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All-optical dynamic focusing of light via coherent
absorption in a plasmonic metasurface

Maria Papaioannou1, Eric Plum1, Edward TF Rogers1,2 and Nikolay I Zheludev1,3

Vision, microscopy, imaging, optical data projection and storage all depend on focusing of light. Dynamic focusing is con-

ventionally achieved with mechanically reconfigurable lenses, spatial light modulators or microfluidics. Here we demonstrate that

dynamic control of focusing can be achieved through coherent interaction of optical waves on a thin beam splitter. We use a

nanostructured plasmonic metasurface of subwavelength thickness as the beam splitter, allowing operation in the regimes of

coherent absorption and coherent transparency. Focusing of light resulting from illumination of the plasmonic metasurface with a

Fresnel zone pattern is controlled by another patterned beam projected on the same metasurface. By altering the control pattern,

its phase, or its intensity, we switch the lens function on and off, and alter the focal spot’s depth, diameter and intensity.

Switching occurs as fast as the control beam is modulated and therefore tens of gigahertz modulation bandwidth is possible with

electro-optical modulators, which is orders of magnitude faster than conventional dynamic focusing technologies.
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INTRODUCTION

A light beam is focused by spatially varying its amplitude or phase
distribution across the beam. Conventional convex lenses rely on the
optical thickness of materials such as glass to introduce suitable phase
delays, while Fresnel zone plates block light or introduce phase
differences at certain distances from their centre in order to achieve
constructive interference at the focus. Dynamic focusing is then
realized by moving several solid lenses relative to each other1, by elastic
deformation2, by varying curvature and optical thickness of micro-
fluidic lenses3–6, by reorientation of liquid crystals7 or by varying
spatial intensity or phase profiles using spatial light modulators8–10.
Such techniques are based on moving solid or liquid parts, or they rely
on the reorientation of liquid crystal cells, making sub-millisecond
response times difficult to achieve. While all-optical nonlinear self-
focusing11–13 can be much faster, its inherent intensity dependence
and minimum intensity requirements are rarely practical. In contrast,
here we report dynamic control over optical focusing based on the
linear interaction of light with light without moving parts, see
Figure 1. Using coherent light, we image two Fresnel zone plate
patterns onto opposite sides of a lossy metasurface beam splitter
enabling dynamic control over intensity (‘on’ to ‘off’), depth (5 to
10 μm) and diameter (700 to 940 nm) of the focal spot as well as
effective switching between a lens and an aperture. The focusing
characteristics may be controlled continuously by modulating the
phase of one illuminating beam. Tens of GHz modulation bandwidth

can be achieved with telecommunications phase modulators, while the
underlying light-matter interaction could deliver femtosecond-scale
switching times14,15.
The ability to control focusing arises from the fact that a sufficiently

thin metasurface or beam splitter can be placed either at a node or
anti-node of the standing wave formed by coherent counterpropagat-
ing beams of light. As the magnetic field of a normally incident plane
wave cannot couple to a truly planar structure16, it is sufficient to
consider the interaction between the wave’s electric field and the thin
film. At a node, where the electric field is zero, light does not interact
with the film, rendering it perfectly transparent. In contrast, at the
anti-node the electric light-matter interaction will be maximized. In
the case of an ideal lossy beam splitter absorbing 50% in a traveling
wave17, this standing wave configuration allows continuous control of
absorption from 0 to 100% by simply changing the relative position of
the standing wave and the thin film18. (Such complete absorption is
known as coherent perfect absorption and was first observed in
optically thick media19–21.) On the contrary, in the case of an ideal
lossless beam splitter (50:50), adjustment of the film’s position allows
all illuminating light to be directed to one side of the beam splitter or
the other. Coherent interaction of light with light on metasurface
beam splitters of tens of nanometers thickness has been used to
control intensity18, state of polarization22 and refraction23 of light at
single photon intensities24 and with many THz bandwidth14,15.
Coherent absorption has also been observed in multi-layer
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graphene25 and a tunable graphene-based coherent absorber has been
proposed26. Coherent control of light-metasurface interactions in
standing waves has been applied to two-dimensional images for all-
optical image processing27, image recognition28 and multi-channel
logical data processing operations29. Here we demonstrate that
coherent control can be useful in tasks requiring manipulation of
light localization in three dimensions using the example of optical
focusing. In essence, we show that coherent control of the interaction
of light with a metasurface in a standing wave can effectively create a
dynamically adjustable Fresnel zone plate.

