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We develop a general formalism to describe the propagation of a near-resonant electromagnetic field in
a medium composed of magnetodielectric resonators. As the size and the spatial separation of nanofabricated
resonators in a metamaterial array are frequently less than the wavelength, we describe them as discrete scatterers,
supporting a single mode of current oscillation represented by a single dynamic variable. We derive a Lagrangian
and Hamiltonian formalism for the coupled electromagnetic fields and oscillating currents in the length gauge,
obtained by the Power-Zienau-Woolley transformation. The response of each resonator to electromagnetic field
is then described by polarization and magnetization densities that, to the lowest order in a multipole expansion,
generate electric and magnetic dipole excitations. We derive a closed set of equations for the coherently scattered
field and normal mode amplitudes of current oscillations of each resonator both within the rotating wave
approximation, in which case the radiative decay rate is much smaller than the resonance frequency, and
without such an assumption. The set of equations includes the radiative couplings between a discrete set of
resonators mediated by the electromagnetic field, fully incorporating recurrent scattering processes to all orders.
By considering an example of a two-dimensional split ring resonator metamaterial array, we show that the
system responds cooperatively to near-resonant field, exhibiting collective eigenmodes, resonance frequencies,
and radiative linewidths that result from strong radiative interactions between closely spaced resonators.
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I. INTRODUCTION

Recent advances in nanofabrication provide a variety of
tools for engineering the electromagnetic (EM) response of
metamaterials in the radiofrequency, microwave, and optical
domains. Metamaterials consist of arrays of artificially con-
structed magnetodielectric resonators that typically interact
strongly with the incident and scattered EM fields. These
resonator structures frequently extend over length scales
smaller than the wavelength of the EM field with which they
interact. For example, a metamaterial might comprise isolated
circuit elements, or meta-atoms, embedded in a dielectric host
medium. Whereas the EM properties of natural atoms are fixed,
modifying the design of artificially constructed meta-atoms
can endow them with a wide range of electric and/or magnetic
responses. Such control allows one to produce materials with
EM properties such as negative index of refraction1–3 or
negative group velocities.4 These materials could conceivably
be employed to create perfect lenses5,6 and electromagnetic
cloaks.7–9

The exciting EM phenomena of nanofabricated metamate-
rials can often depend on the effective bulk properties of the
sample. Homogenization theories have met with substantial
success in describing these properties.2,10–19 Homogenization
leads to effective continuum models that strive to treat
excitations using averaged polarization and magnetization
densities formed by current oscillations within the unit-cell
resonators. Analyzing an EM response using uniform medium
descriptions, however, can be complicated by the fact that
recurrent scattering events in which a photon scatters more
than once off the same resonator, produce interactions that
can strongly influence a system’s EM response.20–30 In certain
circumstances, the bulk permittivity and permeability can
be inferred by analyzing the transmission and reflection
properties of a metamaterial with finite thickness,10,11 or
from the scattering properties of a metamaterial’s constituent

slabs.15–17 But, accurate accounting of strong interactions
between a metamaterial’s unit cells often requires simplifying
assumptions such as the elements being arranged in an
infinite lattice.2,11–14 The discrete translational symmetry of
the infinite lattice can be exploited, e.g., to approximate the
local field corrections in a medium of discrete magnetoelectric
scatterers.31

The discrete nature of metamaterials becomes apparent
when the infinite lattice symmetry is broken. The strongly
interacting nature of these structures renders them very
sensitive to finite size effects32,33 and to disorder in the
lattice.34,35 In systems of discrete resonators, interference of
different scattering paths between the elements can result, e.g.,
in light localization.36,37 This effect is analogous to Anderson
localization of electrons in solids. Even in regular arrays,
strong interactions between resonators can find important ap-
plications in metamaterial systems, providing precise control
and manipulation of EM fields on a subwavelength scale, e.g.,
by localizing subdiffraction field hot spots.38,39 As another
example, a system of interacting resonant wires was used to
produce a metalens able to transfer subwavelength features
of an evanescent field to propagating waves.40 In essence,
recurrent scattering events produce strong interactions be-
tween meta-atoms that contribute to these effects. As a result,
ensembles of interacting resonators exhibit a collective mode
of oscillation with discrete resonance frequencies and radiative
emission rates. In principle, one can calculate the scattered
field profile in a metamaterial by having knowledge of how
the material comprising the metaatoms reacts to the EM field.
One could then numerically integrate Maxwell’s equations
with a numerical mesh small enough to resolve the features
of each meta-atom. This, however, becomes computationally
intractable when the system contains more than a few resonator
elements.

In this article, we develop a simplified, computationally
efficient formalism that captures the fundamental physical
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properties of a finite metamaterial. In particular, we show how
EM mediated interactions can form a cooperative response
of the metamaterial’s constituent resonators. In this model,
each unit-cell element, or metamolecule, of the metamaterial
array is formed by combinations of circuit elements acting
as resonators that interact with the incident and scattered
EM fields. In several metamaterial realizations, a meta-
molecule may further be divided into separate subelements,
e.g., isolated circuit elements that can naturally be consid-
ered as the elementary building blocks of the metamaterial
sample. We refer to such elementary building blocks as
meta-atoms. We assume each meta-atom supports a single
mode of current oscillation represented by a single dynamic
variable.

The theoretical formalism we introduce describes the
collective response of a metamaterial array to an incident
EM field. To develop this formalism, we begin with the
Lagrangian and Hamiltonian representations for charge and
current distributions interacting with EM fields. Analyzing the
system in the length gauge, obtained by the Power-Zienau-
Woolley transformation,41–43 we derive coupled equations for
the EM fields and resonators. A single resonator interacting
with its self-generated fields behaves as an LC circuit in
which emission of EM radiation damps the current oscillation.
An incident EM field drives each resonator. However, each
meta-atom is also driven by fields scattered from all other
meta-atoms in the metamaterial array. By integrating out the
EM fields, we derive a set of equations for the meta-atom
current oscillations which describes the collective response of
the array to the incident field. Each eigenmode of this system
of equations represents a collective oscillation distributed
over the resonators with a particular resonance frequency
and radiative decay rate. Some modes are superradiant, with
emission rates enhanced by collective interactions. In other
modes, EM mediated interactions result in subradiant emission
in which radiation repeatedly scattered between resonators
remains trapped, slowly leaking away from the metamaterial.
As an example, we analyze a 2D array of split ring resonators
and examine several of its characteristic collective modes.
We find that EM mediated interactions can produce a broad
distribution of collective emission rates, and that the width
of this distribution is sensitive to the inter-resonator spacing.
For example, in a 33 × 33 array in which the resonators are
separated by half a wavelength of the resonant light, the
radiative emission rate can be suppressed by five orders of
magnitude. On the other hand, when the spacing is increased
to 1.4 wavelengths, the emission rate is only suppressed by a
factor of five.

In previous Lagrangian treatments, the interaction be-
tween elements of a single metamolecule was accounted
for by a phenomenological coupling between meta-atom
dynamic variables.44 Similar phenomenological coupling
between nearest-neighbor resonators can also describe the
propagation dynamics of excitations in a one-dimensional
chain of metamolecules.45 Radiative losses were accounted
for by additional dissipative terms. However, important effects
such as superradiance or subradiance of collective modes
cannot be modeled in this way. By contrast, in our treatment,
the interactions between meta-atoms are mediated entirely by
the scattered EM fields; the radiation lost through decay of

one meta-atom can drive another and vice versa. The resulting
collective modes of the system can, therefore, exhibit either
subradiant or superradiant decay.

