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Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials
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The toroidal dipole is a peculiar electromagnetic excitation that can not be presented in terms of standard
electric and magnetic multipoles. A static toroidal dipole has been shown to lead to violation of parity in atomic
spectra and many other unusual electromagnetic phenomena. The existence of electromagnetic resonances of
toroidal nature was experimentally demonstrated only recently, first in the microwave metamaterials, and then
at optical frequencies, where they could be important in spectroscopy analysis of a wide class of media with
constituents of toroidal symmetry, such as complex organic molecules, fullerenes, bacteriophages, etc. Despite the
experimental progress in studying toroidal resonances, no direct link has yet been established between microscopic
toroidal excitations and macroscopic scattering characteristics of the medium. To address this essential gap in
the electromagnetic theory, we have developed an analytical approach for calculating the transmissivity and
reflectivity of thin slabs of materials that exhibit toroidal dipolar excitations.
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I. INTRODUCTION

The toroidal dipole, shown in Fig. 1, is the first member
of the family of toroidal multipoles [1–3]. It was discovered
by Zel’dovich [4] in 1957, and has since been linked to
parity nonconservation in the atomic spectra [5–7] and was
shown to lead to the violation of Newton’s third law [8]. A
combination of the colocated electric and toroidal dipoles can
result in the so-called nontrivial nonradiating configuration
(also known as the “anapole moment” [9]) that emits vector
and scalar potential without emitting electromagnetic radiation
[9–11]. Different opinions exist on whether such nonradiating
configuration could allow observation of the time-dependent
Aharonov-Bohm effect [9,12].

Due to complexity of the current distribution that induces
the toroidal dipole excitation (see Fig. 1), the toroidal dipole
moment can only arise in the highly confined high-quality
resonant modes of the subwavelength scatterers. Conse-
quently, the study of toroidal dipole excitations could have
significant repercussions for plasmonic scatterers with high-
quality response, such as surface plasmon sensors [13–15],
nanolasers [16], and metallic nanoparticles for nonlinear
optics [17–22].

Despite its intriguing properties, the toroidal dipole is usu-
ally omitted in literature on classical electrodynamics [23,24].
Such omission is not justified since, while the radiation
from any subwavelength charge-current distribution can be
expanded in terms of just the electric and magnetic multipole
fields, all three multipole families (including the toroidal
multipoles) will be required for a complete expansion of
the charge-current distribution itself [2]. The importance of
accounting for the toroidal multipoles has recently been
demonstrated with the experimental observation of toroidal
dipole excitations in a microwave metamaterial [25], followed
by further observations at microwave [11,26,27] and at optical
frequencies [28–32]. This calls for the development of a
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theory that links the microscopic toroidal excitations to the
macroscopic response of the material, i.e., the transmission
and reflection. In this paper, we develop a fully analytical
formalism, which addresses this issue.

II. RADIATION FROM AN INFINITE PLANAR ARRAY
OF ARBITRARY SUBWAVELENGTH EMITTERS

The electromagnetic properties of media are usually de-
scribed in terms of macroscopic material parameters (e.g.,
dielectric permittivity and magnetic permeability), which,
through homogenization of Maxwell’s equations, establish
a connection between media’s macroscopic electromagnetic
response and microscopic charge-current excitations induced
in media’s constituents, i.e. atoms or molecules [23]. Most
homogenization schemes only consider the conventional elec-
tric and magnetic multipole excitations, but the modifications
that arise with the inclusion of toroidal dipoles have also
been discussed [33,34]. Such effective medium descrip-
tion is being also applied to the metamaterials, man-made
material composites with exotic electromagnetic properties
achieved through structuring on the subwavelength scale
[35–37]. However, obtaining effective material parameters for
the metamaterials is not straightforward and often difficult
due to their structural inhomogeneity and strong spatial
dispersion [38,39].

An alternative route, developed in this work, lies in
relating the multipolar decomposition of the microscopic
charge-current excitations, within the unit cell of the elec-
tromagnetic medium, directly to the transmission and re-
flection of that medium. Our approach is particularly suited
for two-dimensional metamaterials, as well as for films of
subwavelength thickness made from conventional materials.
A similar problem of calculating the scattered radiation from
arrays of metallic resonators has been addressed in the past
using the fast multipole method (FMM) [40–44], and periodic
Green’s functions for the Helmholtz equation [45–47]. What
makes our approach different is that it yields expressions
sufficiently compact to be suitable not only for computer-aided
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FIG. 1. (Color online) Three families of dynamic multipoles. The three columns on the left show the charge-current distributions that give
rise to the electric (p), magnetic (m), and toroidal (T) dipoles, electric (Q(e)), magnetic (Q(m)), and toroidal (Q(T)) quadrupoles, as well as
the electric (O(e)), magnetic (O(m)), and toroidal (O(T)) octupoles. The toroidal dipole (T) is created by the oscillating poloidal current, the
current that flows along the meridians of a torus. The next member of the toroidal multipole family, the toroidal quadrupole (Q(T)), is created
by the antialigned pairs of toroidal dipoles. The toroidal octupole (O(T)), in turn, is created by antialigned toroidal quadrupoles. The column
on the right shows the patterns of radiation (i.e., intensity as a function of direction) emitted by the various harmonically oscillating multipoles
(for quadrupoles, only the radiation associated with the off-diagonal component of the second-rank quadrupole moment tensor is shown, for
octupoles only the radiation associated with the component of the third-rank octupole moment tensor, with two repeated indices and the third
distinct index, is shown).

calculations (like FMM), but also for the purely analytic
evaluation. At the same time, our approach accounts not only
for the conventional multipoles, but also for the elusive toroidal
multipoles (see Fig. 1). By applying the derived formalism to a
test-case study metamaterial, we show that characterization of
the electromagnetic response of a certain class of structures
is greatly enhanced by taking the toroidal multipoles into
account.

