
PHYSICAL REVIEW A 97, 063834 (2018)

Light emission by accelerated electric, toroidal, and anapole dipolar sources
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Emission of electromagnetic radiation by accelerated particles with electric, toroidal, and anapole dipole
moments is analyzed. It is shown that ellipticity of the emitted light can be used to differentiate between electric and
toroidal dipole sources and that anapoles, elementary neutral nonradiating configurations, which consist of electric
and toroidal dipoles, can emit light under uniform acceleration. The existence of nonradiating configurations in
electrodynamics implies that it is impossible to fully determine the internal makeup of the emitter given only the
distribution of the emitted light. Here we demonstrate that there is a loop hole in this “inverse source problem.” Our
results imply that there may be a whole range of new phenomena to be discovered by studying the electromagnetic
response of matter under acceleration.
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I. INTRODUCTION

Electromagnetic radiation is produced by oscillating and ac-
celerating charges and currents. The converse, however, is not
true. There exists a wide class of configurations composed of
oscillating charges and currents which emit no electromagnetic
fields. These are known as the nonradiating configurations [1].
The nonradiating configurations are not merely a mathematical
curiosity. Their existence directly implies that it is impossible
to deduce the internal composition of a charge-current con-
figuration given only information about the fields it emits. In
practice, this means that if, given a field distribution, a suitable
source charge-current configuration can be found, it will not be
unique since one can always add a nonradiating configuration
to it without changing the emitted field. This feature of
Maxwell’s equations, also known as the inverse source problem
[2–4], impacts many branches of science where light is used
to interrogate distant or otherwise inaccessible objects from
medical imaging to astronomy and radar science [4]. Here we
will show that neutral nonradiating configurations can, in fact,
be made to radiate by using acceleration. This is a loop hole in
the inverse source problem. Unlike other techniques for char-
acterizing localized oscillating charge-current configurations,
such as near-field microscopy, for example [5], our solution
is universal since it only relies on properties of Minkowski
space-time and Maxwell’s equations in vacuum.

The key to understanding the general properties of nonra-
diating configurations is to consider their elementary building
blocks—anapoles. Dynamic anapoles are pointlike nonradiat-
ing configurations that consist of copositioned and coaligned
electric and toroidal dipoles [6–8] as shown in Fig. 1(a).
The electric dipole is the usual infinitesimal electromagnetic
excitation created by two separated charges [9]. The toroidal
dipole is another fundamental pointlike excitation that can be
represented as current flowing on the surface of a torus [see
Fig. 1(a)]. Introduced by Zeldovich in 1957 [6] in the context
of nuclear and particle physics, toroidal dipoles have since
been discovered in a number of systems ranging from atomic
nuclei to solid-state physics and artificial composite media (for
a recent review see Ref. [8]).

An important feature of monochromatic electromagnetic
radiation in vacuum is that double curls of both the electric and
the magnetic fields are proportional to the fields themselves
(i.e., ∇ × ∇ × E = k2 E for the electric field, where k is
the wave number). This symmetry leads to the emission of
electric and toroidal dipoles being identical anywhere outside
the source region [8]. Indeed, this is why these two dipoles can
be combined to create a pointlike nonradiating configuration
(anapole). For a long time, dynamic, i.e., time-varying anapoles
remained a theoretical concept. Their existence was first
demonstrated in a microwave metamaterial [10] and has since
been repeated in a variety of man-made systems in various
domains of the electromagnetic spectrum [8,11–17]. From the
general properties of nonradiating configurations it is relatively
simple to show that any nonradiating configuration can be
regarded as a collection of anapoles [1,18,19]. Therefore,
anapoles can be used as a convenient model to understand
the general properties of all nonradiating configurations. The
focus of this paper is on anapole as well as electric and toroidal
dipoles in noninertial motion.

It is well known that motion, and especially noninertial
motion, changes the fields produced by charged particles [9].
The same applies to the fields due to neutral particles with
various multipole moments. The motion of particles with
conventional electric and magnetic multipole moments was
first investigated more than 50 years ago [20–23]. However
the properties of particles with toroidal dipole and anapole
moments in noninertial motion have so far been overlooked
(see Appendix C). Here, we present a rigorous treatment of
radiation produced by a uniformly accelerated neutral particle
with an anapole moment (anapole particle). In the process,
we also develop a treatment for the radiation produced by
an accelerated particle with a toroidal dipole moment. We
show that despite being nonradiating when at rest (or in
inertial motion, see Appendix D), anapole particles do produce
radiation when subjected to acceleration. By extension, this
implies that all accelerated nonradiating configurations do, in
fact, radiate. Finally, we show that acceleration provides a way
of unambiguously differentiating between electric and toroidal
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FIG. 1. Radiation pattern of a pointlike nonradiating configura-
tion (anapole) subjected to acceleration. (a) Electric and toroidal
dipoles that together make up the anapole. The electric dipole ( p)
corresponds to two separated opposite charges. The toroidal dipole
(T ) corresponds to a loop of magnetization or, equivalently, to current
flowing along the meridians of a torus. (b) Radiation pattern (radius
represents power per solid angle) of a dynamic anapole with moment
N , accelerating with constant acceleration a.

dipole excitations based solely on far-field radiation thus
overcoming the limitation set by the inverse-source problem.

The structure of the paper is as follows. The conventional
notion of point particles with electric, toroidal, and anapole
dipole moments is generalized to a covariant description in
terms of four-currents in Sec. II. The general approach of
obtaining far-field radiation from accelerating point particles
is discussed in Sec. III. The results of these two sections
are combined to obtain the far-field radiation patterns of
accelerated dipoles in Sec. IV. The results are analyzed and
summarized in Sec. V. The appendices contain additional
material on the derivations as well as a section on the notation
used in the paper (see Appendix A).

II. COVARIANT DESCRIPTION OF ELECTRIC,
TOROIDAL, AND ANAPOLE DIPOLE POINT PARTICLES

This section provides the definitions of the electric, toroidal,
and anapole dipole electromagnetic excitations in terms of
charge and current density and then generalizes these defi-
nitions to four-currents of point particles in arbitrary motion.

As is shown in Fig. 1, an anapole corresponds to a super-
position of electric and toroidal dipoles. The charge (ρ) and
current ( J) densities of an anapole particle stationary in the
laboratory frame are [8] as follows:

ρ(t,r) = −∇ · ( pδ(3)), (1)

J(t,r) = ṗδ(3) + ∇ × ∇ × (cTδ(3)), (2)

T = N, p = Ṅ/c. (3)

Here, c is the speed of light, t and r are time and the
position of the observer, whereas p = p(t) and T = T (t) are
the electric and toroidal dipole moments (respectively). The
three-dimensional δ function is denoted with δ(3) = δ(3)(r −
r̄), where r̄ is the position of the point particle. The time
derivative is denoted by an “overdot,” i.e., d p/dt ≡ ṗ. Apart
from defining anapole excitation, Eqs. (1) and (2) also provide
the definition for the charge and current density of a pointlike
electric dipole (obtained by setting T → 0) and a pointlike
toroidal dipole (obtained by setting p → 0). We now return to
the definition of the anapole. To make an anapole, the electric
and toroidal dipoles in the equations above have to be linked.
A convenient way to do so is to introduce an anapole dipole
moment N , defined by Eq. (3).