This article is organized as follows. We highlight the
main results of the developed formalism for the collective
response of a metamaterial sample to EM fields in Sec. II.
In Sec. III, we set up our description of the metamaterial.
We provide a theoretical description of the system dynamics
in Sec. IV where we introduce the Lagrangian and derive
the Hamiltonian for the system and the equations of motion
for the meta-atoms. We also arrive at expressions for the
scattered EM fields that drive the meta-atom dynamics. A
derivation of our Lagrangian from that describing arbitrary
charged particles interacting with the EM field in the Coulomb
gauge is provided in Appendix A, and we elaborate on the
derivation of the Hamiltonian in Appendix B. We combine the
field and meta-atom dynamics in Sec. V to arrive at coupled
equations of motion between meta-atoms in the rotating
wave approximation, in which the meta-atom decay rates are
much less than their resonance frequencies. A more general
model for collective interactions is provided in Appendix C.
In Sec. VI, we apply the theoretical formalism to describe
collective modes of oscillation in an array of symmetric
split ring resonators. Collective modes of these resonators
are connected to the linewidth narrowing46 of a transmission
resonance observed in Ref. 32. In Sec. VII, we quantize
this formalism in the special case that the resonators do
not suffer from thermal or ohmic losses. Conclusions follow
in Sec. VIII.

II. KEY RESULTS: COLLECTIVE DYNAMICS ARISING
FROM RECURRENT EM SCATTERING

In this section, we summarize key results presented in this
article. Ultimately, we describe the collective dynamics arising
from an ensemble of magnetodielectric resonators interacting
via a near-resonant EM field. When such resonators are placed
close to each other, the system can respond to EM fields
cooperatively. In order to provide a computationally efficient
description, we consider a metamaterial array composed of
a set of N discrete meta-atoms. We assume each meta-
atom j (j = 1, . . . ,N) supports a single mode of current
oscillation whose behavior is described by a single dynamic
variable Qj , with units of charge, and its rate of change
Ij = Q̇j , with units of current. As described in Sec. III, the
current oscillation produces a polarization density Pj (r,t)
proportional to Qj and a magnetization density Mj (r,t)
proportional to Ij . An incident wave with electric field
Ein(r,t) and magnetic induction field Bin(r,t) impinges on
the system.

For the coupled set of circuit elements and EM fields, we
derive a Lagrangian and Hamiltonian formalism in Sec. IV A.
The Lagrangian is expressed in the length gauge, obtained
by the Power-Zienau-Woolley transformation.41–43 For the
dynamical variables Qj and the EM vector potential A(r), we
obtain the corresponding conjugate momenta φj [see Eq. (19)]
and −D(r) [see Eq. (21)], respectively. Here, D ≡ ε0E + P
denotes the electric displacement field. The joint dynamics
of the meta-atom and EM fields are then governed by the
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Hamiltonian

H = HEM + 1

2ε0

∫
d3r |P|2 +

∑
j

[
1

2lj
(φj − �j )2

− 1

ε0

∫
d3r D(r,t) · Pj (r)

]
, (1)

where HEM [see Eq. (32)] is the Hamiltonian for the free EM
field and �j [see Eq. (17)] is an effective magnetic flux through
the meta-atom. The final term of the Hamiltonian accounts for
interactions between electric dipoles distributed in the current
oscillations and the electric field, while magnetic interactions
are contained in (φj − �j )2 and arise in the relationships
between φj , �j , and Ij .

From the Hamiltonian, we derive a coupled set of equations
for the EM fields and the meta-atoms. The incident EM fields
drive current oscillations within the meta-atoms, thereby in-
ducing polarization and magnetization densities. In Sec. IV C,
we derive and integrate the equations for the total EM fields
that are expressed in terms of the incident fields and the fields
scattered from the polarization and magnetization densities of
the meta-atoms. Specifically, currents in meta-atom j , when
oscillating at a frequency �, produce the monochromatic
scattered electric field ES,j and magnetic field HS,j given by

ES,j (r,�) = k3

4πε0

∫
d3r ′ [G(r − r′,�) · Pj (r′,�)

+ 1

c
G×(r − r′,�) · Mj (r′,�)], (2a)

HS,j (r,�) = k3

4π

∫
d3r ′ [G(r − r′,�) · Mj (r′,�)

− cG×(r − r′,�) · Pj (r′,�)] , (2b)

where G(r − r′,�) is the radiation kernel connecting an
oscillating electric (magnetic) dipole at position r′ to the
electric (magnetic) field at position r, while G×(r − r′,�)
connects an electric (magnetic) dipole at r′ to its radiated
magnetic (electric) field at r.47 Expressions for these radiation
kernels are given in Eqs. (64) and (65).

The total electric and magnetic fields are obtained as a
sum of the incident fields and the fields scattered by all the
meta-atoms in the system:

D(r,t) = Din(r,t) +
∑

j

DS,j (r,t) , (3)

B(r,t) = Bin(r,t) +
∑

j

BS,j (r,t) , (4)

where we have the scattered magnetic induction BS,j ≡
μ0(HS,j + Mj ) and the scattered electric displacement DS,j ≡
ε0ES,j + Pj from the meta-atom j .

Although, according to Eq. (2), the polarization and mag-
netization densities of all the meta-atoms act as source terms
that determine the scattered EM fields, there is, in general,
no simple way of solving for the polarization Pj (r,�) and
magnetization Mj (r,�) densities themselves. The equations
for near-resonant EM fields and closely spaced resonators are
strongly coupled, and the meta-atoms are driven by both the
incident fields and fields scattered by all other meta-atoms

in the system. This is illustrated by Hamilton’s equations of
motion for the resonators,

Q̇j (t) = Ij (t), (5a)

φ̇j (t) = Ej (t), (5b)

where the total electric field induces an effective electromotive
force (EMF) Ej [see Eq. (17)], driving the meta-atoms.

Solving the coupled dynamical equations for the resonators
(5) and the EM fields (2) constitute the central results of the
paper. We begin in Sec. V A by considering a single meta-atom.
A meta-atom not only feels the influence of the incident
EM field and the fields scattered from other meta-atoms,
but also its self-generated field. We show that interactions
between a meta-atom j and its self-generated field produces
an effective damped LC circuit for the current oscillations
with self-capacitance Cj , self-inductance Lj , and resonance
frequency ωj . The oscillating electric and magnetic dipoles
of the meta-atom scatter EM fields and therefore induce a
radiative decay at rates �E,j and �M,j , respectively.

In a metamaterial array of several meta-atoms, we then
solve the coupled set of equations (5) and (2) when each
meta-atom is also driven by the scattered fields from all the
other meta-atoms. This results in multiple scattering events and
yields EM field mediated interactions between the meta-atoms.
In particular, when the multiple scattering between closely
spaced resonators becomes dominant, so that the EM wave
is scattered more than once by the same scatterer (this is
called recurrent scattering), the system responds to EM fields
cooperatively. In order to analyze the eigenmodes of such a
system, it is beneficial to introduce the excitation amplitudes
of each meta-atom LC circuit in terms of its dynamical
coordinates and the canonical momenta. In particular, when the
decay rates are much less than the resonance frequencies, the
meta-atom dynamics is well described by the slowly varying
normal variables

bj (t) ≡ ei�0t√
2ωj

(
Qj (t)√

Cj

+ φj (t)√
Lj

)
. (6)

In terms of the normal variables, we then derive a linear set of
equations for the meta-atoms whose interactions are mediated
by the EM fields by explicitly integrating out the scattered
fields:

ḃj =
∑
j ′

Cj,j ′bj ′ + fin,j . (7)