We will now proceed to deriving a general expression
for the electromagnetic field scattered by a two-dimensional
subwavelength array of identical charge-current excitations
that are represented by a finite series of dynamic multipoles.
For the case of passive materials (and metamaterials), these
multipoles will have been induced by normally incident
plane-wave radiation. We assume that the multipole moments
can either be extracted from the numerical simulation of the
induced currents, or calculated from the dynamics of charge
and current densities anticipated for the metamolecules of a
known geometry [48–52]. In the interest of brevity, only the
key steps of the derivation will be demonstrated, yielding the
expression for the radiation from a two-dimensional array of
toroidal dipoles, before giving the full expression that includes
all leading multipoles.

We start from the far-field distribution of the electric
field radiated by a single oscillating toroidal dipole, which
has been derived by Radescu and Vaman in Ref. [2]

[Eq. (3.15)]:

E(r) = −iμ0c
2k3

3
√

2π

exp(−ikr)

r

×
∑

m=0,±1

T1m[Y1,2,m +
√

2Y1,0,m], (1)

T 1,±1 = 1√
2

(∓Tx + iTy), (2)

T1,0 = Tz, (3)

T = 1

10c

∫
d3r [r(r · J) − 2r2J]. (4)

Here, μ0 is the magnetic permeability of vacuum, c is
the speed of light, r is the vector connecting the location
of the dipole with the observer, and Yl,l′,m are the spherical
vector harmonics that allow us to represent any vector field
on the surface of the unit sphere in the same way as spherical
harmonics allow us to represent any scalar field on the surface
of the unit sphere [1,2,53]. The toroidal dipole moment is
denoted by T, while J is the current density that gives
rise to such dipole. Unlike Vaman and Radescu [2], we are
using the SI units and assume harmonic time dependence
specified by exp(+iωt), where ω is the angular frequency
and k = 2π/λ = ω/c is the wave number.
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FIG. 2. (Color online) Calculating scattering from a two-
dimensional planar array of toroidal dipoles. A single toroidal dipole
is represented by its radiation pattern. The vectors connecting the
dipole to the observer and to the origin of the array are r and ρ,
respectively. The observer is located at distance R from the array.
The vector R is perpendicular to the array plane. The position of
the observer relative to the dipole in spherical polar coordinates is
(r, θ, φ). The position of the dipole relative to the origin of the array
in cylindrical polar coordinates is (ρ, φ′).

The total field radiated by an infinitely large planar array of
toroidal dipoles (Es) is obtained by summing the contributions
from all dipoles at the position of the observer. We assume
that all dipoles oscillate in phase (i.e., the multipole array is
induced by the plane wave at normal incidence), and that the
unit cell of the array (separation between dipoles) is sufficiently
smaller than the wavelength of incident radiation. The latter
assumption allows us to replace the sum over the unit cells
with an integral over the array area [�2 denotes the area of the
unit cell; see Appendix F for the justification of Eq. (5)]:

Es =
∑

r

E(r) ≈ 1

�2

∫
array

d2r E(r). (5)

We choose to work in the coordinate system where the
array of dipoles lies in the xy plane and the incident/scattered
radiation propagates along the z axis (see Fig. 2). Explicit
evaluation of the relevant spherical vector harmonics [2] results
in

Y1,2,±1 +
√

2Y1,0,±1

=

⎛
⎜⎜⎜⎝

±
√

3
10Y2,±2 ∓

√
1
20Y2,0 ∓ Y0,0

−i

√
3
10Y2,±2 − i

√
1

20Y2,0 − iY0,0

−
√

3
10Y2,±1

⎞
⎟⎟⎟⎠ ,

Y1,2,0 +
√

2Y1,0,0 =

⎛
⎜⎜⎜⎝

√
3

20Y2,1 −
√

3
20Y2,−1

−i

√
3

20Y2,1 − i

√
3

20Y2,−1

−
√

2
5Y2,0 + √

2Y0,0

⎞
⎟⎟⎟⎠ .

The vectors are presented in the Cartesian basis with
column entries indicating the x, y, and z components (from
top to bottom, respectively), Yl,m are the standard spherical
harmonics [2]. The basic integral that needs to be evaluated
in Eq. (5), after substitution of Eq. (1), is (l = 1,2,3, . . .; m is
integer and −l � m � l):

Il,m =
∫

d2r Yl,m exp(−ikr)/r. (6)

Equation (6) can be rewritten as (see Appendix A)

Il,m =
∫ 2π

0
dφ′

∫ ∞

0
ρ dρ Yl,m(θ,φ′ + π ) exp(−ikr)/r, (7)

where ρ and φ′ are the radius and the angle specifying the
position of the toroidal dipoles in the planar array (over which
the integration is carried out), r is the distance between the
observer and the toroidal dipole, θ is the angle between the
line connecting the observer to a toroidal dipole and a normal
to the array, and R is the distance from the observer to the
array. All variables are annotated in Fig. 2. The unit vector
pointing from the array towards the observer is R̂ = R/R.

By assuming that the propagation of radiation occurs in a
space with losses (i.e., negative imaginary part of k; losses can
be marginally small) and by concentrating only on the far-field
component of the radiation (R � λ), one can show that (see
Appendix A)

Il,m �
πδm,0(R̂ · ẑ)l

ik

√
2l + 1

π
exp(−ikR). (8)

Substitution of Eq. (1) into Eq. (5) and use of Eq. (8) allows
us to derive

Es = μ0c
2k2

4�2

√
2

⎛
⎜⎝

T1,1 − T1,−1

i(T1,1 + T1,−1)

0

⎞
⎟⎠ exp(−ikR).