Before proceeding, we introduce a convenient terminology.
Clearly, the anapole defined in Eqs. (1)–(3) is just one possible
kind of a nonradiating configuration. A suitable superposition
of electric and toroidal quadrupoles, for example, can also
lead to nonradiating configurations, which will differ from
the anapole introduced above. We therefore will refer to
the excitations defined in Eqs. (1)–(3) as anapole dipoles
throughout this paper.

The definition provided in Eqs. (1)–(3) is ill suited for
calculations involving moving and accelerating sources; one
therefore needs to generalize it to the four-current of an
electric-toroidal-anapole dipole. This is accomplished in the
next three subsections. Sections II A and II B provide the
correct expressions for the four-current of a point particle
with electric dipole moments and toroidal dipole moments
(respectively). The superposition of these two four-currents,
which corresponds to an anapole, is given Sec. II C.

A. Four-current of a point particle with an electric
dipole moment

Here we consider the four-current (J (p)μ) due to a point
particle with electric dipole moment ( p). That is, we consider
the four-current due to a point particle in arbitrary motion,
which, when characterized in its instantaneous rest frame, has
only the electric dipole moment p. The four-current can be
derived in a number of ways, including simply considering a
pair of comoving opposite charges that oscillates about a point
x̄μ, which is the four-position of the electric dipole particle.
Fortunately, point particles with electric dipole moments have
already been considered in the literature [22]. The four-current
due to electric dipole point particle is as follows:

J (p)μ =
∫

dτ c2pατ̂ β δ
μη

αβ ∇ηδ
(4)(x − x̄), (4)

where τ is the proper time of the particle, x̄μ = x̄μ(τ ) is the
four-position of the particle, τ̂ α = (dx̄μ/dτ )/c is the unit-
length four-vector tangent to the particle world line, ∇η is
the covariant derivative, δμη

αβ = δμ
α δ

η

β − δ
μ
β δη

α is the generalized
Kronecker δ [24], and pα is the four-vector related to the elec-
tric dipole moment of the particle. One can demonstrate that
Eq. (4) is the correct expression by considering its equivalent
in the instantaneous rest frame of the particle. Let frame S̃

be an inertial reference frame in which the electric dipole
particle is at rest at proper time τ = τ0 which corresponds
to time t̃ = 0 in S̃. Assume that velocity of the particle in S̃
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remains negligible over the time-period t̃ = − ε
2 · · · ε

2 . Within
this period the four-current due to electric dipole point particle
in S̃ is as follows:

J̃ (p)μ =
∫ ε/2

−ε/2

dt̃ ′

γ
c2p̃α ˜̂τβ δ̃

μη

αβ ∇̃η
δ(4)(x̃ − ˜̄x),

J̃ (p)μ =
∫ ε/2

−ε/2
dt̃ ′c2p̃αδ̃

μη

α0 ∇̃ηδ
(4)(x̃ − ˜̄x),

where ˜̄xμ = (ct̃, ˜̄r) is the four-position of the particle,

γ = dt̃/dτ = 1/

√
1 − �̄̃̇

r2/c2 is the Lorentz factor, 
 =
det[∂(x̃)/∂(x)] is the Jacobian due to changing coordinates
from the laboratory frame to S̃. Since S̃ is the instantaneous
rest-frame γ = 1 and ˜̂τβ = δ̃

β

0 (i.e., temporal axis of S̃ is
tangent to the particle world line at t̃ = 0). We also assume
that the laboratory frame and S̃ only differ by a boost, thus

 = 1.

Due to antisymmetry of δ̃
μη

α0 the four-vector p̃α can be
defined as spacelike without any loss of generality: p̃α =
(0, p)α . The charge density then becomes

ρ̃ = J̃ (p)0/c

=
∫ ε/2

−ε/2
dt̃ ′cp̃αδ̃

0η

α0∇̃ηδ[c(t̃ − t̃ ′)]δ(3)(r̃ − ˜̄r)

= −
∫ ε/2

−ε/2
dt̃ ′cp̃α∇̃αδ[c(t̃ − t̃ ′)]δ(3)(r̃ − ˜̄r)

= − p · ∇̃δ(3)(r̃ − ˜̄r0)

= − p · ∇̃δ(3),

which corresponds to the charge density of a point particle
with electric dipole moment p [Eq. (1)]. Above, ˜̄r0 denotes the
position of the particle at time t̃ = 0 in frame S̃. The current
density is (i = 1–3) as follows:

J̃
i =

∫ ε/2

−ε/2
dt̃ ′c2p̃αδ̃

iη

α0∇̃ηδ[c(t̃ − t̃ ′)]δ(3)(r̃ − ˜̄r)

=
∫ ε/2

−ε/2
dt̃ ′c2p̃i∇̃0δ[c(t̃ − t̃ ′)]δ(3)(r̃ − ˜̄r)

=
∫ ε/2

−ε/2
dt̃ ′cp̃i(t̃ ′)∂t̃ δ[c(t̃ − t̃ ′)]δ(3)(r̃ − ˜̄r),

J̃ = {∂t̃ [ pδ(r̃ − ˜̄r)]}t̃=0

= ṗδ(3) − p( ˙̄̃r0 · ∇̃δ(3))

= ṗδ(3).

Note that by definition, the velocity of the point particle
is negligible in S̃ during t̃ = −ε/2 · · · ε/2 so ˙̄̃r(0) = ˙̄̃r0 = 0.
The above expression agrees with the current density due to
the point particle with electric dipole p [Eq. (2) with T = 0].
It follows that Eq. (4) is the four-current of a point particle
which can be described as electric dipole point particle in its
instantaneous rest frame (S̃) at any point in its history. The
four-vector pμ is given by pμ = ∂xμ

∂x̃ν (0, p)ν , where S̃ is the
instantaneous rest frame of the particle and p is the electric
dipole moment of the particle in S̃.

B. Four-current of a point particle
with a toroidal dipole moment

For a toroidal dipole, we adopt an approach similar to
Sec. II A, the expression for the four-current of a point particle
with a toroidal dipole moment is first stated

J (T )μ =
∫

dτ c2T γ τ̂ σ τ̂ηδ
μηα
γσρgρβ∇α∇βδ(4)(x − x̄), (5)

and then it is shown that this expression does reduce to
Eq. (2) (with p = 0) in the instantaneous rest frame of the
particle. Above τ̂η = gην τ̂

ν , where gην = diag(1,−1,−1,−1)
is the metric tensor and gρβ is the inverse metric tensor. The
four-vector T γ is related to the toroidal dipole moment of the
point particle.

As in Sec. II A, one goes into instantaneous rest-frame S̃ of
the particle and uses dτ = dt̃, ˜̂τσ = δ̃σ

0 , ˜̂τη = δ̃0
η ,

J̃ (T )μ =
∫ ε/2

−ε/2
dt̃ ′c2T̃ γ δ̃

μ0α
γ 0ρ g̃ρβ∇̃α∇̃βδ(4)(x̃ − ˜̄x),

ρ̃ = J̃ (T )0/c

= 0,

J̃
(T )i = c(0,T )γ δ̃i0α

γ 0ρg̃
ρβ∇̃α∇̃βδ(3)(r̃ − ˜̄r0)

= c

⎛
⎜⎝

−T x∇̃2 + (T · ∇̃)∂̃x

−T y∇̃2 + (T · ∇̃)∂̃y

−T z∇̃2 + (T · ∇̃)∂̃z

⎞
⎟⎠δ(3)(r̃ − ˜̄r0)

= ∇̃ × ∇̃ × cTδ(3).