The expressions for the coupling matrix C between the
meta-atoms and the driving terms by the incident fields
fin,j are derived in Sec. V B. The diagonal elements of C
reflect the resonance frequencies and decay rates of the single
meta-atoms in isolation, while the off-diagonal elements arise
from scattered electric and magnetic fields interacting with
the meta-atom electric and magnetic dipoles. The coupled
equations (7) include the recurrent scattering events between
the meta-atoms to all orders. We generalize our treatment to
account for stronger interactions between meta-atoms, i.e.,
where interactions mediated by scattered fields are comparable
to the effects of the self-generated field, in Appendix C.
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A system of N meta-atoms supports N collective modes
of current oscillation, each matched to an eigenvector of
the matrix C. Each mode i has its own collective resonance
frequency and decay rate given in terms of its eigenvalue
λi as

�i = −Im(λi) + �0, (8a)

γi = −2Re(λi) , (8b)

respectively. As a result of the interactions, the collective emis-
sion rates can be either much less than (subradiant) or much
greater than (superradiant) the constituent single meta-atom
decay rates. We demonstrate this in Sec. VI where we consider
the collective effects on a 2D metamaterial array of symmetric
split ring resonators (SRRs), metamolecules possessing reflec-
tion symmetry which consist of two concentric circular arcs of
equal length. Even in a relative small metamaterial sample of
33 × 33 unit-cell resonators for the lattice spacing of a half-
wavelength, we find that the spectrum of resonance frequencies
exhibits a long tail of strongly subradiant eigenmodes. The
most subradiant mode of the system possesses a radiative
decay rate of about five orders of magnitude less than that of an
isolated meta-atom. This eigenmode exhibits a checkerboard
phase-pattern of dominantly electric dipole excitations. We
also find that the strong response of the metamaterial sample
is very sensitive to the spacing between the resonators. We
analyze the spectrum for the lattice spacing of 1.4 wavelength
in which case the distribution of the decay rates is considerably
narrowed. The most subradiant mode now has a resonance
linewidth that is five times narrower than the one of the isolated
unit-cell resonator. Finally, we also provide an example how
the propagation dynamics of excitations in a metamaterial
array can be analyzed using the collective eigenmodes. We
find that the lattice spacing, and hence the interactions between
the resonators, strongly influence the rate at which excitations
spread over the array.

III. DISCRETE RESONATOR MODEL OF A
METAMATERIAL

To develop the formalism characterizing interactions of
magnetodielectric resonators in EM fields, we first provide
a detailed description of the metamaterial and the model we
use to represent it. We consider an ensemble of metamolecules,
unit-cell elements that comprise the metamaterial, driven by
an incident EM field. Each metamolecule can be decomposed
into some number of meta-atoms, which may correspond,
for example, to individual circuit elements. We model our
metamaterial as an ensemble of N meta-atoms. The position of
the meta-atom j is denoted by Rj (j = 1, . . . ,N). An external
beam with electric field Ein(r,t) and associated magnetic
induction Bin(r,t) impinges on the ensemble, driving the
meta-atoms. We assume the incident field is bandwidth limited
with a spectrum centered at angular frequency �0, and that the
spatial extent of each meta-atom lies well within a carrier
wavelength λ = 2πc/�0.

The meta-atoms may be composed of, e.g., metallic circuit
elements supporting plasmonic oscillations, allowing charges,
and currents to flow internally. The current and charge
distributions produce EM fields, which in turn, influence
the dynamics of these distributions. As such, each element

supports various eigenmodes of current oscillation.48,49 For
simplicity, we identify a meta-atom j with a single eigenmode
of current oscillation whose state can be described by a
single dynamic variable Qj (t) with units of charge and whose
spatial profile is described by time-independent functions
pj (r) and wj (r). These mode functions are defined such that
the polarization Pj (r,t) and magnetization Mj (r,t) densities
associated with atom j are

Pj (r,t) = Qj (t)pj (r), (9a)

Mj (r,t) = Ij (t)wj (r) , (9b)

where Ij (t) ≡ dQj/dt is the current. The definitions of the
polarization and magnetization lead to the expressions of the
charge and current densities within each meta-atom:

ρj (r,t) = −Qj (t)∇ · pj (r), (10a)

jj (r,t) = (pj (r) + ∇ × wj (r))Ij (t). (10b)

The total polarization and magnetization densities of the
system are obtained from a sum over the polarization and
magnetization densities of every meta-atom j , respectively:

P(r,t) =
∑

j

Pj (r,t), (11)

M(r,t) =
∑

j

Mj (r,t) . (12)

We choose the mode functions so that they are zero outside
the neighborhood of the meta-atom.

We note that, in general, the various parts of a circuit
element contain charge and current densities that could
behave independently of one and other; they could therefore
be represented by separate dynamic variables. These extra
degrees of freedom could be described by assigning multiple
modes of current oscillation to the element, each with its
own dynamic variable and mode functions to describe the
corresponding polarization and magnetization densities. The
resulting set of mode function dynamic variables could then
interact with one and other via the EM fields. In essence, one
could view a circuit element as an ensemble of meta-atoms that
touch or overlap with one and other. In this work, however,
we have assumed that the mode functions have been chosen
so that they are eigenmodes of elements, i.e., there is a zero
net interaction between the modes in a given circuit element
within a metamolecule. We therefore identify a meta-atom with
an eigenmode of current oscillation within a circuit element
and treat each meta-atom as possessing only a single mode of
current oscillation. This is analogous to approximating an atom
interacting with the EM field as a two-level atom. In the present
work, we will not address how the eigenmodes of current oscil-
lations are calculated. For isolated circuit elements, they could
be computed numerically solving Maxwell’s equations using
actual material parameters. Alternatively, one could obtain the
meta-atom resonance properties directly from experimental
measurements, or estimate them using geometrical arguments.

IV. SYSTEM DYNAMICS

In this section, we introduce the Lagrangian and Hamil-
tonian formalism for a magnetodielectric medium interacting
with EM fields, specifically derived for a system consisting

085116-4



THEORETICAL FORMALISM FOR COLLECTIVE . . . PHYSICAL REVIEW B 86, 085116 (2012)

of circuit elements whose dynamic variables represent eigen-
modes of current oscillations. The Lagrangian is expressed
in the length gauge, obtained by the Power-Zienau-Woolley
transformation.41–43 We find that this particular representation
of electromagnetism turns out to be especially useful for
describing localized, collectively interacting circuit elements.
The specific details of the Power-Zienau-Woolley transforma-
tion are covered in Appendix A.

From the Lagrangian, we derive the conjugate momenta for
the dynamic variables of the meta-atoms and the EM fields,
and the Hamiltonian for the system. The dynamics of the
model describe charge and current densities of the system
interacting with the EM fields. We derive a coupled set of
equations for the EM fields and the resonators in which both the
electric and magnetic fields drive the meta-atom dynamics. The
expressions for the electric and magnetic fields are obtained
in terms of the incident fields illuminating the sample and
the fields scattered from the polarization and magnetization
densities that represent the meta-atoms in the medium.