Further simplification produces the final form

Es = −μ0c
2k2

2�2
T‖ exp(−ikR). (9)

The subscript (. . .)‖ denotes the projection of the vector into
the plane of the array. If one assumes the coordinate system
shown in Fig. 2, where the array lies in the xy plane, the
projection of the toroidal dipole is given by T‖ = Tx x̂ + Ty ŷ
(i.e., the z component is dropped since it is perpendicular to
the array). In general, T‖ = T − (T · R̂)R̂.

Starting with the far-field distributions for other isolated
multipoles (given in Appendix B) and repeating the derivation
steps given above results in

Es = μ0c
2

2�2

{
−ikp‖ + ikR̂ ×

(
m‖ − k2

10
m(1)

‖

)

− k2

(
T‖ + k2

10
T(1)

‖

)
+ k2(Q(e) · R̂)‖

− k2

2
R̂ × (Q(m) · R̂)‖ − ik3

3
(Q(T) · R̂)‖

+ ik3[(O(e) · R̂) · R̂]‖ − ik3

180
R̂ × [(O(m) · R̂) · R̂]‖

}
× exp(−ikR). (10)
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FIG. 3. (Color online) The design of the unit cell of the test-case toroidal metamaterial. (a) The most basic building block of the unit cell.
An L-shaped resonator out of gold. (b) The L-shaped resonators are put in pairs with 1-μm separation between them. (c), (d) Four pairs of
resonators are combined to make a single large resonator. The two pairs of resonators at the front end are oriented in the usual way [same as in
(a) and (b), with the split pointing up], the two pairs of resonators at the rear end are turned upside down. (e) The full unit cell which consists of
the large gold resonator at the center embedded into the SU-8 polymer. The metamaterial is created by translating and replicating the unit cell
along the x and y axes. The metamaterial is driven by the plane-wave radiation propagating along the ẑ axis and polarized along the ŷ axis. The
configuration of the magnetic field that gives rise to the toroidal dipole excitation in the metamaterial is schematically illustrated with green
field lines.

Equation (10) allows us to calculate the electric field emitted
by an infinitely large two-dimensional array of metamolecules
(or any subwavelength emitters), provided the induced charge-
current density oscillations can be approximated by the first
eight dynamic multipoles. The terms that contribute to the
emitted field in Eq. (10) are the electric (p), magnetic (m),
and toroidal (T) dipoles, electric (Q(e)), magnetic (Q(m)),
and toroidal (Q(T)) quadrupoles, electric (O(e)) and magnetic
(O(m)) octupoles, and the so-called mean-square radii of
toroidal (T(1)) and magnetic (m(1)) dipoles, which are the
lowest-order corrections retained to account for the finite size
of the metamolecules [2]. The expressions used to calculate
the multipole moments are given in Appendix C. Further
multipole contributions to the radiation by an array of finite-
size scatterers can be found in the same way.

III. MULTIPOLE DECOMPOSITION OF THE
ELECTROMAGNETIC RESPONSE OF A TEST-CASE

METAMATERIAL

Using Eq. (10), the radiation transmitted and reflected by
the two-dimensional array of scatterers, under normal plane-
wave illumination, can be found from

Ereflected = [Es] R̂=−k̂,

Etransmitted = [Es] R̂=k̂ + Eincident,

where k̂ = k/k points in the direction of propagation of the
incident radiation.

Next, we will apply our approach to study the electromag-
netic response of a metamaterial designed to exhibit strong
toroidal resonance in the mid-IR part of the spectrum. The unit

cell of the metamaterial array, shown in Fig. 3, contains a three-
dimensional complex-shaped gold metamolecule immersed
in the SU-8 polymer. The metamaterial design has been
derived from the four-split-ring configuration proposed by
Kaelberer et al. [25]. It has been heavily optimized for the
novel metamaterial fabrication technique SAMPL [54], while
trying to mitigate the effects of high Joule losses in the mid-IR
range. We will omit the detailed description of the optimiza-
tion procedure since the main purpose of this paper is to
demonstrate that Eq. (10) provides a correct link between
the macroscopic metamaterial response and the microscopic
multipole excitations within the metamolecules even in the
case of quite complex metamaterial design.

The transmission and reflection of the test-case meta-
material (Fig. 3) was simulated in the 14.5–23.5 μm range
of wavelengths using full three-dimensional (3D) Maxwell’s
equations solver COMSOL MULTIPHYSICS 3.5a (see Appendix G
for material constants used in simulations). The numerical
model also provided data on spatial distribution of the
conduction and displacement current density, which was used
to calculate dynamic multipole moments induced in each
metamolecule (see Appendix C).

The simulated transmission and reflection spectra are
shown in Figs. 4(a) and 4(b) as solid curves, revealing two
distinct resonances located at around 21.0 and 17.4 μm. The
numerical spectra are very well matched by the results of
the multipole calculations described above [see dashed curves
in Fig. 4(a)]. Small discrepancies are attributed to somewhat
limited accuracy of extracting the induced current distribution
from the numerical model.

The analysis of multipole scattering is presented in
Fig. 4(c) (only four leading multipoles are shown, see
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FIG. 4. (Color online) Electromagnetic response of the test-case
toroidal metamaterial. The response of the metamaterial on Fig. 3
has been modeled using the realistic material constants for gold
and SU-8 polymer (see Appendix G). (a) Transmission (T ; blue)
and reflection (R; red) of the metamaterial. The solid curves (T ,
R) are obtained directly from numerical solution of Maxwell’s
equations, dashed curves (Tmult,Rmult) are obtained using Eq. (10),
from the multipole moment representation of each metamolecule
of the metamaterial. (b) The comparison of the directly calculated
metamaterial transmission and reflection (T , R; solid curves) to
the response obtained from multipoles but without the contribu-
tion of toroidal dipole (Tno tor. dip.,Rno tor. dip.; dashed-dotted curves).
(c) Intensity of the radiation scattered back (i.e., reflected) by each of
four leading multipoles when placed in an array [p (electric dipole),
m (magnetic dipole), T (toroidal dipole), Q(e) (electric quadrupole)].
The radiation intensity in all three plots is normalized with respect to
incident radiation.