Above, the antisymmetry of δμηα
γσρ = δμ

γ δηα
σρ − δμ

σ δηα
γρ −

δμ
ρ δηα

σγ ensures that J̃ (T )0 = 0 and that T̃ 0 has no effect on the
four-current, hence one can set T̃ 0 = 0. Thus the four-current
in Eq. (5) corresponds to point particle which has toroidal
dipole moment T in its instantaneous rest frame at all times
[compare with Eq. (2) when p = 0]. As with electric dipole,
the four-vector T γ = ∂xμ

∂x̃ν (0, T )ν where S̃ is the instantaneous
rest frame and T is the toroidal dipole moment of the point
particle in S̃.

C. Four-current of a point particle with an anapole moment

Combining the previous results in Eqs. (4) and (5) the four-
current of the anapole point particle is as follows:

Jμ(xν) =
∫

dτ

(
c
dNγ

dτ
τ̂ σ δμα

γσ ∇αδ(4)

+ c2Nγ τ̂ σ τ̂ηδ
μηα
γσρgρβ∇α∇βδ(4)

)
. (6)

The four-vector Nγ is such that in the instantaneous rest
frame of the particle (S̃) it has the value of Ñγ = (0, N)γ ,
where N is the anapole moment of Eq. (3).

III. RADIATION FROM MOVING
POINT-PARTICLE MULTIPOLES

In this section we will show how the radiation field due to
arbitrary point dipoles can be evaluated in a straightforward
fashion. As shown by several authors [20–22], four-currents
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due to moving point dipoles can be expressed as linear
combinations of derivatives of δ functions integrated along the
world line of the point particle,

Jμ(x) =
∫

dτ Kμα1···αn∇α1 · · · ∇αn
δ(4)[x − x̄(τ )], (7)

where Kμα1···αn is a tensor that depends on proper time τ

and x̄μ(τ ) is the world line of the point particle. Indeed,
the four-currents for electric [Eq. (4)] and toroidal [Eq. (5)]
point dipoles can be expressed in the form of Eq. (7). The
four-potential [Aμ = (φ/c,A)μ] due to the four-current in
Eq. (7) is given by ∇μ∇μAη = μ0J

η, where μ0 is vacuum
permeability [9]. Substituting the above current density one
can find the retarded solution for the four-potential [9] and
from that the electromagnetic tensor,

Fμη = δγ ξ
μη∇γ Aξ

= μ0

2π
δγ ξ
μηgξκ∇γ ∇α1 · · · ∇αn

×
[∫

dτ Kκα1···αn�(X0)δ(X · X)

]
, (8)

where Xη = xη − x̄η is a four-vector connecting the four-
position of the observer at xη = (ct,r)η and the four-position
of the point particle at x̄η = (ct̄,r̄)η. The Heaviside function
�(X0) = �[c(t − t̄)] enforces causality. We will bear this
constraint in mind and omit �(X0) in what is to follow (i.e., we
will restrict our consideration to t > t̄ , which implies an upper
limit on the proper time integral

∫
dτ → ∫ τ (t)

dτ , which we
will also omit for clarity).

In principle Eq. (8) can be evaluated in full generality, but
the resulting expression tends to become very cumbersome
very fast. Instead we offer a shortcut which is capable of pulling
out only the radiation fields, i.e., fields that decay as 1/|r − r̄|
with distance between the source and the observer. It should
be noted, that the near field of pointlike emitters can contain a
wealth of interesting information on emission and reabsorption
of electromagnetic energy [25,26], however here we will forgo
this in the interest of simplicity.

The shortcut can be illustrated by the simple case of n = 0
and Kμ = qc2τ̂ μ (current density due to the point charge [9]),

F (n=0)
μη = μ0

2π
δγ ξ
μηgξκ

∫
dτ Kκ∇γ δ(X · X).

Following Ref. [9] we rewrite (uμ = dx̄μ/dτ is the four-
velocity),

∇γ δ(X · X) = ∇γ δ[(x − x̄)σ (x − x̄)σ ]

= − Xγ

u · X

d

dτ
δ(X · X). (9)

Substituting and integrating by parts,

F (n=0)
μη = μ0

2π
δγ ξ
μηgξκ

∫
dτ

(
− Xγ

u · X

)
Kκ d

dτ
δ(X · X)

= μ0

2π
δγ ξ
μηgξκ

∫
dτ

d

dτ

[(
Xγ

u · X

)
Kκ

]
δ(X · X).

(10)

The one-dimensional δ function can be recast into [9]

δ(X · X) = 1

2(u · X)
δ(τ − τret),

where τret is the proper time at which Xσ = (r,r)σ , i.e., when
the observer located at position r away from the point particle
observes the radiation emitted by the point particle at time r/c

earlier. For any function of proper time f = f (τ ) [9],∫
dτ δ(X · X)f (τ ) =

[
f (τ )

2(u · X)

]
τ=τret

= f (τret)

2rγ (c − r̂ · v)
.

Above v = d r̄/dt is the particle velocity in frame S (at a
time that corresponds to τret), and γ = 1/

√
1 − (v/c)2 is the

Lorentz factor. The key observation about the above equation
is that it is already decaying as 1/r with the distance between
the point multipole and the observer. Therefore if one wants
the integral above to decay as 1/r,f (τret) must not decay with
r at all, which means that it has to be zeroth order in Xσ [since
Xσ → r(1,r̂)σ when τ → τret].

Returning to Eq. (10) and using uμ = dx̄/dτ and aμ =
duμ/dτ ,

d

dτ

[(
Xγ

u · X

)
Kκ

]

= −uγ

u · X
Kκ − Xγ

(u · X)2
Kκ (a · X − c2) + Xγ

u · X

d

dτ
(Kκ ).

Above, one can see that all the terms obtained by differen-
tiating X will be on the order of 1/X and will therefore not
contribute to far-field radiation. One can also see that this has
to be a general prescription. Function K ··· does not depend on
X, and the only way that X appears under the integral is via
Eq. (9). However, at that point the whole expression is zeroth
order in X (X appears in the numerator and the denominator),
thus any differentiation of X will make the expression negative
order in X. Therefore the rule for obtaining only the far-field
radiation contributions becomes: not to differentiate X. We
will denote this by putting a dot above the equals sign, so, for
example,

d

dτ

[(
Xγ

u · X

)
Kκ

]
.= −Xγ (a · X)

(u · X)2
Kκ + Xγ

u · X

d

dτ
(Kκ ).