A. The Lagrangian and Hamiltonian formalism for meta-atoms
interacting with EM fields

We treat the dynamics of the system in the Coulomb gauge
beginning with the Lagrangian formalism. It is particularly ad-
vantageous to study the EM response in a gauge representation
obtained by the Power-Zienau-Woolley transformation.41–43

In Appendix A, we show that the Lagrangian in the Power-
Zienau-Woolley picture50 can be written in terms of meta-atom
dynamic variables as

L = K + LEM + VCoul +
∑

j

[Qj (t)Ej + Ij (t)�j ] , (13)

where K is an effective kinetic energy given by

K =
∑

j

1

2
lj I

2
j . (14)

The phenomenological kinetic inductance lj of meta-atom j

provides, within the effective single-particle description of the
system, an inertia to the current oscillation that would be
present in the absence of EM field interactions. This inertia
could result, for example, from the effective mass of charge
carriers or surface plasmons within the meta-atom. Excitation
of a current oscillation displaces charge carriers from their
equilibrium configuration producing a charge density ρj (r)
[Eq. (10a)] within meta-atom j . The meta-atom charge
densities interact via the instantaneous Coulomb interaction

VCoul = 1

8πε0

∑
j,j ′

∫
d3rd3r ′ ρj (r)ρj ′ (r′)

|r − r′| . (15)

The current oscillation in meta-atom j interacts with external
EM fields via an effective electromotive force (EMF) Ej and
an effective magnetic flux �j (t) through that meta-atom:

Ej (t) ≡
∫

d3r E(r,t) · pj (r), (16)

�j (t) ≡
∫

d3r B(r,t) · wj (r) . (17)

The EMF interacts with the charge Qj on the circuit, while the
current Ij interacts with the magnetic flux. The Lagrangian for
the free EM field LEM is given in terms of the Coulomb gauge
vector potential A as

LEM = ε0

2

∫
d3r

(∣∣∣∣dA
dt

∣∣∣∣
2

− c2|∇ × A|2
)

. (18)

The Lagrangian for the free EM field represents the radiative
fields that are responsible for the excitations of the meta-atoms.

We now wish to determine the Hamiltonian for the system.
We proceed by identifying the conjugate momenta of the
dynamic variables. Those for charges are given by

φj ≡ ∂L
∂Ij

= lj Ij + �j . (19)

Note that in the limit where lj is vanishingly small, the conju-
gate momentum of the charge is dominated by the flux through
the circuit. This is often the case in microwave metamaterials,
where the EM interactions dwarf the effects of charge carrier
inertia. The vector potential represents a continuous field of
dynamic variables that possess a corresponding continuum of
conjugate momenta defined as

(r,t) ≡ ∂L
∂Ȧ(r,t)

. (20)

This conjugate momentum will have a contribution from
LEM and pick up a contribution from the interaction term∑

j EjQj = ∫
d3r P · E. For a system of neutral meta-atoms,

the conjugate momentum of the vector potential is given by50

(r,t) = −D(r,t) , (21)

where

D = ε0E + P (22)

is the electric displacement field.
In treating the field dynamics, it is often convenient to

express these fields in terms of the normal variables aq,λ(t)
describing a plane wave with wave vector q and transverse
polarization êq̂,λ. These normal variables are defined such that
the electric displacement and magnetic fields are given by

D(r,t) = i

∫
d3q ξq

∑
λ

êq̂,λaq,λ(t)eiq·r + c.c., (23)

B(r,t) = i

√
μ0

ε0

∫
d3q ξq

∑
λ

(q̂ × êq̂,λ)aq,λ(t)eiq·r + c.c.,

(24)

respectively, where

ξq ≡
√

cqε0

2(2π )3
. (25)

The normal variables for the EM field satisfy the following
relations in terms of the Poisson brackets51

{aq,λ,a
∗
q′,λ′ } = −iδλ,λ′δ(q − q′), (26)

and {aq,λ,aq′,λ′ } = {aq,λ,Qj } = {aq,λ,φj } = 0.
Having obtained the conjugate momenta and normal field

variables, one may write the Hamiltonian for the system by
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applying the Legendre transform

H =
∑

j

Q̇jφj +
∫

d3r Ȧ ·  − L. (27)

It is beneficial to decompose the HamiltonianH = Hmm + HE

into a component containing contributions from the meta-atom
conjugate momenta, Hmm, and a component accounting for
electric field interactions and the free EM field,HE. The former
contribution is given explicitly by

Hmm ≡
∑

j

(φjIj − �jIj ) − K. (28)

But, because φj − �j = lIj [see Eq. (19)],

Hmm = K =
∑

j

(φj − �j )2

2lj
(29)

reduces to the kinetic energy of the current oscillations. The
terms involving the electric field contribution, on the other
hand, are given explicitly by

HE = −
∫

d3r (Ȧ · D + E · P) − VCoul − LEM. (30)

It is beneficial to simplify the contribution of Eq. (30). We
carry out this simplification in Appendix B. The total system
Hamiltonian may thus be written in the the Power-Zienau-
Woolley picture as50

H = HEM + 1

2ε0

∫
d3r |P|2

+
∑

j

[
1

2lj
(φj − �j )2 − 1

ε0

∫
d3r D(r,t) · Pj (r)

]
,

(31)

where the Hamiltonian for the free EM field is

HEM = ε0

2

∫
d3r

( ∣∣∣∣ε0

∣∣∣∣
2

+ c2 |∇ × A|2
)

=
∫

d3q
∑

λ

cq a∗
q,λaq,λ. (32)

To understand the dynamics that will arise from this
Hamiltonian, we examine the physical role of each term
individually. The interaction between the displacement field
and polarization density can be written in terms of the emitter
dynamic variables as

−
∫

d3r
D(r,t)

ε0
· Pj (r,t) = −Qj

ε0

∫
d3r D(r,t) · pj (r) .

(33)

This represents an interaction energy between the electric
displacement and the spatial distribution of electric dipoles
contained in the polarization density. On the other hand, the
interaction with the magnetic field becomes apparent when
expanding K, which yields

(φj − �j )2

2lj
= φ2

j

2lj
− φj

lj
�j + �2

j

2lj
, (34)

The interaction of meta-atom j with the magnetic field arises
in the second term. The physical significance of this interaction

can be understood by expressing that contribution in terms of
the magnetization density [see Eq. (9)] as

−φj

lj
�j = −

∫
d3r Mj · B − �2

j

lj
. (35)

Equation (35) effectively contains the interaction between the
magnetization density and the magnetic field. Additionally,
Eq. (35) includes a term proportional to the square of the
magnetic flux. This artifact appears because the magnetization
density is a function of the meta-atom current Ij rather than its
conjugate momentum. When this portion of the interaction
is written as entirely in terms of the meta-atom conjugate
momentum, the term proportional to the square of the flux
disappears. The last term of Eq. (34) represents a diamagnetic
interaction proportional to the square of the magnetic field flux
through a meta-atom. These interactions are analogous to the
effective magnetization and diamagnetic interactions found
in the Hamiltonian for electrically charged point particles in
Ref. 50.

Finally, we examine the local polarization self-energy term
appearing in the Hamiltonian [see Eq. (32)]. This can be
expressed in terms of the dynamic variables as

1

2ε0

∫
d3r P(r,t) · P(r,t)

=
∑
j,j ′

QjQj ′

2ε0

∫
d3r pj (r) · pj ′ (r) . (36)

When the meta-atoms are spatially separated, however, their
polarization mode functions do not overlap, i.e., pj · pj ′ ≡ 0
for j �= j ′. The presence of P(r,t) · P(r,t) results only in an
interaction of the meta-atom with itself, which manifests itself
as

1

2ε0

∫
d3r P(r,t) · P(r,t) =

∑
j

Q2
j

2ε0

∫
d3r |pj (r)|2 . (37)

If the meta-atoms were to overlap, a contact potential pro-
portional to QjQj ′ would appear between the overlapping
elements j and j ′. In the initial Lagrangian [see Eq. (13)],
direct interactions between the meta-atoms appeared via
the instantaneous Coulomb interaction. An advantage of the
Hamiltonian treatment in the Power-Zienau-Woolley picture
is that such interactions do not appear explicitly; other
instantaneous, noncausal contributions to the dynamics cancel
out those of the Coulomb interaction. This leaves the meta-
atom dynamic variables to interact exclusively with the
vector potential and its conjugate momentum. Any effective
interactions between meta-atoms are thus mediated by these
field dynamic variables.50

B. The meta-atom dynamics

The meta-atoms’ interaction with the EM fields are
illustrated by Hamilton’s equations of motion describing the
current oscillations:

Q̇j (t) = {Qj,H} = Ij (t) = φj (t) − �j (t)

l
, (38a)

φ̇j (t) = {φj ,H} = Ej (t). (38b)

085116-6



THEORETICAL FORMALISM FOR COLLECTIVE . . . PHYSICAL REVIEW B 86, 085116 (2012)

The conjugate momentum φj is driven entirely by the EMF Ej ,
while Eq. (38a) is nothing more than a statement that the rate
of change of the charge is the current. At first glance, it may
appear that the magnetic field does not drive the meta-atoms.
However, its effects manifest themselves indirectly through a
relationship between the conjugate momentum φj and the cur-
rent Ij that will be discussed in Sec. V. Effective interactions
between the resonators come about through multiple scattering
of the EM field between resonators.