Appendix D for the full expansion). One can clearly see that at
longer-wavelength resonance (21.0 μm), the metamaterial
response is dominated by the electric quadrupole and magnetic
dipole scattering, and thus this resonance will be of no
interest for the following discussion. By contrast, at the
shorter-wavelength resonance (17.4 μm), the metamaterial
response is clearly dominated by the toroidal dipole scattering
which is more than three times larger than the contribution
due to any other (standard) multipole (see Appendix H for the
corresponding magnetic field distribution). It is also interesting
to note that the dominance of toroidal dipole response would
be even more dominant if the metamaterial was excited with
two coherent counterpropagating waves that created an electric

field antinode at the origin (as was done in Refs. [55,56]).
In this case, due to odd parity, the electric quadrupole and
magnetic dipole excitations would be suppressed leaving only
the toroidal dipole to dominate the metamaterial response, with
the next strongest multipole excitation (electric dipole) being
five times weaker.

Figure 4(c) shows that the toroidal dipole excitation must
play a key role in forming the metamaterial macroscopic
response at the shorter-wavelength resonance (17.4 μm). This
can be verified directly by ignoring the toroidal dipole moment
in the multipole calculations of the transmission and reflection.
As one can see from Fig. 4(b), the correct replication of
the resonant features is simply not possible in the frame
of the standard multipole expansion, and the notion of the
toroidal dipole is thus crucial for the correct interpretation of
metamaterial’s macroscopic response.

IV. CONCLUSION

In conclusion, we developed a fully analytical formalism
that allows calculating the transmission and reflection proper-
ties of thin sheets of metamaterials and material composites,
based on the dynamic multipole decomposition, including the
toroidal dipole, of charge-current densities induced in their
structure by an incident electromagnetic wave. In addition to
the derived formalism, we provided a case study which proved
that the contribution of the toroidal dipole is crucial for the
correct interpretation of the reflection and the transmission
spectra of a certain class of metamaterials. Our findings
demonstrate that the toroidal dipole may be dominant in the
response of the electromagnetic media, and therefore can not
be neglected simply as a high-order correction to the electric
or magnetic multipoles.
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APPENDIX A: INTEGRAL INVOLVING THE
SPHERICAL HARMONICS: Il,m

Here, we will derive Eqs. (7) and (8). At the core of the
derivation lies the evaluation of the following integral:∫ ∞

R

dr

(
R

r

)q

exp(−ikr) �
exp(−ikR)

ik
, Im(k) < 0.

(A1)

The case q = 0 can be found by the direct integration. Higher-
order cases can be evaluated by relating them to the exponential
integrals. Abramowitz and Stegun [57] define the exponential
integral as [Eq. (5.1.4) of Ref. [57]]

En(z) =
∫ ∞

1
dt

exp(−zt)

tn
, n = 0, 1, 2, . . . , Re(z) > 0.
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We are interested in the asymptotic expansion of the En(z)
for the case of large z given in Eq. (5.1.51) of Ref. [57]:

lim
z→∞ En(z) �

exp(−z)

z
[1 − O(1/z)], | arg(z)| <

3

2
π.

Equation (A1) can therefore as be evaluated as follows:∫ ∞

R

dr

(
R

r

)q

exp(−ikr)

= REq(ikR)

� R
exp(−ikR)

ikR
[1 − O(1/kR)].

Note that Im(k) < 0 implies Re(ikR) > 0 and |arg(ikR)| <

π/2. Up to order O(1/kR) or, equivalently, up to O(λ/R), the
expression becomes∫ ∞

R

dr

(
R

r

)q

exp(−ikr) �
exp(−ikR)

ik
.

We now turn our attention to Eq. (6):

Il,m =
∫

d2r Yl,m(θ,φ) exp(−ikr)/r.

The integration is understood to be over the area of the array
of multipoles as shown in Fig. 2. The position of each multipole
in the plane of the array is given by ρ, the distance between
the center point of the array and the considered multipole, and
φ′ the angle between the x axis and the vector connecting the
center point of the array and the multipole in question. There
is also another angle φ that belongs together with r and θ and
denotes the position of the observer relative to the multipole
under consideration (see Fig. 2). It is convenient to place the
origin of the multipole array directly below the observer. In
this case, the relation between φ and φ′ takes a simple form
φ = φ′ + π , up to a full rotation around 2π . Figure 5 helps to
visualize the two angles. The same choice of origin establishes
the relation r2 = ρ2 + R2.

One can now rewrite the integral in a more accessible way:

Il,m =
∫ 2π

0
dφ′

∫ ∞

0
ρ dρ Yl,m(θ,φ′ + π )

exp(−ikr)

r
.

y y

x

x

’

multi-
pole

plane
center

multi-
pole

plane
center

FIG. 5. (Color online) The difference between φ and φ′. Angle φ

is defined in the coordinate frame of a multipole under consideration,
while the angle φ′ is defined in the coordinate frame of the multipole
array (also see Fig. 2). The observer (see Fig. 2) is located directly
above the origin of the array.

From r2 = ρ2 + R2 it follows that r dr = ρ dρ, so

Il,m =
∫ 2π

0
dφ′

∫ ∞

R

r dr Yl,m(θ,φ′ + π )
exp(−ikr)

r

= (−1)m+m

√
2l + 1

4π

(l − m)!

(l + m)!

×
∫

dφ′ exp(imφ′)
∫ ∞

R

dr P m
l (cos θ ) exp(−ikr).

In the last step, we have expanded the spherical har-
monic following the convention used by Arfken and Weber
[58] (see Chap. 12.6), and substituted exp[im(π + φ′)] =
(−1)m exp(imφ′). Here, the P m

l denotes the associated Legen-
dre functions. The expression above is simplified considerably
by the fact that the integral over φ′ is nonzero only for m = 0:

Il,m = πδm,0

√
2l + 1

π

∫ ∞

R

dr Pl (cos θ ) exp(−ikr).