This rule allows to recast Eq. (8) into a form more suitable
for evaluation,

Fμη
.= μ0

2π
δγ ξ
μη gξκ

∫
dτ

d

dτ

{(
Xγ

u · X

)
d

dτ

[(
Xα1

u · X

)
· · · d

dτ

[(
Xαn

u · X

)
Kκα1···αn

]
· · ·

]}
δ(X · X), (11)

Fμη
.= μ0

4π
δγ ξ
μη gξκ

(
1

(u · X)

d

dτ

{(
Xγ

u · X

)
d

dτ

[(
Xα1

u · X

)
· · · d

dτ

[(
Xαn

u · X

)
Kκα1···αn

]
· · ·

]})
τ=τret

. (12)
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FIG. 2. World line of the uniformly accelerating particle. The
blue curve (hyperbola) shows the path of the uniformly accelerating
particle (blue dot). Vectors τ̂ μ and âμ are orthonormal vectors in the
direction of instantaneous four-velocity and four-acceleration. To-
gether they span tz subspace. The inset shows two other orthonormal
vector x̂μ and ŷμ which span the xy subspace. The four vectors form
a complete orthonormal set that spans the space-time. Speed of light
is denoted by c.

IV. RADIATION FROM UNIFORMLY ACCELERATING
POINT-PARTICLE ELECTRIC, TOROIDAL, AND

ANAPOLE DIPOLES

In this section we will apply Eq. (12) to find the far-
field radiation from a point particle with electric (Sec. IV A),
toroidal (Sec. IV B), and anapole (Sec. IV C) dipolar moments.

Before proceeding we will briefly review the expressions
specific to the motion of uniformly accelerated point particles.
In the process, we shall re-introduce some definitions made
in the earlier text. The world line of a point particle in the
laboratory frame with uniform acceleration a along the z axis
is [27] as follows:

x̄μ(τ ) = c2

a

(
sinh

aτ

c
,0,0, cosh

aτ

c
− 1

)μ

, (13)

x̄μ(t) =
(

ct,0,0,
c2

a
[
√

1 + (at/c)2 − 1]

)μ

. (14)

Above, τ is the proper time of the accelerating particle,
and the overbar above x̄μ is introduced used to distinguish
the position of the accelerating particle from the location of a
generic event. The integration constants are chosen so that at
time t = 0, which also corresponds to proper time τ = 0, the
accelerating particle is passing through the laboratory-frame
origin, and is instantaneously at rest in the laboratory frame.
The parameter a = √−aμaμ is the magnitude of the four-
acceleration aμ = d2x̄μ/dτ 2.

The world line of the observer [following Eq. (13)] is shown
in Fig. 2. It is convenient to introduce four four-vectors that
form an orthonormal set that spans the space-time. Vector

τ̂ μ points in the direction tangent to the world line of the
accelerating particle and is therefore parallel to four-velocity
dx̄μ/dτ = uμ = cτ̂μ (τ̂ · τ̂ = τ̂ μτ̂μ = 1), vector âμ is par-
allel to four-acceleration aμ = duμ/dτ = aâμ (â · â = −1),
finally vectors x̂μ and ŷμ are along the x and y axes (x̂ · x̂ = −1
and ŷ · ŷ = −1).

From Eq. (13) it follows:
duμ

dτ
= aμ = aâμ,

dâμ

dτ
= a

c
τ̂μ,

dτ̂μ

dτ
= a

c
âμ,

daμ

dτ
=

(
a

c

)2

uμ = a2

c
τ̂μ.

Both in the cases of electric [Eq. (4)] and toroidal [Eq. (5)]
dipoles we will be working with vectors that are, by definition,
always orthogonal to the world line of the particle, i.e., p · τ̂ =
pμτ̂μ = 0 for electric dipole four-vector (and the same for T μ).
Such vectors can be conveniently parametrized by

pμ = p1x̂μ + p2ŷμ + paâμ.

We will be interested in proper-time derivatives of such
vectors. Introducing ṗμ ≡ dp1

dτ
x̂μ + dp2

dτ
ŷμ + dpa

dτ
âμ (and the

corresponding equivalent for p̈μ, etc.), one finds
dpμ

dτ
= ṗμ + pa dâμ

dτ

= ṗμ + (−p · â)

(
a

c
τ̂μ

)

= ṗμ − a

c
(p · â)τ̂ μ.

A. Uniformly accelerated electric dipole point particle

The suitable current density for the electric point particle
with an electric dipole is given in Eq. (4). Substituting it into
Eq. (12), the electromagnetic tensor for the far-field radiation
from a point-particle electric dipole becomes

F (p)
μη

.= μ0c
2

2π
δγ ξ
μηδ

κα
σρgξκ

(
1

2(u · X)

d

dτ

×
{(

Xγ

u · X

)
d

dτ

[(
Xα

u · X

)
pσ τ̂ ρ

]})
τ=τret

.

Next, one applies the relations from the introductory part of
Sec. IV to find radiation in the case of uniform acceleration,

F (p)
μη

.= μ0c
2

4π
δγ ξ
μηδ

κα
σρgξκ

(
XαXγ

(u · X)3

{[
p̈σ − 3

(
a · X

u · X

)
ṗσ

+ 3

(
a · X

u · X

)2

pσ

]
τ̂ ρ + a

c

[
2ṗσ − 3

(
a · X

u · X

)
pσ

]
âρ

−
(

a

c

)2

(p · â)τ̂ σ âρ

})
τ=τret

. (15)

Above, the antisymmetric property of the Kronecker δ

was used implicitly, e.g., δκα
σρ τ̂ σ τ̂ ρ = 0. Next, we simplify the

expression by assuming that aτ/c → 0, i.e., we will assume
that during the observation period the speed of the accelerating
point particle is negligible in the laboratory frame. At the
same time, the particle will be located at the origin in the
laboratory frame [see Eq. (13) and Fig. 2]. One important
consequence of this approximation is that electric dipole of
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the particle in the laboratory frame becomes the same as in
its (instantaneous) rest frame, one can therefore talk about a
three-dimensional dipole moment vector p without ambiguity.
Some of the transformations due to this approximation are [see
Eq. (13) and Fig. 2] as follows:

âμ → ẑμ = δ
μ
3 , pμ → (0, p)μ, τ̂ μ → t̂μ = δ

μ
0 ,

uμ → cδ
μ
0 , τret → t − r/c, (u · X) → rc, (16)

(a · X) → −ar r̂ · â, Xμ → r(1,r̂)μ, (â · p) → −â · p.

It is important to note that this approximation can only be
applied at the end once all derivatives have been evaluated.
This last approximation will be denoted by an asterix over the
equals sign (

∗=). Next, we evaluate Eq. (15) and use the result
to find electric-field [(E(p))i = −cgijF

(p)
0j ] and magnetic-field

[(μ0 H (p))i = −εiabF
(p)
ab /2],

E(p) ∗= μ0

4πr

[
r̂ × r̂ × V

−
(

a

c

)
r̂ × â × W −

(
a

c

)2

( p · â)r̂ × r̂ × â
]
, (17)

H (p) ∗= 1

μ0c
r̂ × E(p),

V = p̈ + 3
a

c
(â · r̂) · p + 3

(
a

c

)2

(â · r̂)2 p,

W = 2 ṗ + 3
a

c
(â · r̂) p,

p = p(t − r/c). (18)

Above we have introduced vector fields V and W for
convenience. Here and for the rest of the text we remove the
nested brackets from the cross products, but our convention is
to apply them from right to left, i.e., U × V × W = U × (V ×
W ). Both electric and magnetic fields are manifestly transverse
since they can be written as r̂ × · · · . It follows that

E(p) × H (p) = 1

μ0c
[r̂|E(p)|2 − E(p)(r̂ · E(p))]

= (|E(p)|2/μ0c)r̂.