C. The scattered EM fields

In the previous section, we derived the equations for the
meta-atoms driven by EM fields. In order to find a coupled
set of equations for the fields and the resonators, we need to
find how the EM fields depend on the state of the meta-atom
charges and currents. In this section, we derive integral
expressions for the scattered EM fields where the metamaterial
medium acts as a source with effective polarization and
magnetization densities. The total electric and magnetic fields
are then represented as sums of the incident fields and the
scattered fields from the medium. The resulting equations
for the resonators and the EM fields are strongly coupled:
the resonator dynamics are driven by the EM fields and the
fields themselves depend on the excited meta-atom current
oscillations.

We begin with the equation of motion for the normal field
operators,

daq,λ

dt
= {aq,λ,H}

= −icqaq,λ + eicqt ξq

ε0

∫
d3r ′ e−iq·r′

×
[

êq̂,λ · P(r′,t) + 1

c
(q̂ × êq̂,λ) · M(r′,t)

]
, (39)

where the first term results in the oscillation of the free EM
field and in the second term, we find the polarization and
magnetization densities arising from meta-atom currents that
act as sources for radiation. Upon integrating Eq. (39), one
obtains

aq,λ(t) = e−icqt a
(in)
q,λ + ξq

ε0

∫
d3r ′

∫ t

−∞
dt ′ e−icq(t−t ′)e−iq·r′

×
[

êq̂,λ · P(r′,t ′) + 1

c
(q̂ × êq̂,λ) · M(r′,t ′)

]
, (40)

where a
(in)
q,λ = limt0→−∞ eicqt0aq,λ(t0) is the initial state of

the plane-wave normal variable before it interacts with the
resonators.

The incident fields (Din,Bin) and the scattered fields
(DS,BS) radiated by the meta-atoms comprise the total electric
displacement and magnetic induction fields:

D(r,t) = Din(r,t) + DS(r,t) , (41)

B(r,t) = Bin(r,t) + BS(r,t) , (42)

DS(r,t) =
∑

j

DS,j (r,t) , (43)

BS(r,t) =
∑

j

BS,j (r,t) , (44)

where DS,j (r,t) and BS,j (r,t) denote the fields emitted by
the meta-atom j . The incident fields Din and Bin are given
in the plane-wave representation by Eqs. (23) and (24) with
e−icqt a

(in)
q,λ substituted for aq,λ. For the field observation point r

located outside the meta-atoms, we have Din(r,t) = ε0Ein(r,t)
from Eq. (22). A common situation in experiments corresponds
to an illumination of a metamaterial sample by a nonfocused,
monochromatic beam that can be approximated by a single
plane-wave component, with |kin| = �0/c,

Din(r,t) = Din êine
i(kin·r−�0t) + c.c., (45)

Bin(r,t) =
√

μ0

ε0
k̂in × Din(r,t) . (46)

One obtains explicit expressions for D and B, by substitut-
ing Eq. (40) into Eqs. (23) and (24), summing over the two
transverse polarizations êq̂,λ, and integrating over q. Following
this procedure, one obtains the scattered fields

DS(r,t) =
∫ t

−∞

∫
d3r ′

[
S(r − r′,t − t ′) · P(r′,t ′)

+ 1

c
S×(r − r′,t − t ′) · M(r′,t ′)

]
(47)

and

BS(r,t) = μ0

∫ t

−∞

∫
d3r ′ [S(r − r′,t − t ′) · M(r′,t ′)

− cS×(r − r′,t − t ′) · P(r′,t ′)] , (48)

where S is the propagator that takes the electric (magnetic) field
from the electric (magnetic) dipole source r′ to the observation
point at r and S× represents the propagation of the radiated
electric (magnetic) field from the magnetic (electric) dipole
sources to the observation points. The propagator S is given
by

S(r,t) = ic

16π3

∫
d3q k (1 − q̂q̂) eiq·r(e−icqt − eicqt )

= c

4π
(∇∇ − 1∇2)

δ(r − ct) − δ(r + ct)

r
. (49)

The two δ functions produce retarded and advanced time
contributions to the scattered fields, with the advanced time’s
contribution arising only at r = 0. The derivatives acting on
1/r result in a contact interaction proportional to δ(r). At
first glance, the retarded and advanced time contributions may
appear to cancel out at r = 0, thus nullifying such a contact
interaction. However, by examining the frequency components
of S, one can show that this contact interaction does survive.23

The corresponding expressions for S× are

S×(r,t) = − ic

16π3

∫
d3q eiq·r(e−icqt + eicqt )q × 1

= −∇ × 1

4πr

∂

∂t
[δ(r − ct) − δ(r + ct)] . (50)

From the oscillator equations of motion [see Eq. (38)], we
find that the fields emitted from one resonator will drive all of
the others. The driven resonators, in turn, rescatter these fields
to yet other resonators in the metamaterial. To more easily
account for the cumulative effects of these multiple scatterings
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and identify collective modes in the system, we analyze the
field and oscillator dynamics in the frequency domain.

We therefore decompose the source fields P and M
into their frequency components and compute the scattered
monochromatic constituents of the EM fields. Specifically, we
write an arbitrary source field,

f(r,t) = 1√
2π

∫ ∞

−∞
d� f(r,�)e−i�t , (51)

in terms of the Fourier components f(r,�). In evaluating
the response of the field to each monochromatic source
component, one encounters integrals of the form∫ t

−∞
dt ′ S(r − r′,t − t ′)f(r′,�)e−i�t ′

= e−i�t S̃(r − r′,�)f(r′,�) (52)

and ∫ t

−∞
dt ′ S×(r − r′,t − t ′)f(r′,�)e−i�t ′

= e−i�t S̃×(r − r′,�)f(r′,�), (53)

where S̃(r,�) and S̃×(r,�) are the monochromatic versions
of the expressions given in Eqs. (49) and (50) that describe
the propagation of the radiated fields from the source to an
observation point. In evaluating these propagators, we find
it convenient to treat positive and negative frequencies �

separately. We, therefore, decompose the propagators as

S̃(r,�) = S̃(+)(r,�)�(�) + S̃(−)(r,�)�(−�), (54)

S̃×(r,�) = S̃(+)
× (r,�)�(�) + S̃(−)

× (r,�)�(−�), (55)

where � is the Heaviside function and the propagators’
positive and negative frequency components are given by

S̃(±)(r,�) = 1

4π
(∇∇ − 1∇2)

e±ikr

r
(56)

and

S̃(±)
× (r,�) = ± ik

4π

(
∇ × e±ikr

r

)
1 , (57)

where k ≡ |�|/c is the angular wave number of the radiation
emitted from a monochromatic source of frequency �.