Above, we have used P 0
l (x) = Pl(x) to replace the associ-

ated Legendre functions with Legendre polynomials (respec-
tively). From Fig. 2 it follows that cos θ = R/r for R = Rẑ,
and cos θ = −R/r for R = −Rẑ, thus cos θ = (R̂ · ẑ) × R/r .
Using the parity property of Legendre polynomials [Eq. 12.37
in Ref. [58]] one obtains Pl(cos θ ) = (R̂ · ẑ)l Pl(R/r). Being
a polynomial, Pl(x) can be expressed as power series Pl(x) =∑∞

s=0 a(l)
s xs , the integral then becomes [with use of Eq. (A1)]

Il,m = πδm,0

√
2l + 1

π
(R̂ · ẑ)l

×
∞∑

s=0

a(l)
s

∫ ∞

R

dr

(
R

r

)s

exp(−ikr)

� πδm,0

√
2l + 1

π
(R̂ · ẑ)l

∞∑
s=0

a(l)
s

×
(

exp(−ikR)

ik
+ O(λ/R)

)
.

Finally, one uses the normalization of the Legendre polyno-
mials to eliminate the sum: Pl(1) = 1 = ∑∞

s=0 a(l)
s [Eq. (12.31)

in Ref. [58]]. Thus,

Il,m �
πδm,0(R̂ · ẑ)l

ik

√
2l + 1

π
exp(−ikR),

which completes the derivation.

APPENDIX B: MULTIPOLE DECOMPOSITION OF THE
RADIATION FROM A LOCALIZED SOURCE

To derive the formula for the electric field radiated by
the array of multipoles [see Eq. (10)], we have used the
expression for the radiation emitted by the single multipole
sources provided by Radescu and Vaman [2] [see Eq. (3.15)
in particular]. Here, we will give the truncated series in the SI
units and in the complex-valued time-harmonic approximation
for the electric field emitted by the multipole sources.

Due to large number of terms, it is convenient to separate
the series into different orders of l. The l = 1 subseries then
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contains the dipolar contributions

E(l=1) ≈ μ0c
2

3
√

2π

exp(−ikr)

r

×
∑

m=0,±1

[(
k2Q1,m − ik3T1,m + ik5T

(1)
1,m

)

× (Y1,2,m +
√

2Y1,0,m)

+ i
√

3
(
k2M1,m − k4M

(1)
1,m

) × Y1,1,m

]
.

The l = 2 subseries contains the quadrupolar contributions

E(l=2) ≈ μ0c
2

10
√

6π

exp(−ikr)

r

∑
m=0,±1,±2

[(
ik3Q

(e)
2,m + k4Q

(T )
2,m

)

× (
√

2Y2,3,m +
√

3Y2,1,m) −
√

5k3Q
(m)
2,mY2,2,m

]
.

The l = 3 subseries contains the octupolar contributions

E(l=3) ≈ − μ0c
2k4

15
√

3π

exp(−ikr)

r

×
∑

m=0,±1,±2,±3

[
1

7
O

(e)
3,m(

√
3Y3,4,m + 2Y3,2,m)

+ i√
7
O

(m)
3,mY3,3,m

]
.

The total field emitted is given by

E = E(l=1) + E(l=2) + E(l=3) + (l > 3 subseries).

Although the series given above are truncated at order k4, the
first-order correction for the toroidal dipole (T (1)

1,m) of order k5

is also included to avoid errors in the spectral range where
toroidal dipole dominates (see Fig. 4). The other k5 terms
that can be included are the toroidal octupole, the electric and
magnetic hexadecapoles (l = 4), and the first-order correction
to the magnetic quadrupole.

One may notice that no correction terms for the electric
dipoles have been included. Radescu and Vaman [2] have
shown that the correction terms for the electric multipoles
do not contribute to the far-field radiation emitted by arbi-
trary localized charge-current density distributions, while the
correction terms for the magnetic and toroidal multipoles, by
contrast, do contribute.

APPENDIX C: INTEGRALS FOR FINDING THE LEADING
MULTIPOLES FROM A CURRENT DISTRIBUTION

The expressions we have used to calculate the multipole
moments from the current density distribution are those given
by Radescu and Vaman [2]. We will repeat them here for
convenience. Note that the electric and magnetic multipoles
are exactly the same as those given in the standard texts on
electrodynamics [23] (apart from the different normalization
constants).

Cartesian multipoles are computed by integrating over the
charge density ρ(r) or current density J(r) distribution within

the unit cell (α,β,γ = x,y,z):

pα =
∫

d3r ρ rα = 1

iω

∫
d3r Jα,

mα = 1

2c

∫
d3r [r × J]α,

m(1)
α = 1

2c

∫
d3r [r × J]αr2,

Tα = 1

10c

∫
d3r [(r · J)rα − 2r2Jα],

T (1)
α = 1

28c

∫
d3r [3r2Jα − 2rα(r · J)]r2,

Q
(e)
α,β = 1

2

∫
d3r ρ

[
rαrβ − 1

3
δα,βr2

]

= 1

i2ω

∫
d3r

[
rαJβ + rβJα − 2

3
δα,β (r · J)

]
,

Q
(m)
α,β = 1

3c

∫
d3r [r × J]αrβ + {α ↔ β},

Q
(T )
α,β = 1

28c

∫
d3r [4rαrβ(r · J) − 5r2(rαJβ + rβJα)

+ 2r2(r · J)δα,β],

O
(e)
α,β,γ = 1

6

∫
d3r ρ rα

(
rβrγ

3
− 1

5
r2δβ,γ

)
+{α ↔ β,γ } + {α ↔ γ,β}

= 1

i6ω

∫
d3r

[
Jα

(
rβrγ

3
− 1

5
r2δβ,γ

)

