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Abstract. An electronic diode is a nonlinear semiconductor circuit component
that allows conduction of electrical current in one direction only. A component
with similar functionality for electromagnetic waves, an electromagnetic isolator,
is based on the Faraday effect of rotation of the polarization state and is also
a key component in optical and microwave systems. Here we demonstrate
a chiral electromagnetic diode, which is a direct analogue of an electronic
diode: its functionality is underpinned by an extraordinarily strong nonlinear
wave propagation effect in the same way as the electronic diode function is
provided by the nonlinear current characteristic of a semiconductor junction.
The effect exploited in this new electromagnetic diode is an intensity-dependent
polarization change in an artificial chiral metamolecule. This microwave effect
exceeds a similar optical effect previously observed in natural crystals by more
than 12 orders of magnitude and a direction-dependent transmission that differs
by a factor of 65.

Contents

Methods                                                                                                                                       6
Acknowledgments 7
References 7

3 Author to whom any correspondence should be addressed.

New Journal of Physics 13 (2011) 033025
1367-2630/11/033025+08$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:ivs124@physics.anu.edu.au
http://www.njp.org/


2

The Lorentz reciprocity lemma dictates that linear transmission of certain polarization states
must be identical for forward and backward directions, unless the medium is statically
magnetized or causes polarization conversion. In optics, the simplest isolator exploiting
nonreciprocal transmission of circularly polarized light consists of a pair of polarizers and a
Faraday rotator and it requires a static magnetic field [1]. A similar approach is also used for
microwave devices. As another example, asymmetric transmission in metamaterial structures is
allowed if propagation is accompanied by polarization conversion [2]–[4].

The Lorentz lemma is not applicable to nonlinear effects, thus allowing asymmetric
transmission of intense electromagnetic waves. Asymmetric nonlinear distributed Bragg
gratings [5, 6], metamaterial structures [7] and even disordered layered structures [8] were
predicted theoretically to show directionally asymmetric responses for linearly polarized light.
In this paper, we introduce and verify experimentally the concept of a nonlinear electromagnetic
diode for circularly polarized waves. It is analogous to an electronic diode that transmits electric
current in only one direction due to its nonlinear current–voltage characteristics, see figure 1.
The nonlinear element in our nonreciprocal structure is an artificial chiral metamolecule. By
introducing nonlinearity into the metamolecule, we experimentally demonstrate that it exhibits
unidirectional transmission for one circular polarization while remaining transparent for the
polarization of opposite handedness (see figure 1).

Nonlinear asymmetric transmission can only occur in the presence of a strong intensity-
dependent propagation effect. Our idea is to exploit the intensity dependence of the gyrotropy
in chiral media, which manifests itself as differential circular birefringence and dichroism. It
has been known for nearly 200 years that many natural media exhibit strong optical activity;
however, theoretical estimates predicted that nonlinear optical activity would be small and
difficult to observe [9]–[11]. The first mention of this effect was made by S I Wawilow [12] who
concluded that the necessary light intensities could only be found inside stars. The subsequent
invention of the laser made it possible to study this effect with experimentally achievable
power levels, and it was first observed in 1979 in LiIO3 crystals [13]. In such materials the
nonlinear optical activity was smaller than its linear counterpart by a factor of 10−6, and
this required samples several centimeters in length and light intensities of 100 MW cm−2,
which is close to the optical breakdown of the crystal. Such a small level of nonlinearity is
not sufficient for demonstrating any practically important electromagnetic diode functionality.
In artificial media, however, much higher levels of optical activity can be achieved through
the engineering of chiral properties of metamolecules. For instance, the polarization rotation
in microwave chiral metamaterials can be nearly a million times stronger than in natural
quartz for optical frequencies, once the sample thickness is normalized to the wavelength
of radiation [15]. Moreover, in contrast to natural media, high levels of nonlinearity can be
readily achieved in metamaterials through the inclusion of nonlinear electronic components
for microwave applications [19]–[21] or by exploiting the local-field enhancement effects in
the optical range [22, 23]. This leads to the opportunity to observe extremely strong nonlinear
gyrotropy and thus to develop an electromagnetic diode.