Thus, as one should expect, the fields result in a Poynting vector
in the positive radial direction, i.e., electromagnetic energy is
propagating away from the dipole.

B. Uniformly accelerated toroidal dipole point particle

The suitable current density is given in Eq. (5). Substituting
it into Eq. (12) results in the following electromagnetic tensor:

F (T )
μη

.= μ0c
2

4π
δθξ
μηgξκδ

κνα
φσρg

ρβ

[
1

u · X

d

dτ

((
Xθ

u · X

)
d

dτ

×
{(

Xα

u · X

)
d

dτ

[(
Xβ

u · X

)
T φτ̂ σ τ̂ν

]})]
τ=τret

. (19)

Evaluation of the above expression is significantly more
difficult than Eq. (15): There are more derivatives and
more terms. The details of the evaluation are therefore
given in Appendix B, whereas here we give only the final

result,

E(T ) ∗= μ0

4πrc

[
− r̂ × r̂ × F + 3

(
a

c

)
r̂ × â × Q

+ 3

(
a

c

)2

(â · G)r̂ × r̂ × â
]
, (20)

H (T ) ∗= 1

μ0c
r̂ × E(T ), (21)

with
F = ...

T + 3

(
a

c

)
(â · r̂)T̈ +

(
a

c

)2

[2 + 3(â · r̂)2]Ṫ

+ 3

(
a

c

)3

(â · r̂)T ,

Q = T̈ + 2

(
a

c

)
(â · r̂)Ṫ +

(
a

c

)2

(â · r̂)2T ,

G = Ṫ +
(

a

c

)
(â · r̂)T ,

T = T (t − r/c),

where T is the toroidal dipole moment of the point particle.

C. Uniformly accelerated anapole point particle

Due to the linearity of Maxwell’s equations the radiation
pattern of the accelerated point particle with an anapole
moment can be obtained by combining Eqs. (17), (18), (20),
and (21) with Eq. (3). After some simplification one can show
that the far-field zero-velocity radiation of a point particle with
an anapole moment is as follows:

E(N) ∗= μ0

4πrc

(
a

c

)[
r̂ × â ×R +

(
a

c

)
r̂ × r̂ × â × â ×S

]
,

(22)

H (N) ∗= 1

μ0c
r̂ × E(N), (23)

with

R = N̈ + 3

(
a

c

)
(â · r̂)Ṅ + 3

(
a

c

)2

(â · r̂)2 N,

S = 2Ṅ + 3

(
a

c

)
(â · r̂)N,

N = N(t − r/c),

where N is the anapole dipole moment as defined in Eq. (3). We
note in passing that, although in general the anapole particle
does not appear as a “pure” anapole to a stationary observer,
under the zero-velocity approximation, the current density
of the anapole particle in Eq. (6) becomes equivalent to the
conventional anapole in Eqs. (1)–(3).

V. DISCUSSION

In this section we will develop several properties of the light
emitted by accelerated electric, toroidal, and anapole dipoles.
The radiation patterns of the emitted radiation are discussed in
Sec. V A. Section V B discusses how the ellipticity of radiation
emitted by accelerated particles can be used to distinguish
electric and toroidal dipole radiation. The work is summarized
in Sec. VI.
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FIG. 3. Radiation patterns of accelerating point particles with electric (top row), toroidal (middle row), and anapole dipole moments. The
magnitude of acceleration is a. In all cases the corresponding dipoles are assumed to be harmonically oscillating along a single axis [e.g.,
p = ẑp0 cos(ωt) with p0 = const and the same for T and N]. The key parameter is a/ωc, where c is the speed of light. This parameter
corresponds to how many cycles of oscillation (i.e., periods of 2π/ω) it takes for the accelerating particle to reach relativistic speed (starting
from rest). Three cases are considered: The second column shows radiation patterns for the case of low acceleration. For an anapole the
acceleration magnitude has to be above zero for nonzero radiation. The third and fourth columns show the radiation patterns for the cases
of intermediate and high accelerations. The fourth column also corresponds to the radiation patterns of dc dipoles (i.e., zero-frequency limits
ω → 0, a > 0).

A. Radiation patterns of accelerated point-particle electric,
toroidal, and anapole dipoles

Given the expressions for the far-field radiation from accel-
erated electric, toroidal, and anapole dipoles, one can compute
their radiation patterns using the Poynting vector,

S(t,r) = E(t,r) × H(t,r)
∗= 1

μ0c
|E(t,r)|2 r̂. (24)

The second equality in the equation above applies only
in the far field where both electric and magnetic fields are
transverse and where H

∗= r̂ × E/μ0c. The radiation patterns
of all three dipoles are visualized in Fig. 3, which shows
time-averaged power-per-solid angle radiated by accelerated
point particles with corresponding dipole moments. For the
purposes of visualization, it is assumed that the corresponding
dipole moments oscillate along a single axis with angular
frequency ω (e.g., N = ẑN0 cos ωt for an anapole) and that
the acceleration of the particle is perpendicular to the dipole
moment (N · â = 0). In this case, the radiation pattern is
governed by a single parameter a/ωc which corresponds to
the number of oscillation cycles at frequency ω it would take
for the particle to reach relativistic speed starting from rest.

At low acceleration, the emission of oscillating electric
and toroidal dipoles is indistinguishable and is in the form of
the well-known doughnut-shaped radiation pattern (see Fig. 3
column 2 rows 1 and 2). The emission of the anapole is
more interesting. As follows from Eq. (22), the emission of
the anapole vanishes unless: (a) The anapole is accelerating
(a > 0); (b) the anapole moment, or its derivatives, are

perpendicular to acceleration (â × N 	= 0, â × Ṅ 	= 0, or
â × N̈ 	= 0). The low-acceleration limit of emission from an
oscillating anapole point particle (row 3 column 2 of Fig. 3)
has a particularly simple form with an electric field,

lim
a→0

E(N) ∗= μ0

4πrc2
(r̂ × a × N̈),

which corresponds to emission of a magnetic point dipole with
moment a × N/c.

At intermediate acceleration (a/ωc ∼ 1), the radiation pat-
tern of all three dipoles becomes significantly more complex
(column 3 of Fig. 3). One noteworthy feature is that in this
regime the emission patterns of all three dipoles have no zeros,
i.e., the dipoles emit in all directions with roughly the same
efficiency.

The regime of a/ωc � 1 (column 4 in Fig. 3) corresponds
both to high acceleration of oscillating dipoles as well as
to emission from static dipoles (where ω → 0). Here the
emission patterns of electric and toroidal dipoles lose any
resemblance, whereas the emission of the anapole becomes
identical to that of a toroidal dipole. Indeed, this agrees with
the definition of an anapole given in Eq. (3): The static anapole
is the toroidal dipole.