One of our goals is to provide radiated electric and magnetic
fields E and H, respectively. These are related to the electric
displacement D and magnetic induction B by the familiar
expressions

E(r,t) = 1

ε0
[D(r,t) − P(r,t)], (58a)

H(r,t) = 1

μ0
B(r,t) − M(r,t) . (58b)

We thus define dimensionless radiation kernels

G(r,�) = 4π

k3
[S̃(r,�) − δ(r)], (59)

G×(r,�) = 4π

k3
S̃×(r,�) , (60)

where, by the relations of Eqs. (58a) and (58b), the δ function in
Eq. (59) transforms the monochromatic propagators of D and

B to those of E and H, respectively. The Fourier components
of the corresponding EM fields are thus given by

E(r,�) = 1

ε0
Din(r,�) +

∑
j

ES,j (r,�), (61)

H(r,�) = 1

μ0
Bin(r,�) +

∑
j

HS,j (r,�), (62)

where the fields scattered from meta-atom j are

ES,j (r,�) = k3

4πε0

∫
d3r ′

[
G(r − r′,�) · Pj (r′,�)

+ 1

c
G×(r − r′,�) · Mj (r′,�)

]
, (63a)

HS,j (r,�) = k3

4π

∫
d3r ′ [G(r − r′,�) · Mj (r′,�)

− cG×(r − r′,�) · Pj (r′,�)] . (63b)

As with the monochromatic propagators, we decompose the
radiation kernels into their positive and negative frequency
components as

G(r,�) = G(+)(r,�)�(�) + G(−)(r,�)�(−�). (64)

G(r,�) = G(+)
× (r,�)�(�) + G(−)

× (r,�)�(−�). (65)

The radiation kernel G(±)(r − r′,�) corresponds to a familiar
expression for a radiated electric (magnetic) field at the
observation point r, originating from an oscillating electric
(magnetic) dipole residing at r′.47 Similarly, an oscillating
electric (magnetic) dipole at r′ generates a magnetic (electric)
field at r that is represented by the radiation kernel G(±)

× (r −
r′,�). The explicit expressions for these read

G(±)(r,�) = i

[
2

3
1h

(±)
0 (kr) +

(
rr
r2

− 1

3
1
)

h
(±)
2 (kr)

]

− 4π

3
1δ(kr) , (66)

G(±)
× (r,�) = ± i

k
∇ × e±ikr

kr
1 , (67)

where h(+)
n and h(−)

n are the spherical Hankel functions with
order n of the first and second kinds, respectively, defined by

h
(±)
0 (x) = ∓i

e±ix

x
, (68a)

h
(±)
2 (x) = ±i

(
1

x
± i

3

x2
− 3

x3

)
e±ix . (68b)

Equations (61)–(65), together with the radiation kernels of
Eqs. (66) and (67), constitute the main results of this section.
They provide the total electric and magnetic fields both
inside and outside the metamaterial sample as a function of
polarization and magnetization densities that are produced
by oscillating currents in the meta-atoms. Although we have
derived the integral expressions for the scattered EM fields in
terms of the resonator excitations in Eq. (63), in general, there
is no simple way of solving for P(r) and M(r). Together with
Hamilton’s equations for the dynamic variables of the electric
charges of the meta-atoms [see Eq. (38)], the formulas for the
radiated fields form a coupled set of equations for the EM fields
and the matter. The scattered fields from each meta-atom drive
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the dynamics of the other meta-atoms in the system, with the
EM fields mediating interactions between the resonators. For
the case of near-resonant field excitation and closely spaced
circuit elements, the coupling between the EM fields and the
meta-atoms can be strong due to multiple scattering processes
leading to collective behavior of the system.

In evaluating the scattered fields of Eq. (63), we note that
because h

(±)
2 (r) contains a 1/r3 divergence near r = 0, the

spatial integral of G(±)(r,�) in Eq. (66) is not absolutely
convergent around the origin. However, as Ref. 23 points out,
one can handle such a singularity by carving an infinitesimal
spherical region around r = 0 from the integral and treating
this region separately. The integral over the radiation kernel
(66) is then defined using the convention that the term inside
the brackets vanishes over an infinitesimal volume enclosing
the origin. Mathematically, this is achieved by carrying out the
integral in this region in spherical coordinates, first integrating
over the spherical angles, so that only the δ-function con-
tributes to the integral. (Physically, this indicates an isotropic
high-momentum cutoff in the formulation of the nonrelativistic
electromagnetism.) With this integration procedure, the δ

function appearing in Eq. (66) is required for the scattered
fields to satisfy Gauss’ law as well as to produce the correct
Maxwell’s equations, ∇ · D = 0 for a neutral system and
∇ · B = 0. The requirement that these conditions are satisfied
also confirms that we have duly selected the correct field terms
in the Hamiltonian (31) (e.g., electric displacement, instead of
electric field) and that the integration procedure of the contact
terms [see Eq. (49)] has been performed correctly. While
the δ-function singularity in G does not play a role in the
interactions between nonoverlapping meta-atoms, we find in
Sec. V A that it does contribute to interactions of a meta-atom
with its self-generated field.

The EM fields derived from the Hamiltonian are indeed
consistent with Maxwell’s equations. To verify this, we check
that the positive and negative frequency components of a
monochromatic field with wave number k satisfy the wave
equations with sources P(±) and M(±):47

(∇2 + k2)D(±) = −∇ × (∇ × P(±)) ∓ i
k

c
∇ × M(±), (69)

(∇2 + k2)B(±) = −μ0∇ × (∇ × M(±)) ± iμ0ck∇ × P(±).

(70)

We confirm that the total fields produced by our system satisfy
Eqs. (69) and (70) by applying the operator (∇2 + k2) to the
total electric and magnetic fields [see Eqs. (61) and (62)].
Because the incident waves are composed of superpositions
of plane waves, the action of the operator (∇2 + k2) on these
fields trivially reduces to

(∇2 + k2)Din = (∇2 + k2)Bin = 0. (71)

Therefore, the only contributions to (∇2 + k2)E and (∇2 +
k2)H come from the scattered fields ES,j and HS,j [Eqs. (63a)
and (63b)]. These contributions are most readily determined
by expressing the tensor components of the radiation kernels
in the differential form

G(±)μ,η
× = ± i

k
εμνη

∂

∂rν

e±ikr

kr
, (72)

G(±)μ,η = 1

k2

∂

∂rμ

∂

∂rη

− δμη∇2 e±ikr

kr
− 4πδμηδ(kr). (73)

Because the differential operators involved in the radiation
kernels readily commute with (∇2 + k2), the expressions for
this operator acting on the scattered fields involve contributions
of the form

(∇2 + k2)
e±ik|r−r′|
|r − r′| = −4πδ(r − r′) . (74)

appearing under the integral. Physically, the δ function
represents a point source away from which a monochromatic
spherical wave (e±ikr/r) propagates. The resulting expressions
for (∇2 + k2)E(±)

S,j and (∇2 + k2)H(±)
S,j thus contain integrals

over δ functions, which are readily evaluated. Explicitly, for
the component μ of the scattered electric field, we have

(∇2 + k2)D(±)μ
S,j = −

(
∂

∂rμ

∂

∂rη

− δμ,η∇2

)
P

(±)η
j

∓ i
k

c
εμνη

∂

∂rν

M
(±)η
j , (75)

where

D
(±)μ
S,j ≡ ε0E

(±)μ
S,j + P

(±)μ
j (76)

is the μth component of the scattered displacement field from
meta-atom j . Adding the contributions of Eq. (75) for all
meta-atoms j , produces the equivalent of the wave equation
[see Eq. (69)], which is the desired result. Similarly, one finds
that by adding the contributions

∑
j (∇2 + k2)H (±)μ

S,j for all
meta-atoms, one recovers the wave equation for the magnetic
field [see Eq. (70)].