MATERIALS AND METHODS

Metasurface fabrication and characterization
The metasurface beam splitter was manufactured by thermal evapora-
tion of a 60-nm-thick gold layer on a 50-nm-thick silicon nitride
membrane, subsequent silicon nitride removal by reactive ion etching
to create a free-standing gold film and then focused ion beam milling
of the aperture array shown by the scanning electron micrograph in
Figure 2. The sample’s spectral response was measured with a
microspectrophotometer, see upper left inset of Figure 2.

Experimental characterization
Throughout this work, incident light is linearly polarized with the
electric field parallel to the symmetry axis of the metasurface. We
study coherent control of focusing of light with light for Fresnel zone
plate lenses manufactured by photolithography from a 130-nm-thick
chromium layer on a glass substrate, see Figure 2. Pairs of zone plates
were imaged onto opposite sides of the metasurface with 75 ´
demagnification using light from the same 790-nm fiber-Bragg-
grating-stabilized CW diode laser with 2-mW output power and less
than 0.01-nm line width. Dynamic control over focusing was achieved
by modulating the phase of light illuminating one zone plate with a
liquid crystal phase modulator. Focusing of light resulting from

transmission of zone plate image A and/or reflection of zone plate
image B was characterized by imaging in front of the metasurface
(object plane) starting at z= 0 (metasurface plane) up to z= 25.5 μm
in steps of 880 nm with a CCD camera. Using an optical imaging
system with 50× magnification as shown, this was achieved by
moving the camera 63.8 mm along the wave propagation direction in
2.2-mm steps, see the image sequence in Figure 2. The scanning length
is well beyond the focal length, which was designed to be 15 μm in all
cases. Similar intensity distributions are observed at equal z-distances
on either side of the focal point, with differences caused by the
inherently axially-asymmetric focusing of few-zone zone plates and
deviations from rotational symmetry arising from experimental
imperfections e.g. related to metasurface flatness and homogeneity.
Maps showing the radial intensity distribution along the propagation
direction (as in Figure 3b) were constructed from 30 images taken
during a scan along the z-axis. The input beam intensities were chosen
such that transmission of beam A and reflection of beam B have the
same intensity when the zone plates are not present. The different
experimental data sets studying (i) identical Fresnel zone plates,
(ii) zone plates with a different number of rings and (iii) comple-
mentary zone plates use different camera exposure times to make
optimal use of the camera’s dynamic range. Therefore, intensity is
shown in the same arbitrary units within each data set, but different
data sets use different arbitrary units.

Numerical characterization
Theoretical light distributions were calculated based on the angular
spectrum method30,31. To aid comparison between experimental and
theoretical intensity distributions, the arbitrary intensity units of each
of the three theoretical data sets have been chosen such that the
theoretical focal peak intensity of Fresnel zone plate A matches that of
the corresponding experimental data set. A normalized intensity scale
was used in the last figure, as explained in its caption.

Characterization of focal spots
The focal diameter was determined as the full width at half maximum
(FWHM) of the focal spot intensity in the xy-plane at z= 15 μm. The
focal depth was determined as the FWHM of the focal spot intensity
along the optical axis (z-axis).

RESULTS AND DISCUSSION

Following Ref. 32, the interaction of incident counterpropagating
coherent light fields, EA(x, y) and EB(x, y), on a thin film with complex
field transmission and reflection coefficients, t and r, may be described
by the resulting output fields EC= tEA+rEB and ED= rEA+tEB, where
Ei=Ei(x, y) are the input and output field distributions immediately
before and after interaction with the thin film. When considering
the local interaction of the field with the thin film, it is convenient
to consider the phase difference between the incident fields
θ= arg(EB)− arg(EA), while the output beams may be conveniently
described in terms of the phase difference between transmission and
reflection of different input beams φ= arg(rEB)− arg(tEA). These phases
are related by φ= θ+arg(r)− arg(t).
Let us consider the simplest case of imaging identical Fresnel zone

plates on opposite sides of the beam splitter. For any beam splitter, we
can choose the incident intensities such that transmission of field A
and reflection of field B only differ by the phase φ, which corresponds
to rEB= tEAe

iφ. In this case, EC= tEA(1+e
iφ), implying that the phase of

light field B allows control over output field C, from 4-fold intensity
enhancement for φ= 0 (intensity ∝|E|2) to complete suppression for
φ= π. If the beam splitter is planar, then t= r+1 and destructive
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Figure 1 Dynamic optical focusing with a metasurface absorber of
substantially sub-wavelength thickness. (a) A focused signal beam A
produces focal spot 1. A coherent structured control beam B modifies signal
beam A by controlling absorption on a metasurface absorber, producing (b) a
modified focal spot 2 or (c) eliminating the focal spot altogether.