B. Distinguishing between electric and toroidal
dipoles using ellipticity

The existence of anapoles and nonradiating configurations
more generally in electrodynamics is related directly to im-
possibility to “invert” the scattering problem, i.e., to uniquely
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FIG. 4. Ellipticity of the light emitted by an electric dipole point particle. (a) Definition of the ellipticity χ . The radiation is emitted by a
localized particle at the origin. Since polarization of the emitted radiation is transverse, one can decompose it into azimuthal (φ̂) and polar (θ̂ )
components. Elliptical polarization corresponds to the electric field of the emitted radiation tracing an ellipse on the φθ plane. Ellipticity (χ )
is defined as the angle, the tangent of which is the ratio of the semiminor and semimajor radii of the polarization ellipse. The positive angle
of ellipticity corresponds to an electric field rotating clockwise [as shown in (a)] around the axis of radiation propagation. (b) Definition of
the stereographic projection. The projection allows mapping a scalar field, defined on a surface of a unit sphere, onto a flat plane. Here, for
simplicity, we show a circle instead of the sphere and a line instead of the plane. A chosen point on the circle (green circle), which corresponds
to angle θ is projected onto the x axis by plotting a straight line from the south pole of the circle to the chosen point. The point at which the
straight line intersects the x axis corresponds to the position of the projected point (orange square). Formally, all points on the surface of a
sphere, parametrized by (θ,φ), are projected onto points on a plane with Cartesian coordinates (tan θ

2 cos φ, tan θ

2 sin φ). (c) Color map of the
ellipticity of the radiation from the accelerated electric dipole point particle. The electric dipole moment of the particle is p = p0 cos(ωt) ẑ,
whereas the normalized acceleration is a/ωc = 10−7 in the x̂ direction. The ellipticity is plotted in a stereographic projection [see (b)] with the
polar angle ranging from θ = 0◦ (north pole) to θ = 120◦. The blue color on the color map corresponds to negative ellipticity and is clipped
for χ > −10−9 rad. The red and orange colors correspond to positive ellipticity and are clipped for χ < 10−9 rad.

determine the source of electromagnetic radiation based solely
on the electromagnetic (far) field it emits. Here we will consider
a method of distinguishing between emission of oscillating
electric and toroidal dipole point particles under acceleration
which relies on the ellipticity of the emitted light.

We consider a scenario in which one analyzes the light
scattered (reemitted) by atoms via electric and toroidal dipole
excitations. It has already been shown that it is possible to
induce both electric [28] and toroidal [29,30] dipole excitations
in atoms. However, as discussed in Sec. I, there is currently
no way to experimentally distinguish between them (this is
part of the inverse-source problem). The radiation patterns
of accelerated dipoles in Fig. 3 suggest that, if the atoms in
question could be subjected to sufficiently high acceleration,
the difference between electric and toroidal dipole excitations
would be detectable. We will now estimate a realistic value
for acceleration to which the atoms could be subjected. Let
the frequency of the light scattered by the atoms correspond
to a free-space wavelength of λ0 = 1 μm (ω = 2πc/λ0). The
atoms under consideration could be accelerated in a number
of ways including sonoluminescence [31] and laser-based
methods [32,33] which can provide accelerations as high as
1022 m/s2. The most serious limitation is that the acceleration
should not destroy the atom. The typical forces within the

atom are F0 = 10−7 N (force on the electron due to the
charged nucleus). We will assume that the accelerated atom
has the mass of a carbon atom (mC) and is accelerated with
a force two orders of magnitude smaller than the internal
atomic forces so a = F0/(100 mC) ≈ 4 × 1016 m/s2. There-
fore a/ωc = aλ0/2πc2 ≈ 10−7.

The small effects that will arise in the emission patterns of
the atoms subjected to acceleration with a/ωc ∼ 10−7 are best
detected via interference. In particular, here we will focus on
the ellipticity of the light emitted by accelerated point-particle
dipoles. The definition of the ellipticity χ is illustrated in
Fig. 4(a). Given the localized electromagnetic source (at the
origin), the polarization of the emitted or scattered light can be
decomposed entirely into azimuthal (unit vector φ̂) and polar
(unit vector θ̂ ) components. Treating the former as “vertical”
and the latter as “horizontal” components, the ellipticity of the
emitted light becomes [34]

χ = arcsin

(
2 Im(Ẽ∗

φẼθ )

|Ẽθ |2 + |Ẽφ|2
)/

2. (25)

Above we have switched to time-harmonic (electric) fields
(denoted by ˜· · ·) with the time dependence given by exp(+iωt).
In what is to follow it will be assumed that the relevant
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dipoles are aligned along the z axis and that the acceleration
is along the x axis. The tangent of ellipticity angle tan χ is
the ratio of the semiminor to semimajor radius of the ellipse
traced out by the electric field emitted from the source [see
Fig. 4(a)]. The range of ellipticity is −π/4 � χ � π/4 with
two extremes corresponding to right- (χ = π/4) and left-
circular (χ = −π/4) polarizations and χ = 0 corresponding
to linear polarization.

At zero acceleration the emission of both electric and
toroidal dipoles is linearly polarized (along θ̂ ), and the ellip-
ticity is therefore zero. Acceleration leads to elliptical polar-
ization by adding a delayed orthogonally polarized electric
field to the main emission pattern. Using Eq. (25) and the
time-harmonic versions of Eqs. (17) and (20), the ellipticity
of the radiation from accelerated electric (χ (p)) and toroidal
(χ (T )) dipoles can be shown to be as follows:

χ (p) = 2 cot(θ ) sin(φ)
a

ωc
+ O

((
a

ωc

)3)
, (26)

χ (T ) = 3 cot(θ ) sin(φ)
a

ωc
+ O

((
a

ωc

)3)
. (27)

Thus, for low accelerations χ (p)/χ (T ) ≈ 2/3. This is a
remarkably simple result considering the complexity of the
underlying radiation patterns. Ellipticity can be visualized
by mapping it onto the unit sphere and then using stereo-
graphic projection to project a portion of the sphere onto
the plane. Stereographic projection is illustrated in Fig. 4(b).
The ellipticity of the radiation emitted by the accelerated
electric dipole with normalized acceleration a/ωc = 10−7 is
shown in Fig. 4(c). Although χ is low at the equatorial plane
(θ = 90◦) where dipole emission is strongest (see Fig. 3),
it can be quite high close to the poles, for example, at
θ = 13◦ and φ = 90◦ (emitted power 20 times less than at
the equator) χ = 10−6 rad. Equations (26) and (27) suggest
that even 10% sensitivity would be enough to distinguish
between electric and toroidal dipoles, i.e., the required elliptic-
ity sensitivity is �χ � 10−7 rad. Since ellipticity sensitivity
of �χ � 10−8 rad [35,36] and even �χ � 10−10 rad [37]
has already been experimentally demonstrated, we argue that
difference between electric and toroidal dipole excitations in
atoms should be observable with modern technology.

VI. CONCLUSION

In conclusion, we have demonstrated that anapoles,
elementary nonradiating configurations, start radiating when
accelerated. The consequence of this loop hole in the
inverse-source problem is that one can identify the otherwise
inaccessible information on the composition of a source
of radiation solely from its emission, provided the source
can be accelerated. Further development of the acceleration
technique presented in this paper to incorporate higher-order
multipoles may provide access to even more information on
the composition of distant accelerated sources.

