2R2/(2d) has been used [13]. If the transverse size of the unit cell 2(R+ d) is fixed (e.g. by
the manufacturing process), the ratioR/d remains a free parameter and it is easy to show that
ωT reaches a minimumωT0 = 16c/(πd

√
3) at d = 3R and this value represents afundamental

upper limit for the strength of the toroidal metamaterial response in the quasistatic regime, given
the transverse size of the unit cell 2(R+ d). As figure4 shows the functionωT/ωT0 depends
weakly ond/R in a relatively broad range ofd/R values. However, structures withR � d
are disadvantageous sinceωT → ∞ as R → 0. It should be noted that the inductance of the
solenoid is given byL = µ0N2R2/(2d) provided that two conditions are met: (i) the torus is
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Figure 3. The unit cell of a toroidal metamaterial. The minimum volume required
for each toroid is 8R(d + R)2.
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Figure 4. Dependence of the toroidal frequencyωT on the geometry of the unit
cell. The transverse sizeR+ d is fixed and the ratioR/d is the free parameter.

closely wound, i.e.N is sufficiently large and (ii)R � d. The first condition has already been
imposed in deriving (12) and, hence, its use in (19) does not impose any further restrictions.
Excellent agreement with experimental measurements has been obtained atN = 15 [13]. The
inductance of a closely wound toroidal solenoid with arbitraryR and d is given by L ′

=

µ0N2(d2
−

√
d2 − R2) [20]. Note, however, that atd = 3R, which is the physically interesting

parameter range, the relative difference betweenL andL ′ is |L ′
− L|/L < 0.03. Thus, the use

of L ′ instead ofL in (19) results in shifting the minimum ofωT from d = 3R to d ≈ 3.2R.
With d = 5 mm and R = 1.7 mm the value of the toroidal frequency isωT0/2π =

28.3 GHz. In contrast, the microstructures reported in [13] haveωT0/2π ≈ 380 GHz. As (19)
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suggests, the validity of the quasistatic approximation requiresω � ωT. This is because
ωT0d/c ≈ 3 and for this reason in what followsω 6 ωT/10 is used. In addition, numerical
simulations show that the leading order toroidal momentT , given by equation (6), describes
the electromagnetic properties of toroidal solenoids withkd ≈ 0.2 with a high degree of
accuracy [10]. The host media, in which the toroids are embedded is modeled with the effective
permittivity tensor

ε̂ = ε
(
δ̂ + (εp − 1)nn

)
, (20)

whereδ̂ is the unit matrix andεp = 1 pertains to the case of the host material being an isotropic
dielectric. The combinationε = 1 and εp = 1− k2

p/[(ω/c)2
− k2

z], where kp is the effective
‘plasma’ wavenumber [21], corresponds to a wire medium used as a host material. Note that
atkz = 0 (wave propagation perpendicular to the wires)εp reduces toεp = 1− [ω2

p/ω
2].

For an electromagnetic wave propagating in the bulk sample of the toroidal metamaterial
sketched in figure2 the electromagnetic field is that of an ‘extraordinary’ wave, i.e.E =

(Ex, 0, Ez),H = (0, Hy, 0) andk = (kx, 0, kz). The dispersion equation in this case is

ω2

c2
εεp − k2

x(1 +β) − εpk
2
z = 0, (21)

where

β =
ω4εεp

ω2
T

[
ω2

(
1 +k2

xc2/
(
3ω2

T

))
− ω2

0 + iγω
] . (22)

If the frequencyω is sufficiently far from the resonant frequencyω0 the contribution
of the toroidal component can be neglected (i.e.β = 0) and (21) becomes the standard
dispersion equation of an extraordinary wave propagating in an uniaxial dielectric medium [21].
Note that the toroidal metamaterial does not interact with electromagnetic field, polarized
perpendicular ton.

Figure 5 illustrates the extent to which the effect of the mutual coupling between the
toroidal metaparticles affects the dispersion properties of the wave propagating in a bulk sample
of the metamaterial. As can be seen if the Q-factorω0/γ of an individual toroidal resonator
is of the order or below 200, the mutual interaction between the metaparticles plays no role
(figure 5(a)), although the toroidal medium in the latter case can be formally regarded as
‘dense’ (i.e. adjacent metaparticles have been brought in contact with each other andωT = ωT0).
This is because, by its nature, toroidal interaction with external electromagnetic fields is
much weaker than electric- and magnetic-dipole interaction with the same field. The effective
electromotive forces driving the currents in the toroidal solenoids are, therefore, relatively
small and the presence of stronger losses further limits the magnitude of these currents. Thus,
the mutual interaction between toroidal moments is a higher-order effect even for ‘dense’
toroidal media. In contrast, at higher Q-factor values (figure5(b)), the interaction between
the metaparticles becomes significant. Figure6 compares the electromagnetic properties of a
toroidal metamaterial (a), (c) to that of an array of SRRs (b) and (d). As can be seen, toroidal
response shows a strong dependence on the background dielectric permittivityε of the host
material. In particular, doublingε effectively doubles the stop-band bandwidth of the toroidal
medium (a), whereas doublingε has little effect on the response bandwidth of an array of SRRs
(b). This feature suggests possible sensor applications, sinceε depends on parameters such as
temperature, stress, external electric field, etc. Thus small relative changes ofε may result in
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Figure 5. Influence of the Lorentz–Lorenz local field correction on the dispersion
properties of a wave propagating in a bulk toroidal metamaterial atk ⊥ n
and E ‖ n. The full curves are obtained withH ′