Control of focusing of light with light
M Papaioannou et al

2

Light: Science & Applications doi:10.1038/lsa.2017.157

http://dx.doi.org/10.1038/lsa.2017.157


interference of incident fields corresponding to EB=−EA renders it
perfectly transparent resulting in EC=EA and ED=EB.
It is instructive to consider the limiting cases of ideal, planar lossy

and lossless beam splitters. The limiting case of an ideal lossy beam
splitter corresponds to r=− 0.5. It follows that φ= θ+π and ED=−EC,
implying identical focusing behaviour in both directions. When
identical Fresnel zone plates are imaged on the ideal lossy beam
splitter, constructive interference of the incident fields (θ= 0) results
in coherent perfect absorption of all light, EC=ED= 0 (as in
Figure 1c), while destructive interference on the beam splitter
(θ= π) results in coherent perfect transparency and maximum
intensity of both output fields.
The other limiting case is an ideal lossless beam splitter that is

described by r ¼ �e7 ip=4=
ffiffiffi

2
p

, implying φ= θ± π/2 and interchan-
ging output fields EC and ED for a π change in θ. When identical zone
plates are imaged on the ideal lossless beam splitter with equal
intensity, phase differences y ¼ 8p=2 of the incident fields result in
focusing of all incident light into one focus on one side of the beam
splitter, EC ¼ ffiffiffi

2
p

e8ip=4 and ED= 0 or vice versa.
Here we consider a lossy metasurface beam splitter that absorbs

about 34% of a single illuminating beam at the experimental
wavelength of 790 nm, placing it closer to the ideal lossy beam splitter
considered above than to the lossless one (see spectral response in
Figure 2). The metasurface beam splitter consists of a 60-nm-thick
free-standing gold film perforated with an array of asymmetrically
split ring apertures with 350-nm period and an overall size of

100 μm×100 μm. This nanostructure, also known as planar metama-
terial or metasurface, has almost identical properties for illumination
of opposite sides and its level of absorption is controlled by the split
ring aperture dimensions33.
We study coherent control of focusing of light with light for Fresnel

zone plate lenses as explained in the Materials and Methods section
and illustrated by Figure 2. Pairs of zone plates were imaged onto
opposite sides of the metasurface using light from the same laser and
dynamic control over focusing was achieved by modulating the phase
of light illuminating one zone plate. Focusing of light was character-
ized by imaging the intensity distribution from the metasurface at z= 0
to a distance of z= 25.5 μm in front of the metasurface, which is well
beyond the focal length, that was designed to be z= 15 μm in all cases.

Controlling focal intensity with light
Figure 3 illustrates coherent control of focal intensity with light, which
results from imaging of identical Fresnel zone plates onto opposite
sides of the metasurface. The projections of the individual zone plates
onto the metasurface and the resulting focusing characteristics are
shown by the first two rows. Both zone plates form similar focal spots
with about 15-μm focal length, 4.4-μm focal depth and 800-nm focal
diameter. Simultaneous projection of both lens patterns onto the
metasurface does not affect the focal depth and diameter within
experimental accuracy, however, the focal intensity becomes strongly
dependent on the phase difference of the illuminating beams.
Constructive interference of transmission of lens pattern A and
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(c) Intensity distribution along the optical axis. (d) Radial intensity distribution on the focal plane at z=15 μm, obtained by averaging cross-sections along
x and y. All color scales show intensity. See Supplementary Fig. S2 for more details.
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reflection of lens pattern B (φ= 0, row 3) leads to a 4-fold intensity
increase, while destructive interference (φ= π, row 4) results in almost
complete absence of the focal spot. While our simulations predict that
the focal intensity should reduce to zero for φ= π, we observe a
residual intensity of about 7% of the peak intensity in our experi-
ments, corresponding to 1400% contrast between maximum and
minimum focal intensity. The residual intensity arises from experi-
mental imperfections related to the accuracy of phase control and
alignment as well as metasurface flatness and homogeneity. The focal
intensity can be controlled continuously between these extremes by
varying φ from 0 to π.