In the process of our analysis we have derived expressions
for the radiation from accelerated toroidal and anapole dipoles
and explored polarization properties of the light emitted by
accelerated electric and toroidal dipoles. In particular, we have
demonstrated that ellipticity of the light emitted by small
accelerated particles, such as atoms, can be used to determine

whether the emission is due to electric or toroidal dipole
transitions. Our paper suggests that there are practical ways to
circumvent the inverse-source problem. There are implications
for all branches of science where light is used for characteri-
zation from astronomy to biology and high-energy physics.

Following a period of embargo, the data from this article
can be obtained from the University of Southampton research
repository [38].
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APPENDIX A: LIGHT EMISSION BY ACCELERATED
ELECTRIC, TOROIDAL, AND ANAPOLE DIPOLAR

SOURCES

Basic conventions and definitions

In order to keep the paper self-contained the basic conven-
tions that will be used to handle the kinematics of the uniformly
accelerated particles will be given here.

In all cases we will be working in flat space-time and with
a standard diagonal metric gαβ = diag(1,−1,−1,−1), thus the
square of separation between the two events that differ by time
dt and spatial position d r = x̂ dx + ŷ dy + ẑ dz is as follows:

ds2 = c2dt2 − d r · d r = c2dt2 − dx2 − dy2 − dz2.

The contraction of two four-vectors will be denoted as
a · b = aμbμ = aμbμ = gμνa

μbν

= a0b0 − a1b1 − a2b2 − a3b3.

Greek indices run through {0–3} = {t,x,y,z}, and a re-
peated index implies summation unless otherwise stated.

The three-vectors will be denoted by boldface font. The
contraction between two three-vectors is denotes as (no sum-
mation implied)

a · b = axbx + ayby + azbz = a1b1 + a2b2 + a3b3.

The partial derivative with respect to coordinate xα is de-
noted as ∂α = ∂/∂xα . The covariant partial derivative along the
direction of changing xα , based on the Levi-Civita connection,
is denoted as ∇α .

We will be using the standard Kronecker-δ tensor [24],

δα
β = ∂xα

∂xβ
, δα

β = gαμgμβ, δα
β =

{
1, α = β,

0, otherwise,

where gαβ is the inverse metric. The generalized Kronecker-δ
tensor is defined through the determinant [24],

δ
α1···αr

β1···βr
=

∣∣∣∣∣∣∣
δ

α1
β1

· · · δ
α1
βr

...
. . .

...
δ

αr

β1
· · · δ

αr

βr

∣∣∣∣∣∣∣. (A1)

We will also be using Levi-Civita relative tensors [24],

εαβγ κ = δ
αβγ κ

0123 , εαβγ κ = δ0123
αβγ κ , δ

αβγ κ

φημν = εαβγ κεφημν.
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APPENDIX B: FAR-FIELD RADIATION FROM A UNIFORMLY ACCELERATING TOROIDAL DIPOLE

Here we evaluate the electromagnetic tensor for the accelerated toroidal dipole point particle. The starting point is Eq. (19).
In the first stage we define Qφσ

ν = T φτ̂ σ τ̂ν and differentiate the 1/(u · X) terms,

F (T )
μη

.= μ0c
2

4π
δθξ
μη gξκδ

κνα
φσρg

ρβ

[
1

u · X

d

dτ

((
Xθ

u · X

)
d

dτ

{(
Xα

u · X

)
d

dτ

[(
Xβ

u · X

)
T φτ̂ σ τ̂ν

]})]
τ=τret

.= μ0c
2

4π
δθξ
μη gξκδ

κνα
φσρg

ρβ

(
XθXαXβ

(u · X)4

{
d3Qφσ

ν

dτ 3
+

(
−6

a · X

u · X

)
d2Qφσ

ν

dτ 2
+

[
15

(
a · X

u · X

)2

− 4

(
a

c

)2]
dQφσ

ν

dτ

+
[

9

(
a

c

)2(
a · X

u · X

)
− 15

(
a · X

u · X

)3]
Qφσ

ν

})
τ=τret

(B1)

Next, one evaluates the derivatives,

dQφσ
ν

dτ
= (Ṫ φ)τ̂ σ τ̂ν +

(
a

c
T φ

)
âσ τ̂ν +

(
a

c
T φ

)
τ̂ σ âν

d2Qφσ
ν

dτ 2
=

[
T̈ φ + 2

(
a

c

)2

T φ

]
τ̂ σ τ̂ν +

[
2

(
a

c

)
Ṫ φ

]
âσ τ̂ν +

[
2

(
a

c

)
Ṫ φ

]
τ̂ σ âν +

[
2

(
a

c

)2

T φ

]
âσ âν +

[
−

(
a

c

)2

(â · T )

]
τ̂ φ âσ τ̂ν

d3Qφσ
ν

dτ 3
=

[
...
T

φ + 6

(
a

c

)2

Ṫ φ

]
τ̂ σ τ̂ν +

[
3

(
a

c

)
T̈ φ + 4

(
a

c

)3

T φ

]
âσ τ̂ν +

[
3

(
a

c

)
T̈ φ + 4

(
a

c

)3

T φ

]
τ̂ σ âν

+
[

6

(
a

c

)2

Ṫ φ

]
âσ âν +

[
− 3

(
a

c

)2

(â · Ṫ )

]
τ̂ φ âσ τ̂ν +

[
− 3

(
a

c

)3

(â · T )

]
τ̂ φ âσ âν . (B2)

Above we have used the rule dT φ/dτ = Ṫ φ − a
c
(â · T )τ̂ φ , where Ṫ φ = dT 1

dτ
x̂φ + dT 2

dτ
ŷφ + dT a

dτ
âφ , and the second term in the

derivative arises due to dâφ/dτ = (a/c)τ̂ φ . However, in the presence of δ
μνα
φσρ τ̂ σ , this rule can be simplified to δ

μνα
φσρ (dT φ/dτ )τ̂ σ =

δ
μνα
φσρ Ṫ φτ̂ σ because of the antisymmetry of δ

μνα
φσρ . Combining Eqs. (B1) and (B2),

F (T )
μη

.= μ0c
2

4π
δθξ
μηgξκδ

κνα
φσρg

ρβ

[
XθXαXβ

(u · X)4

({
...
T

φ − 6

(
a · X

u · X

)
T̈ φ +

[
2

(
a

c

)2

+ 15

(
a · X

u · X

)2]
Ṫ φ

−
[

3

(
a

c

)2(
a · X

u · X

)
+ 15

(
a · X

u · X

)3]
T φ

}
τ̂ σ τ̂ν + 3

(
a

c

)[
T̈ φ − 4

(
a · X

u · X

)
Ṫ φ + 5

(
a · X

u · X

)2

T φ

]
(âσ τ̂ν + τ̂ σ âν)

+ 6

(
a

c

)2[
Ṫ φ − 2

(
a · X

u · X

)
T φ

]
âσ âν − 3

(
a

c

)2[
(â · Ṫ ) − 2

(
a · X

u · X

)
(â · T )

]
τ̂ φ âσ τ̂ν − 3

(
a

c

)3

(â · T )τ̂ φâσ âν

)]
.