We demonstrate the electromagnetic diode effect in a nonlinear chiral metamolecule
consisting of a pair of wire strips, which are separated by a dielectric layer and twisted with
respect to each other by angle φ, as shown in the inset to figure 2(a) (see Methods for more
details). The resonant mode of this structure interacts both with the electric and magnetic fields
due to the inductive chiral coupling between the wires, resulting in strong gyrotropy [24].
Adding a nonlinear element, a lumped varactor, to the center of one of the wires allows for
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Figure 1. Operating principles of a metamaterial diode. The device shows
different levels of transmission for circularly polarized waves propagating in
the opposite directions due to the nonlinearity of a chiral metamolecule. This
is similar to an electronic diode exhibiting different resistance for currents
propagating in opposite directions due to the nonlinearity of the p–n junction.

the creation of the metamaterial diode with high contrast between forward and backward
transmission in the high-power regime—see schematics in figure 2, and the more detailed
description in Methods.

The results of our measurements for the left-handed circularly polarized wave scattering
on a left-handed chiral metamolecule are shown in figure 2. When the amplitude of the incident
wave is small, the structure shows a linear response, and the transmission coefficients in both
directions are equal. However, in the nonlinear regime, with high intensity of the impinging
wave we observe considerably different transmission properties in opposite directions with the
maximal intensity contrast between the two directions of 18 dB. Our numerical modeling shows
that such behavior results from significantly different current amplitudes induced in the two-
wire strips by the waves entering the metamolecule from one direction, in comparison with a
much smaller excitation difference produced by a wave entering from the opposite direction.
The ‘polarity’ of the metamaterial diode depends on the operating frequency: in the range
5.9–6.0 GHz the transmission for the left-handed circularly polarized wave is greater in the
forward direction (see figure 2(a)), i.e. when the wave hits the strip with the nonlinear element
first. However, in the range from 6.0 to 6.3 GHz the ‘polarity’ reverses and the diode transmits
the same polarization in the opposite direction only.

Figure 2(b) demonstrates the dependence of the transmittance on the incident power for
both directions. The transmission curves are asymmetric with respect to zero incident power
indicating a remarkable similarity with the I–V response of an electronic diode, while switching
‘polarity’ depends on the frequency of operation. We note that the response time of the structure
is below 1 s for increasing incident power, and it is of the order of 10 s for decreasing microwave
power. The nature of the nonlinear response of a diode in a resonant system was discussed before
in [25, 26], and it is caused by rectification of the alternating current on the diode, which induces
a self-bias voltage.

To study the nonlinear polarization properties of the chiral metamolecule, we also
measured its polarization rotatory power for the symmetric case, with the central sections of both
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Figure 2. Transmission properties of an asymmetric chiral metamolecule.
(a) Ratio of the transmission coefficients in forward and backward directions
(in dB). For low power (red curve), the transmission is equivalent in both direc-
tions for left-handed circularly polarized waves. For large power (blue curve),
the transmission is strongly asymmetric. It is larger in the forward direction for
frequencies below 5.97 GHz, and it is larger in backward direction for higher
frequencies. The difference reaches 18 dB, or a factor of approximately 65. Inset
shows schematic of the metamolecule. (b) Transmission as a function of incident
power. Positive incident power corresponds to the forward propagation, while
negative values describe backward propagation. Depending on the frequency,
the diode can change polarity, so that it is ‘open’ in the forward direction (blue
curve) or in the backward direction (green curve). Additionally, the diode can
suppress transmission in a certain range being open only for higher- or lower-
wave intensities (red curve). The spectra were obtained using time-gating.

wires loaded with varactors. We notice that the angle of twist is an important parameter, which
not only determines the magnitude of the gyrotropy [15, 24], but also changes the resonant
frequency of the metamolecule due to strong near-field interactions (see [27] and references
therein).

In general, chiral and anisotropic structures have elliptically polarized eigenmodes, leading
to a complex dependence of the polarization state of the transmitted wave on the incident
polarization state. We observed no change in our results when the metamolecule was rotated
along its axis in the cylindrical waveguide. This indicates that anisotropic, birefringence effects
are negligible and the polarization change is dominated by the circular dichroism and circular
birefringence of the sample. This allows us to describe the transmission in terms of the
transmission of the left- and right-handed circularly polarized waves, T−− and T++.

Figures 3(a)–(c) show circular birefringence and polarization rotation for different incident
intensities. The rotatory power of our sample is comparable to that obtained earlier in an
artificial structure [14, 15], and it is two orders of magnitude stronger than the rotatory power
of cholesteric liquid crystals [16], sculptured thin films [17] and chiral metamaterials for optical
wavelengths [18]. The resonant feature observed in the circular dichroism comes from the
resonant excitation of currents in the left-handed metamolecule by the left-handed circularly
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Figure 3. Giant nonlinear polarization rotation in a symmetric chiral
metamolecule. (a)–(c) Circular birefringence n+ − n−, angle of polarization
rotation and wavenumber difference versus frequency for several values of
incident power. (d)–(f) Nonlinear gyrotropy shown as power-driven variation of
(d) circular birefringence, (e) polarization azimuth rotation, and (f) wavenumber
difference. The inset shows a schematic of the left-handed chiral metamolecule
composed of twisted wires identically loaded with nonlinear elements. The angle
between the wires is 49◦.

polarized wave. Our numerical simulations confirm that the excited resonance corresponds to
out-of-phase currents in the wires. At the same time, the right-handed circularly polarized wave
does not noticeably excite any resonances in our structure.