Controlling focal depth and diameter
Figure 4 illustrates coherent control of focal depth and diameter with
light, which results from imaging Fresnel zone plates with a different
number of rings onto opposite sides of the metasurface, where the
smaller zone plate corresponds to the central part of the larger one.
The projections of the individual zone plates onto the metasurface and
the resulting focusing characteristics are shown by the first two rows.
The smaller 2-ring zone plate has an increased focal depth and
diameter compared to the 4-ring zone plate. Simultaneous projection
of both lens patterns onto the metasurface creates an effective zone
plate, where the phase φ controls the contribution of the inner rings
from 4-fold intensity enhancement (φ= 0, row 3 of Figure 4a) to
complete suppression (φ= π, row 4 of Figure 4a) compared to the
outer rings.
Enhancement of the inner rings yields similar focusing character-

istics to the original 4-ring zone plate. In contrast, suppression of the
inner rings yields a focus resembling an optical needle34 or a Bessel
beam35,36, which has a very long focal depth of 10 μm and a small,
sub-wavelength focal diameter of only 700 nm. Thus, variation of φ
from 0 to π allows the focal depth to be controlled from 5–10 μm and
the focal diameter that determines the resolution to be controlled from
700–940 nm, corresponding to dynamic ranges of 100% and 35%,
respectively.

Turning a lens into a perfect absorber or an aperture
As illustrated by Figure 3, projection of identical zone plate patterns
onto the metasurface allows control over the focal intensity in a way
that corresponds to gradually interchanging the lens with a perfect
absorber. This changes the intensity of the focal spot from ‘on’ to ‘off’
without affecting the structure of the spatial light distribution. While
the intensity in the ‘off’ state (φ= π) is predicted to be zero, we
observe a residual focal intensity of a few percent (as explained above)
that is shown on Figure 5a using different color scales for high and low
intensity light distributions. Instead of blocking (almost) all light, focal
intensity may also be controlled by effectively removing the lens. This
is achieved by projecting inverted zone plate patterns onto the
metasurface as illustrated by Figure 5b. Depending on the phase
difference between the projected inverse zone plate patterns, their
superposition on the metasurface forms a homogeneously illuminated
circular disk (φ= 0) or rings of equal intensity but opposite phase
(φ= π). Thus, the inverted zone plate patterns for φ= π effectively
create a phase Fresnel zone plate on the metasurface that produces
essentially the same focal spot as identical zone plate patterns create
for φ= 0 (compare Figure 5b column 4 with Figure 5a column 3),
while the homogeneous circular disk generated by inverted zone plate
patterns for φ= 0 behaves like a lens-sized aperture illuminated
by a plane wave. Numerical modelling clearly reveals the
aperture diffraction pattern and its main features are also observed
experimentally, compare Figure 5b columns 3 and 5.

Phase-dependence of focusing properties
Throughout all experiments, our experimental results closely match
theoretical predictions based on the angular spectrum method30,31.
Figure 6 shows the modelled phase-dependence of focal intensity,
depth and diameter for identical zone plates (as in Figure 3) and for
zone plates with a different number of rings (as in Figure 4),
illustrating that phase modulation can indeed provide continuous
control over all focusing characteristics between the experimentally
observed extremes.

CONCLUSIONS

Although we use Fresnel zone plate patterns written in metal films, it
does not matter how the light fields that are imaged onto the
metasurface beam splitter are created. Conventional lenses, lens arrays,
gratings, holograms or other optical elements may be imaged onto the
beam splitter instead. Therefore, our approach may be applied to
achieve fast modulation of various optical functionalities. By imaging
the beam splitter itself onto a different plane—such as the camera in
our experiments—the dynamic focusing or other functionality can
also be applied outside of the interferometer. While this is beyond the
scope of our experimental study, we note that our approach can be
extended to manipulation of other focal characteristics such as the
focal length (see Supplementary Information and Supplementary
Fig. S6) and optimized to achieve control over one focal property
while minimizing the effect on other focal properties through zone
plate design.
In summary, we demonstrate dynamic control over optical focusing

by projecting Fresnel zone plate patterns onto opposite sides of a
metasurface beam splitter using coherent light. We control focal
intensity from ‘on’ to ‘off’, focal depth with a dynamic range of 100%,
focal diameter by 35% and effectively replace a lens by an aperture
without moving parts. Instead, focusing is controlled by an optical
phase modulator, implying that modulation rates of tens of GHz are
accessible using telecommunications phase modulators.
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