As with the electric dipole, we approximate the above equation for the case when speed of the toroidal dipole in the laboratory
frame is insignificantly small. The necessary transformations are in Eq. (17) and

T μ → (0,T )μ, τ̂μ → δ0
μ,

â · T → −â · T , âμ → −δ3
μ.

The electromagnetic tensor of the point particle with the toroidal dipole that is momentarily at rest in the laboratory frame
then becomes

F (T )
μη

∗= μ0

4πrc2
δθξ
μη(1,r̂)θgξκδ

κνα
φσβ(1,r̂)α(1,r̂)β

{
(0,K)φδσ

0 δ0
ν + 3

(
a

c

)
(0,L)φ(δσ

3 δ0
ν − δσ

0 δ3
ν ) − 6

(
a

c

)2

(0,M)φδσ
3 δ3

ν

+ 3

(
a

c

)2

(â · M)δφ

0 δσ
3 δ0

ν − 3

(
a

c

)3

(â · T )δφ

0 δσ
3 δ3

ν

}
,

K = ...
T + 6

(
a

c

)
(â · r̂)T̈ +

(
a

c

)2

[2 + 15(â · r̂)2]Ṫ + 3

(
a

c

)3

(â · r̂)[1 + 5(â · r̂)2]T ,

L = T̈ + 4

(
a

c

)
(â · r̂)Ṫ + 5

(
a

c

)2

(â · r̂)2T ,

M = Ṫ + 2

(
a

c

)
(â · r̂)T .
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Above, the vectors K, L, and M were introduced to simplify and shorten the expression. Next, we find the electric [(E)i =
−giscF0s] and magnetic-fields [(μ0 H)i = −εiabFab/2],

E(T ) ∗= μ0

4πrc

[
− r̂ × r̂ × K + 3

(
a

c

)
r̂ × â × L + 3

(
a

c

)
(â · r̂)r̂ × r̂ × L − 6

(
a

c

)2

(â · r̂)r̂ × â × M

+ 3

(
a

c

)2

(â · M)r̂ × r̂ × â − 3

(
a

c

)3

(â · r̂)(â · T )r̂ × r̂ × â
]

T=T (t−r/c)

H (T ) ∗= 1

4πrc2

[
r̂ × K + 3

(
a

c

)
r̂ × r̂ × â × L − 3

(
a

c

)
(â · r̂)r̂ × L − 6

(
a

c

)2

(â · r̂)r̂ × r̂ × â × M

− 3

(
a

c

)2

(â · M)r̂ × â + 3

(
a

c

)3

(â · r̂)(â · T )r̂ × â
]

T=T (t−r/c)

.

The expressions above can be recombined and shortened. To this end we introduce the following vectors:

F = ...
T + 3

(
a

c

)
(â · r̂)T̈ +

(
a

c

)2

[2 + 3(â · r̂)2]Ṫ + 3

(
a

c

)3

(â · r̂)T ,

Q = T̈ + 2

(
a

c

)
(â · r̂)Ṫ +

(
a

c

)2

(â · r̂)2T ,

G = Ṫ +
(

a

c

)
(â · r̂)T .

The electric (E(T )) and magnetic fields (H (T )) of the pointlike particle with toroidal dipole moment T that is momentarily at
rest (at the origin) in the laboratory frame but is undergoing constant acceleration a then become

E(T ) ∗= μ0

4πrc

[
−r̂ × r̂ × F + 3

(
a

c

)
r̂ × â × Q + 3

(
a

c

)2

(â · G)r̂ × r̂ × â

]
T=T (t−r/c)

, (B3)

H (T ) ∗= 1

4πrc2

[
r̂ × F + 3

(
a

c

)
r̂ × r̂ × â × Q − 3

(
a

c

)2

(â · G)r̂ × â

]
T=T (t−r/c)

. (B4)

As in the case of the electric dipole, the fields of the toroidal
dipole are transverse and are related through H (T ) = 1

μ0c
r̂ ×

E(T ) indicating a radial Poynting vector.

APPENDIX C: DIFFERENCE BETWEEN A MOVING
PARTICLE WITH (LABORATORY-FRAME)

TOROIDIZATION AND A PARTICLE
WITH A TOROIDAL DIPOLE

In the main text it is stated that properties of noninertial
particles with net toroidal dipole moments have so far not
been analyzed. Here we clarify this assertion. The work by
Heras [39] has claimed to examine properties of noninertial
particles with toroidal dipole moments but in fact considered
properties of noninertial particles which had net toroidizations
in the laboratory frame. In this appendix we will briefly explain
the important difference between a particle with a toroidal
dipole in its rest frame and a particle that appears to have a
net toroidal dipole in the laboratory frame, i.e., some inertial
frame around which we chose to base our calculations.

Clearly if a particle with a toroidal dipole moment, de-
scribed by the current density in Eq. (5), is instantaneously
at rest in the laboratory frame, its current density is going to be
that of a particle with a toroidal dipole. It is tempting to assume
that radiation produced by a particle with a toroidal dipole,

when it is instantaneously at rest in the laboratory frame, can
be obtained by analyzing a particle with only the toroidiza-
tion in the laboratory frame, i.e., by using equations ρ = 0
(charge density) and J = ∇ × ∇ × cTδ(3) as was performed
in Ref. [39]. This, however, is incorrect. Indeed, this is stated
in Ref. [39].

As is shown in Eq. (B1), finding the far field produced by
a particle with a toroidal dipole moment requires taking three
derivatives with respect to proper time. Therefore, the instan-
taneous value of the current density is insufficient to obtain
radiation, instead one has to work with the full expression for
the current density [Eq. (5)] and take the limit of the particle
being at rest in the laboratory frame after the electromagnetic
fields have been found. Failing to do so results in some terms
of the radiation field being lost without any justification. The
origin of error is the failure to take the derivatives of the basis
vectors τ̂ μ = uμ/c (uμ is the four-velocity of the particle) and
âμ = aμ/

√−a · a (aμ is the four-acceleration of the particle).

APPENDIX D: INERTIAL MOTION OF AN ANAPOLE

The main focus of this paper is on anapole particles in
noninertial motion. It is natural to ask what happens in the
case of inertial motion. Here we briefly show that an anapole
in inertial motion does not radiate.
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Given an anapole in inertial motion, one can start with its
radiation in the anapole particle’s rest-frame S̃. It follows from
Eqs. (22) and (23), after the substitution of a → 0 for inertial
motion, that a nonaccelerating anapole will emit no radiation
in its rest frame (indeed this is the basic property of anapoles
[8]). Therefore the corresponding electromagnetic tensor is
F̃μη = 0. However since Maxwell’s equations are invariant
under (static) Lorentz transformation one can find the radiation
in any other inertial frame, including laboratory-frame S,

following:

Fμη = ∂x̃α

∂xμ

· ∂x̃β

∂xη

· F̃αβ = 0.

The electromagnetic tensor Fμη contains all the components
of electric and magnetic fields, so if Fμη = 0, then there is
no radiation in the laboratory frame. Therefore, anapoles in
inertial motion do not radiate.
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