V. META-ATOM INTERACTIONS MEDIATED
BY THE EM FIELD

In the previous section, we established how current os-
cillations in the meta-atoms respond to the EM field [see
Eqs. (38)]. Additionally, we arrived at expressions for the
electric and magnetic fields scattered by the meta-atoms
[see Eqs. (61)–(65)]. These fields were solved in terms of
the magnetization and the polarization densities, generated
by the resonator excitations. The current oscillations in each
meta-atom thus depend on the excitation of all other meta-
atoms via the scattered radiation. In this section, we combine
the response of the meta-atoms to EM field and the expressions
of the EM fields scattered by the meta-atoms in order to
investigate how the radiation mediates interactions between
the meta-atoms.

We begin by examining the dynamics of a single driven
meta-atom in Sec. V A. There, we show that when radiative
losses are much weaker than the resonance frequency, a
single meta-atom’s dynamics reduce to those of the familiar
damped LC circuit in which the energy is lost to the scattered
EM field. We then examine interactions between different
meta-atoms in a collection of closely spaced resonators.
Due to the strong coupling between the EM fields and
the current oscillations, the emitted radiation leads to the
collective dynamics of the ensemble. In Sec. V B, we explore
the collective response of the system in the rotating wave
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approximation, in which each meta-atom’s radiative emission
rate is much less than its resonance frequency. We present
an analysis for a more strongly interacting system outside the
rotating wave approximation in Appendix C.

In these treatments, we assume the spatial extent of each
meta-atom is much smaller than the wavelength of EM field
with which it interacts. As such, the radiation scattered from
each meta-atom can often be approximated as that of electric
and magnetic dipoles oscillating in sync with one and other.
For simplicity, when evaluating the interactions between meta-
atoms, we assume that the electric quadrupole and higher order
multipole contributions to the radiation of a single meta-atom
are much weaker than the dipole radiation and that they can be
neglected. This is by no means a necessary approximation. We
could extend the general formalism to incorporate multipole-
field radiation components in a multipole expansion. The
dipole approximation, however, will provide an advantage in
maintaining the tractability of the derivation of the collective
metamaterial response to EM fields. Moreover, in several
practical situations, a unit-cell resonator of a metamaterial
array may consist of two or more meta-atoms. Hence, in
the dipole approximation to a single meta-atom, the unit-cell
resonator would still exhibit multipole radiation contributions.
The multipole fields radiated by unit-cell resonators are also
weak in many cases. For instance, metamaterial samples
consisting of asymmetric split ring metamolecules have been
experimentally employed in the studies of collective resonator
response.32,34,35,52 In an asymmetric split ring metamolecule,
the generated quadrupole field is notably suppressed when
compared to the corresponding dipolar field.53

The electric and magnetic dipole moments produced by the
current oscillation in meta-atom j are

dj = Qjhj d̂j and mj = IjAj m̂j , (77)

respectively. These are given in terms of the charge Qj and
the current Ij of the meta-atom. The geometry-dependent
proportionality coefficients hj and Aj have units of length
and area and are defined such that

hj d̂j =
∫

d3r pj (r) and Aj m̂j =
∫

d3r wj (r). (78)

The unit vectors d̂j indicate the orientation of the electric
dipole while the unit vectors m̂j indicate the orientations
of the magnetic dipoles. The distributions pj (r) and wj (r)
[see Eq. (9)] represent the spatial profile of the polarization
and magnetization densities in terms of Qj and Ij . While,
generally, the current resulting from the polarization density
[the first term in Eq. (10b)] contributes to the magnetic dipole,
the polarization and magnetization densities (and hence the
mode functions) that lead to a given charge and current
distribution are not unique.47 We have therefore chosen for
each meta-atom j , pj , wj, and the position vector Rj such that
the contribution of the polarization current to the magnetic
dipole moment about Rj is zero.

To facilitate an understanding of how the EM field influ-
ences the meta-atom dynamics, we consider a meta-atom’s
self-generated fields separately from the fields generated
externally. Consider the dynamics of a single meta-atom j

interacting with the EM field. The meta-atom’s equations of
motion are given by Eq. (38). To isolate the dynamics arising

from the self-generated field, we decompose the electric and
magnetic fields into those generated by meta-atom j—ES,j

and BS,j —and those generated externally to meta-atom j ,
Ej,ext and Bj,ext. We then obtain the following relationship
between the different contributions:

Ej,ext ≡ Ein +
∑
j ′ �=j

ES,j ′ , (79a)

Bj,ext ≡ Bin +
∑
j ′ �=j

BS,j ′ . (79b)

These external fields include contributions from the incident
field and the fields scattered by all the other meta-atoms in the
system.

In the previous section, we derived the expressions for the
scattered fields in terms of the polarization and the magneti-
zation densities of the source medium. It was advantageous
to represent the scattered fields in the frequency domain.
We similarly analyze here the Fourier components of the
dynamic variable Qj oscillating at frequency �. As we did
with the emitted fields, we find it convenient to decompose the
meta-atom variables

Qj (t) = Q
(+)
j (t) + Q

(−)
j (t), (80)

φj (t) = φ
(+)
j (t) + φ

(−)
j (t) (81)

into their positive and negative frequency components, with

Q
(−)
j (t) = [Q(+)

j (t)]∗, φ
(−)
j (t) = [φ(+)

j (t)]∗ . (82)

The positive and negative frequency components for these
variables are defined such that, for a given frequency �,

Q
(±)
j (�) ≡ Qj (�)�(±�), (83a)

φ
(±)
j (�) ≡ φj (�)�(±�). (83b)

With frequency components of Qj and φj defined in this
way, the positive (negative) frequency components of the
dynamic variables are driven exclusively by the positive
(negative) frequency components of the EM fields. Since
the metamaterial system we consider in this model is linear,
the equations of motion in Fourier space become the algebraic
relationships between Fourier components of a common
frequency �,

−i�Qj (�) = φj (�) − �j,self (�) − �j,ext(�)

lj
, (84a)

−i�φj (�) = Ej,self (�) + Ej,ext(�), (84b)

where Ej,self and �j,self are the self-generated EMF and flux,
respectively, while Ej,ext and �j,ext are the EMF and flux
generated externally to meta-atom j . The current relates to
conjugate momentum and magnetic flux through Eq. (19), and
the equation of motion for Qj , Eq. (84a), is nothing more that
the statement that the rate of change of Qj is the current Ij . This
translates to the relationship between frequency components
−i�Qj (�) = Ij (�). The EMF and magnetic flux contain the
external driving induced by the external EM fields as well
as driving induced by the field that the current oscillation
itself generates.
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The externally applied EMF and magnetic flux are given
explicitly in terms of the externally generated fields as

Ej,ext(�) ≡
∫

d3r pj (r) · Ej,ext(r,�), (85)

�j,ext(�) ≡
∫

d3r wj (r) · Bj,ext(r,�) . (86)

When the external fields vary slowly over the volume of meta-
atom j , Ej,ext and �j,ext reduce to a direct driving of the meta-
atoms’ electric and magnetic dipoles, respectively:

Ej,ext(�) ≈ hj d̂j · Ej,ext(Rj ,�), (87a)

�j,ext(�) ≈ Aj m̂j · Bj,ext(Rj ,�), (87b)

where Rj is the position of the meta-atom. The external EMF
and flux mediate the interactions between distinct meta-atoms,
which we will discuss in Sec. V B and Appendix C.