Changing the power of the incident wave shifts the resonance of the gyrotropic response
to a higher frequency, see figures 3(a)–(c). Importantly, such a shift of the polarization
rotation resonance leads to giant nonlinear gyrotropy—see figures 3(d)–(f). The nonlinear
gyrotropy coefficient is calculated as NG = 12/1I/h deg cm W−1, where 12 is the change in
polarization rotation caused by the intensity change 1I and h = 3.2 mm is the sample thickness.
We see that close to the resonant frequencies, the nonlinear gyrotropy reaches the value of
15 deg cm W−1. There are no previous data available for microwave frequencies that we can
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Figure 4. Characteristic bistability and hysteresis response of the chiral
metamolecule composed of two nonlinear wires illuminated by a left-handed
circularly polarized wave of frequency 6.11 GHz. Each experimental point is
obtained in the continuous wave regime after the system reached the steady state.

compare our results with, but in natural optical media, e.g. in LiIO3, the electronic nonlinear
optical activity is 12 orders of magnitude weaker [13, 28].

One of the important features of a nonlinear resonant system is the possibility of a bistable
response. In order to study this effect, we use the continuous wave regime of the vector
network analyzer. We selected the frequency of excitation to be 6.11 GHz, near the dip of
the transmission curve obtained in the large intensity regime. We performed the measurements
by first increasing the input power and measuring the steady-state transmission amplitude for
several values of input intensity (figure 4, top branch) and then similarly decreasing the power
(figure 4, lower branch). We observe that the transmitted power may take different values that
vary by a factor of three, depending on the history of the excitation.

Methods

Structure. Copper strips forming the chiral metamolecules were engraved on one side of 1.6 mm-
thick standard FR4 printed circuit boards, as schematically shown in the inset to figure 2(a). The
boards were circular to fit conveniently into the circular waveguide of the polarimeter. The wire
pairs were formed by stacking two boards together such that the overall separation between
the wires was 3.2 mm. The metal strips had the following dimensions: width = 1 mm, length =

15 mm and thickness = 30 µm. We denote the metamolecule shown in the inset of figure 2
as a left-handed metamolecule, whereas its mirror-symmetric metamolecule is denoted as right
handed. The nonlinearity was added to the metamolecules by inserting a semiconductor varactor
diode (model Skyworks SMV-1405), see figure 2, in the middle of either one (asymmetric
metamolecule) or both (symmetric metamolecule) wires. To match the resonance frequency
of the varactor-loaded wire with that of the unloaded one (which changes due to the internal
capacitance of the varactor) the former was shortened to 14.3 mm. The introduction of the
varactor also decreased the quality factor of the resonances due to its internal resistivity.
A similar approach based on the use of a varactor diode was previously employed for creating
nonlinear metamaterials [19, 20] as well as for tunability of epsilon-near-zero structures [29].
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Measurements. Experiments were performed in the 5.5–7.0 GHz frequency range using
a vector network analyzer (VNA, Agilent model E8364B) and a microwave waveguide
polarimeter hosting the sample. The polarimeter was built around circular waveguide sections
producing and guiding left-handed circularly polarized waves (series 64 by Flann Microwave).
In order to provide sufficient microwave power to observe nonlinear effects, we used an external
power amplifier (HP 83020A). To eliminate the contribution of the microwave cables and the
waveguides, the measurements were normalized to the transmission coefficient of the empty
waveguide. The effect of multiple reflections from the waveguide components on the measured
spectra of the nonlinear structures was suppressed by using time-gating with a 15 ns gating
window; this allows much smoother experimental curves to be obtained. The intensity of the
wave fed into the waveguide was measured using a 10 dB directional coupler connected to the
input port of the waveguide. The power is measured with a Rohde and Schwarz power sensor,
model Z23.

Similarly to [15], all our measurements were performed using left-handed circularly
polarized waves only. The excitation of the samples with a right-handed circularly polarized
wave is equivalent to the excitation of the corresponding mirror-reflected structures with a left-
handed circularly polarized wave.
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