+ rα

(
Jβrγ

3
+ rβJγ

3
− 2

5
(r · J)δβ,γ

)]
+{α ↔ β,γ } + {α ↔ γ,β},

O
(m)
α,β,γ = 15

2c

∫
d3r

(
rαrβ − r2

5
δα,β

)
· [r × J]γ

+{α ↔ β,γ } + {α ↔ γ,β}.
For quadrupoles and octupoles, a shorthand has been used to

improve clarity. For example,
∫

d3r [r × J]αrβ + {α ↔ β} ≡∫
d3r [r × J]αrβ + ∫

d3r [r × J]βrα , i.e., the second term is
obtained from the first term, with the exchanged positions of
indices α and β. In the case of octupoles (for example),

1

6

∫
d3r ρ rα

(
rβrγ

3
− 1

5
r2δβ,γ

)
+ {α ↔ β,γ } + {α ↔ γ,β}

means that the second term is obtained from the first term by
exchanging α and β while leaving γ untouched. The third term
is, again, obtained from the first term, but this time α and γ

are exchanged, while β remains untouched.
In the time-harmonic case, there is no clear difference

between the conduction and displacement currents. In sim-
ulations we have used J = iωε0(ε̃r − 1)E to find the current
density within the media (both metal and dielectric), from
the electric field distribution E(r). The relevant quantities are
ω (angular frequency), ε0 (free-space permittivity), c (speed
of light), and ε̃r [complex-valued dielectric constant (used to
describe both the dielectrics and metals)].
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The spherical multipoles are related to the Cartesian
multipoles through

Q1,0 = pz, Q1,±1 = (∓px + ipy)/
√

2,

M1,0 = −mz, M1,±1 = (±mx − imy)/
√

2,

M
(1)
1,0 = −m(1)

z , M
(1)
1,±1 = (±m(1)

x − im(1)
y

)
/
√

2,

T1,0 = Tz, T1,±1 = (∓Tx + iTy)/
√

2,

T
(1)

1,0 = −T (1)
z , T

(1)
1,±1 = (±T (1)

x − iT (1)
y

)
/
√

2,

Q
(e)
2,0 = 3Q(e)

zz , Q
(e)
2,±1 =

√
6
(∓Q(e)

xz + iQ(e)
yz

)
,

Q
(e)
2,±2 =

√
6

2

(
Q(e)

xx ∓ i2Q(e)
xy − Q(e)

yy

)
,

Q
(m)
2,0 = −3

2
Q(m)

zz , Q
(m)
2,±1 =

√
3

2

(±Q(m)
xz − iQ(m)

yz

)
,

Q
(m)
2,±2 =

√
6

4

( − Q(m)
xx ± i2Q(m)

xy + Q(m)
yy

)
,

Q
(T )
2,0 = Q(T )

zz , Q
(T )
2,±1 =

√
2

3

(∓Q(T )
xz + iQ(T )

yz

)
,

Q
(T )
2,±2 = (

Q(T )
xx ∓ i2Q(T )

xy − Q(T )
yy

)
/
√

6,

O
(e)
3,0 = 15O(e)

zzz,

O
(e)
3,±1 = ∓15

√
3

2

(
O(e)

zzx ± iO(e)
yyy ± iO(e)

xxy

)
,

O
(e)
3,±2 = −3

√
15

2

(
O(e)

zzz + 2O(e)
yyz ± i2O(e)

xyz

)
,

O
(e)
3,±3 = ∓3

√
5

2

(
O(e)

xxx − 3O(e)
yyx ± iO(e)

yyy ∓ i3O(e)
xxy

)
,

O
(m)
3,0 = −O(m)

zzz /12,

O
(m)
3,±1 = ±(

O(m)
zzx ± iO(m)

yyy ± iO(m)
xxy

)
/8

√
3,

O
(m)
3,±2 =

√
2

8
√

15

(
O(m)

zzz + 2O(m)
yyz ± i2O(m)

xyz

)
,

O
(m)
3,±3 = ±(

O(m)
xxx − 3O(m)

yyx ± iO(m)
yyy ∓ i3O(m)

xxy

)
/24

√
5.

APPENDIX D: EXTENDED SERIES OF MULTIPOLES
EXCITED IN THE CASE-STUDY METAMATERIAL

Here, we present the intensity reflected by all the multipoles
in the case-study metamaterial (Fig. 3), in response to incident
plane-wave radiation. Figure 6 is thus an extended version
of Fig. 4(c). As one can clearly see from Fig. 6(b), the
response of the case-study metamaterial is accurately captured
by multipole expansion up to order k4. Even at this level of
precision, only a negligible contribution from the higher-order
multipoles (i.e., Q(m),Q(T), O(e), O(m)) is observed.

APPENDIX E: NOTATION USED FOR QUADRUPOLES
AND OCTUPOLES

The expression that relates the multipole moments induced
in the unit cell of the material sheet to the amplitude and
phase of the emitted radiation is presented in Eq. (10) using a

R
ad

ia
ti

on
 I

n
te

n
si

ty
/I

n
ci

d
en

t 
In

te
n
si

ty

(a)

(b) p

mT

Q(e)

Q(T)

Q(m)

O(m)

O(e)

1

10-1

10-2

10-3

1

10-1

10-2

10-3

10-4

10-5

10-6

14 16 18 20
m ,htgnelevaW )(

22 24

mult

mult

FIG. 6. (Color online) The response of the toroidal metamaterial.
Extended series of multipoles that make up the response of the meta-
material from Figs. 3 and 4. (a) The transmission and reflection of the
metamaterial [same data as on Fig. 4(a)]. (b) The intensity reflected
by arrays of multipoles induced in the metamaterial by incident
radiation [p (electric dipole), m (magnetic dipole), T (toroidal dipole),
Q(e) (electric quadrupole), Q(m) (magnetic quadrupole), Q(T) (toroidal
quadrupole), O(e) (electric octupole), O(m) (magnetic octupole)].