=H +M/3 and the
dashed curves—assumingH ′

=H (low-density approximation). Real ‘Re’
and imaginary ‘Im’ parts of the normalized wavenumberkc/ω. (a) Toroidal
metamaterial withγ /ω0 = 5.5× 10−3. (b) Composite toroidal metamaterial with
γ /ω0 = 5.5× 10−4 andωp/ω0 = 1.02

√
2. In both (a) and (b)ω0/ωT = 0.07 and

ω0 = 2 GHz.

significant relative changes of the transmission coefficient. The origin of this feature can be
traced back to themagnetoelectricnature of the toroidal response. Sincek×H = −ωεε0E,
equation (18) suggests that the macroscopic magnetizationM is effectively driven by the
electric fieldE. Neglecting the interaction between the metaparticles, settingkz to zero and
εp to 1 in (21) results in

k2
=

ω2

c2

ε

1 +gT
with gT ≈

εω4

ω2
T(ω

2 − ω2
0 + iγω)

.

The quantity|
ε

k
dk
dε

| (the ratio between the relative variation of the wavenumberk and the
corresponding relative variation of the ambient permittivityε) can be used to estimate the
‘sensitivity’ of the system. The result is

2

∣∣∣∣εk dk

dε

∣∣∣∣ = (1 + 2Re(gT) + |gT|
2)−1/2.

The resonant structure ofgT(ω) suggests the possibility that near the resonance 1 + 2Re(gT) +
|gT|

2
≈ 0 and this results in a strong dependence of the power transmission coefficient|T(ω)|2

on ε. It should be emphasized that the latter result is a feature that is unique for toroidal
media and does not exist for ordinary dielectric/magnetic materials composed of arrays of
electric/magnetic dipoles. Indeed, sincek2

=
ω2

c2 εµ in an ordinary dielectric/magnetic material
and, hence,gT = 0, the ‘sensitivity’ | ε

k
dk
dε

| remains relatively low at all frequencies in full
accordance with figures6(b) and (d). The Q-factorω0/γ of a single toroidal metaparticle in
figure6(a) is 230, which is comparable to the value of 50 measured by the authors of [13] in the
same frequency range, but for toroidal solenoids that are 10 times smaller than those considered
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Figure 6. Frequency dependence of the power transmission coefficient|T(ω)|2

for a metamaterial slab of thicknessl0 = 10 cm at normal incidence and
E ‖ n. (a) Array of toroids withd = 5 mm, R = d/3, ωT/2π = 28.3 GHz,
ω0/2π = 2.5 GHz andγ /ω0 = 4.4× 10−3. (b) Array of SRRs with an effective
permeability µ(ω) = 1 + [Fω2/ω2

0 − ω2
− iγω] where F = 0.1. The other

parameter values are the same as in (a). In both (a) and (b), the full (red) line
corresponds toε = 1 and dashed (blue) line toε = 2. (c) Composite toroidal
metamaterial (see figure2). The wires are assumed lossless and the other
parameter values are the same as in (a). (d) Composite metamaterial consisting
of an array of lossless wires and an array of SRRs with the same effective
permeability as in (b). In (c) and (d), the full (red) curve pertains to the case
ωp =

√
2ω0, the dashed (blue) curve toωp = 1.5

√
2ω0 andγ /ω0 = 4.4× 104.

here. At the same time, the analysis indicates that higher Q-values should be achievable with
larger solenoids [13]. As figure6(c) shows the same strong dependence of the toroidal medium
responsebandwidthexists for a host medium with negative permittivity whereas no such feature
is observed for arrays of SRRs (d). In this case, the stop bands from (a) and (b) are transformed
into pass-bands by the presence of the negative permittivity material. Note, however, that much
higher Q-factors are needed to produce a significant transmission in the composite toroidal
medium.

Backward waves exist at frequencies within the pass-band shown in figure6(c). To
appreciate this, consider the Poynting vectorS, in the absence of losses fork⊥n andE‖n

S =
k|E|

2

2ωµ0
ε(1− (ωp/ω)2)(1 +g(ω)), (23)
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Figure 7. Refraction properties of a composite toroidal metamaterial for a
p-polarized incident wave. Poynting vectorS and wavevectork of the incident
(‘ i’) and the transmitted (‘t’) wave. (a) The optic axisn is parallel to the interface.
(b) The optic axis is perpendicular to the interface.

where

g =
ω2

p

ω2 − ω2
p

+
εω4

ω2
T(ω

2(1 +k2c2/(3ω2
T)) − ω2

0)
and k2

=
ω2

c2

ε

1 +g
.

This shows that if 1 +g(ω) > 0 andω < ωp the material is transparent and the wavevector and
the Poynting vector are antiparallel. Analysis similar to that of [22] has been performed and the
results are summarized in figure7. The components of the Poynting vector and the wavevector
that are perpendicular to the optic axis point in opposite directions, i.e.S⊥ ·k⊥ < 0. Depending
on the orientation of the optic axis with respect to the interface this results in either positive
or negative refraction, shown on figures7(a) and (b), respectively. Note, however, that despite
the possibility of negative refraction (figure7(b)) the composite toroidal metamaterial is not a
left-handed metamaterial [23], since a wave propagating in a left-handed metamaterial is always
a backward wave—it satisfies the more restrictive conditionS ·k < 0.

In summary, it is shown that in a sharp contrast to materials that exist in nature, a new type
of toroidal metamaterial shows asignificanttoroidal response. The magnetoelectric nature of the
toroidal response results in strong dependence of the transmission properties on the dielectric
permittivity of the host medium, which suggests possible applications. Negative refraction and
backward waves are found in a composite toroidal metamaterial.
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