coordinate-independent notation to demonstrate universality.
To avoid confusion, we will clarify this notation using the
coordinate frame shown in Fig. 2 with R̂ = ẑ. Using x̂ · ẑ =
ŷ · ẑ = 0, ẑ · ẑ = 1, (ax̂ + bŷ + cẑ)‖ ≡ ax̂ + bŷ and Einstein
summation convention:

(Q(e) · R̂)‖ = (
Q

(e)
αβ r̂α(r̂ · ẑ)β

)
‖

= (
Q

(e)
αβ r̂αδβz

)
‖

= (
Q(e)

αz r̂α

)
‖

= (
Q(e)

xz x̂ + Q(e)
yz ŷ + Q(e)

zz ẑ
)
‖

= Q(e)
xz x̂ + Q(e)

yz ŷ.
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For the toroidal quadrupole,

(Q(T) · R̂)‖ = Q(T )
xz x̂ + Q(T )

yz ŷ.

Using the conventional definition of the cross product

R̂ × (Q(m) · R̂)‖ = ẑ × (
Q(m)

xz x̂ + Q(m)
yz ŷ

)
= −Q(m)

yz x̂ + Q(m)
xz ŷ.

Similarly for the octupoles,

[(O(e) · R̂) · R̂]‖ = (
O

(e)
αβγ r̂αδβzδγ z

)
‖

= O(e)
xzzx̂ + O(e)

yzzŷ,

R̂ × [(O(m) · R̂) · R̂]‖ = ẑ × (
O(m)

xzz x̂ + O(m)
yzz ŷ

)
= −O(m)

yzz x̂ + O(m)
xzz ŷ.

Thus, only two Cartesian components of each multipole
moment contribute to the radiation emitted by the multipole
array.

APPENDIX F: RADIATION FROM INFINITE PLANAR
ARRAY WITH MARGINALLY SUBWAVELENGTH

UNIT CELLS

The starting point for derivation that forms the core of this
paper is the approximation in Eq. (5). In essence, we assume
that the radiation from a planar array of discrete scatterers,
which is given by the sum of the fields radiated by all scatterers,
can be replaced with an integral over the plane of the array. In
this appendix, it will be demonstrated that this approximation
applies even when the unit cells of the array are only marginally
smaller than the wavelength of the emitted radiation. We will
demonstrate the principle using a basic example of an array of
scalar wave emitters (with rectangular or square unit cells).

Consider an infinite-sized planar array of identical emitters.
Assume that the complex-valued (scalar) field emitted by the
single emitter at rs and detected by the observer at point rOP

is given by

A
(s)
k,l,m(rOP; rs) = Yl,m

(
rOP − rs

|rOP − rs |
)

exp(−ik|rOP − rs |)
|rOP − rs | ,

where k is the wave number, and Yl,m are the standard
spherical harmonics [58]. The total field reaching the observer
at distance R away from the array will be

A
(OP)
k,l,m(xOP, yOP, R) =

∑
n

A
(s)
k,l,m(xOP, yOP, R; rn).

By assuming that the array lies in the xy plane at z = 0 and
that the observer is located above the array at z = R, one can
replace the sum over the unit cells of the array with an integral
[as in Eq. (5)] and carry out the integration (as has been shown
in Appendix A) to get

A
(OP)
k,l,m(xOP, yOP, R) �

πδm,0

ik�2

√
2l + 1

π
exp(−ikR), (F1)

where �2 is the area of the unit cell of the array.
We will now proceed to obtain the same expression without

using Eq. (5). To this end, we will introduce three planes, as
shown in Fig. 7: the array plane (AP) at z = 0, the intermediate

Array Plane
(AP) Intermediate

Plane (IP)

Observer
Plane (OP)

Radiation

R/2

R/2

FIG. 7. (Color online) The (emitter) array plane, intermediate
plane, and the observer plane used in the proof of validity of Eq. (5).
The distances between the neighboring planes are R/2 and the lengths
of the rectangular unit cells of the array are �x and �y.

plane (IP) at z = R/2, and the observer plane (OP) at z = R.
The reason for introducing the intermediate plane is that, by
placing it far enough from the array plane, we can limit our
considerations to the far-field radiation patterns of the emitters.
The complex-valued field at the intermediate plane will be
given by the convolution of the field from a single emitter
(A(s)(IP)) and the array of two-dimensional delta functions (�)
that encodes the period of the (emitter) array:

A
(IP)
k,l,m(x, y) = (

A
(s)(IP)
k,l,m ∗ �

)
(x, y),

�(x, y) =
∞∑

n,m=−∞
δ(2)

[(
x

y

)
−

(
n�x

m�y

)]
,

where �x and �y are the sizes of the array’s unit cells along
the x and y directions. Clearly, the area of the unit cell is given
by �2 = �x�y.

The field reaching the observer plane can be found by
Fourier propagating the field distribution at the intermediate
plane up to observer plane (Sec. 3.10 from Ref. [59]):

A
(OP)
k,l,m(x, y) =

∫
dfx

∫
dfy

× exp

[
− i2π

(
R

2

)√(
k

2π

)2

− f 2
x − f 2

y

]

× Ã
(IP)
k,l,m(fx, fy), (F2)

where Ã
(IP)
k,l,m(fx, fy) is the (spatial) Fourier transform of the

field distribution at the intermediate plane. We find it by
applying the convolution theorem [58,59] followed by the use
of Poisson’s summation formula [60] (to obtain the Fourier
transform of �)

Ã
(IP)
k,l,m(fx, fy) = Ã

(s)(IP)
k,l,m (fx, fy)

× 1

�2

∞∑
n,m=−∞

δ(2)

[(
fx

fy

)
−

(
n/�x

m/�y

)]
,

(F3)
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where Ã
(s)(IP)
k,l,m (fx, fy) is the Fourier transform of the field

produced by a single emitter at the intermediate plane.
Substituting the above expression into Eq. (F2) and dropping
the evanescent terms results in

A
(OP)
k,l,m(x, y) = 1

�2
Ã

(s)(IP)
k,l,m (0, 0) exp(−ikR/2). (F4)

Since the unit cells are assumed to be subwavelength in size,
i.e., λ > �x,�y (where λ is the free-space wavelength of the
emitted radiation and k = 2π/λ), it follows that 1

�x
, 1

�y
> k

2π
.

Thus, the only nonevanescent term in the sum from Eq. (F3)
after substitution into Eq. (F2) is the one with n = 0, m = 0.

Next,

Ã
(s)(IP)
k,l,m (0, 0) =

∫
dx

∫
dy Yl,m(θ,φ)

exp(−ikr)

r

=
∫

IP
d2r Yl,m(θ,φ)

exp(−ikr)

r
. (F5)

Here, without the loss of generality, we assume that the
position of the emitter is at the origin. Within the integral,
the point (x, y) on the intermediate plane is represented as a
point (r,θ,φ) in a spherical coordinate system [i.e., r = r(x, y),
etc.] with z axis pointing out of the array plane and towards the
intermediate plane (see Fig. 7). The integral in Eq. (F5) is in
fact very similar to Il,m from Appendix A. The only difference
is that in case of Il,m the integration was carried over the array
plane while the observer remained fixed. In Eq. (F5), it is
the position of the “intermediate-plane observer” that is being
integrated over, while the emitter, in the array plane, remains
fixed. We proceed by adopting the cylindrical coordinate
system (with ρ2 = x2 + y2 and tan φ = y

x
) for integration of

Eq. (F5):

Ã
(s)(IP)
k,l,m (0, 0) =

∫ 2π

0
ρ dφ

∫ ∞

0
dρ Yl,m(θ,φ)

exp(−ikr)

r
.

14 16 18 20 24
m ,htgnelevaW )(

22

1.68

1.66

1.67

1.65

1.64

1.69 0

-36- 01

-33- 01

-39- 01

-321- 01

-351- 01

kn

FIG. 8. (Color online) The experimentally measured refractive
index of the polymer SU-8 used for simulating the case-study
metamaterial. For simulations of the response of metamaterial on
Fig. 3, the gold split-ring resonators were embedded into SU-8
polymer. The complex-valued refractive index of SU-8 is given by
ñ = n + ik.

14 16 18 20 24
m ,htgnelevaW )(

22

33- 01

36- 01

39- 01

321- 01

351- 01

381- 01

FIG. 9. (Color online) The experimentally measured dielectric
constant of the gold used for simulating the case-study metamaterial.
The complex-valued dielectric constant is given by ε̃r = ε ′

r + iε ′′
r .

As in Appendix A, r2 = (R/2)2 + ρ2 so r dr = ρ dρ (note
that the distance from AP to IP is R/2), and the integration
over φ leaves only the terms with m = 0 (note the δm,0 on the
right hand side):

Ã
(s)(IP)
k,l,m (0, 0) = 2πδm,0

∫ ∞

R/2
dr Yl,0(θ,0) exp(−ikr).

From this point, the integration becomes nearly identical to
Appendix A, so we only give the final result

Ã
(s)(IP)
k,l,m (0, 0) �

πδm,0

ik

√
2l + 1

π
exp(−ikR/2). (F6)

Finally, we combine Eq. (F4) with (F6) to find

A
(OP)
k,l,m(x, y) �

πδm,0

ik�2

√
2l + 1

π
exp(−ikR), (F7)

(a.u.)
H

1.0

0.0

FIG. 10. (Color online) Distribution of magnetic field around the
test-case metamolecule at the resonance (λ = 17.4 μm). The arrow
plot shows the direction of magnetic field while the color map on the
background shows the magnitude of the field. The regions outside the
metamolecule have been partially screened to highlight the unit-cell
boundaries.
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which is the same as Eq. (F1). The conclusion is therefore
that Eq. (5) is an approximation only due to dropping the
evanescent waves [as in Eq. (F4)]. The size of the unit cells here
is arbitrary as long as it is subwavelength. One would simply
have to go to longer R in case of larger (but still subwavelength)
unit cells to allow enough space for the evanescent waves to
decay.

APPENDIX G: MATERIAL CONSTANTS
USED IN SIMULATIONS

The material constants used for simulations have been
measured and provided by Sandia National Laboratories in
a private communication. An infrared variable angle spec-
troscopic ellipsometer (Woolam) was used to measure �

and �, from which the optical constants were derived. The
same constants have been used to model the response of
the previously demonstrated 3D cubic metamaterial based on
SAMPL technology [54].

The refractive index of the SU-8 polymer that housed
the gold split-ring resonators (ñ = n + ik; negative k implies
losses) is shown in Fig. 8.The dielectric constant of the gold
used for simulations is shown in Fig. 9 (ε̃r = ε′

r + iε′′
r ; negative

ε′′
r implies losses).

APPENDIX H: DISTRIBUTION OF MAGNETIC FIELD
AROUND THE METAMOLECULE AT RESONANCE

Following the previous publications on toroidal metama-
terials [11,25–31], it has become instructive to display the
distribution of magnetic field around the metamolecules when
the metamaterial is at toroidal resonance. The toroidal dipole
may be viewed as being created by a loop of magnetiza-
tion [1,4,8,9,61] (also see the schematic current distribution
that gives rise to toroidal dipole shown in Fig. 1), consequently
a vortex of magnetic field confined to the vicinity of the
metamolecule can be taken as further evidence of strong
toroidal dipole excitation. Correspondingly, we present the
distribution of the magnetic field around the metamolecule of
our test-case metamaterial, at the toroidal resonance, in Fig. 10.
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