A. A single meta-atom interacting with the EM field

Before investigating how scattered EM fields facilitate
interactions between meta-atoms, we first shed light on how
the meta-atom’s field influences the evolution of the meta-atom
itself. This is done by studying a single, isolated externally
driven meta-atom. We will present expressions for the self-
generated fields’ contribution to both the EMF and the flux.
When the spatial extent of the meta-atom is much less than a
wavelength, the self-induced EMF can be written in terms of an
effective self-capacitance, and the magnetic flux can be written
in terms of a magnetic self-inductance. We thus show how each
meta-atom can be treated as a radiatively damped LC circuit
that is driven by external fields. This analogy allows us to define
slowly varying normal variables and derive their dynamics.

1. Self-induced EMF and magnetic flux

The EMF and the magnetic flux represent reactions of a
meta-atom to EM fields generated by the meta-atom itself as
well as to external fields. Self-generated electric and magnetic
fields provide a major contribution to the EMF and magnetic
flux, respectively. We define the self-generated EMF and flux
as

Ej,self (�) ≡
∫

d3rj pj (rj ) · ES,j (rj ,�), (88)

�j,self (�) ≡
∫

d3r wj (r) · BS,j (r,�) . (89)

The self-generated fields of meta-atom j , i.e., the fields ES,j

and HS,j ≡ BS,j /μ0 − Mj scattered from meta-atom j , at a
frequency � are given in [see Eq. (63)]. From the expression
for ES,j [see Eq. (63a)], we obtain the self-induced EMF [see
Eq. (88)] in terms of the radiation kernels [see Eqs. (66) and
(67)]:

Ej,self (�) = k3

4πε0

∫
d3r

∫
d3r ′

×
[

pj (r) · G(r − r′,�) · pj (r′)Qj (�)

+ 1

c
pj (r) · G×(r − r′,�) · wj (r′)I (�)

]
. (90)

Similarly, the self-generated flux is obtained from the
expression for HS,j [see Eq. (63b)], and is given in terms of

the radiation kernels as

�j,self (�) = μ0k
3

4π

∫
d3r

{
|wj (r)|2

+
∫

d3r ′ [wj (r) · G(r − r′,�) · wj (r′)Ij (�)

− cwj (r) · G×(r − r′,�) · pj (r′)Qj (�)]

}
. (91)

The first term of Eq. (91) arises because the flux is defined
in terms of B = μ0 (H + M) rather than H, whose scattered
field components are determined by the radiation kernels. This
results in different contact terms in Eqs. (90) and (91).

Because we have assumed that the meta-atoms are much
smaller than the wavelength, we may expand the radiation
kernels to lowest order in kr and thus approximate the
self-interactions in the near field limit. Since, in this limit,
G×(r,�)/G(r,�) ∼ kr  1, we neglect the contribution of
G× to the self-interaction. To leading order in kr , we have the
positive and negative frequency components of the radiation
kernels:

ReG(±)(r,�) ≈ 3r̂r̂ − 1
k3r3

− 4π

3k3
δ(r), (92)

ImG(±)(r,�) ≈ ±2

3
. (93)

2. Self-capacitance and self-inductance

The long wavelength approximation allows us to simplify
the expressions for the self-generated EMF and flux [see
Eqs. (90) and (91)] by neglecting the contributions of G×. This
approximation implies that the self-induced EMF is directly
proportional to the charge Qj , and that the self-induced
magnetic flux is directly proportional to the current Ij . We
can thus draw an analogy between a typical meta-atom and a
standard LC circuit where the charge Qj and current Ij are
related to Ej,self and �j,self through an effective capacitance
Cj and magnetic self-inductance L

(M)
j . From Eqs. (92) and

(93), the positive and negative frequency components of the
EMF and flux arising from the meta-atom’s self-generated field
become

E (±)
j,self (�) = −

(
1

Cj

∓ i
h2

j k
3

6πε0

)
Q

(±)
j (�), (94)

�
(±)
j,self (�) =

(
L

(M)
j ± i

μ0A
2
j k

3

6π

)
I

(±)
j (�). (95)

In addition to the capacitance and inductance the EMF and
flux have respective imaginary contributions that, as we shall
see later, represent dissipation of the current oscillation due to
radiation being emitted away from the meta-atom. The self-
capacitance Cj is given by

1

Cj

=
∫

d3r
|pj (r)|2

3ε0
− 1

4πε0

∫
d3r

×
∫

d3r ′ 3(pj (r) · n̂)(n̂ · pj (r′)) − pj (r′) · pj (r)

|r − r′|3 ,

(96)
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with n̂ ≡ (r − r′)/|r − r′|, and the magnetic self-inductance is

L
(M)
j = 2μ0

3

∫
d3r |wj (r)|2 + μ0

4π

∫
d3r

×
∫

d3r ′ 3[wj (r) · n̂][n̂ · wj (r′]) − wj (r′) · wj (r)

|r − r′|3 ,

(97)

In essence, excitation of the dynamic variable Qj produces
a distribution of electric dipoles (polarization density) pro-
portional to the mode function pj (r). In the long-wavelength
approximation, this distribution of dipoles produces a quasi-
static electric field in the vicinity of the meta-atom generated
by the real part of the radiation kernel ReG [see Eq. (92)].
The current oscillation interacts with itself via the near field
electric dipole-dipole interactions, resulting in the effective ca-
pacitance Cj appearing in the self-induced EMF [see Eq. (94)].
Similarly, a nonzero current Ij produces a distribution of
magnetic dipoles (magnetization density) proportional to the
mode function wj . The current oscillation then interacts with
itself via the near field magnetic dipole-dipole interactions,
resulting in the magnetic self-inductance L

(M)
j appearing in

the self-induced flux [see Eq. (95)].
Because the self-induced flux [see Eq. (95)] is proportional

to Ij , we find it convenient to express the conjugate momentum
φj = lj Ij + �j [see Eq. (19)] in terms of a total self-
inductance

Lj ≡ lj + L
(M)
j . (98)

This self-inductance includes contributions from both the
magnetic and the kinetic inductances. When we include
contributions from both the self-generated flux [see Eq. (95)]
and the external flux [see Eq. (86)], the conjugate momentum
for meta-atom j is given in terms of the total self-inductance
by

φ
(±)
j (�) =

(
Lj ± i

μ0A
2
j k

3

6π

)
I

(±)
j (�) + �

(±)
j,ext(�). (99)

This relation will be useful in determining the meta-atom
equations of motion.

3. Equations of motion for a meta-atom interacting
with its self-generated fields

Having determined how the self-scattered fields affect the
EMF and flux, we now determine a closed set of equations of
motion for the meta-atom’s dynamic variable and conjugate
momentum. The rate of change of the dynamic variable Qj

is given by the current Ij . Solving Eq. (99) for Ij (�) thus
allows us to determine an equation of motion for Qj in terms
of its conjugate momentum and magnetic flux generated by
the external field. Further, substituting the EMF from Eq. (94)
into Eq. (84) provides the corresponding equation of motion
for φj . Explicitly these equations of motion are given in the

frequency domain as

−i�Q
(±)
j =

[
1 ∓ i

(
ck

ωj

)3
�M,j

ωjD
(±)
j

]
φ

(±)
j

Lj

− �
(±)
j,ext

LjD
(±)
j

,

(100)

−i�φ
(±)
j = − 1

Cj

[
1 ∓ i

(
ck

ωj

)3
�E,j

ωj

]
Q

(±)
j + E (±)

j,ext,

(101)

where, as we demonstrate later,

ωj ≡ 1√
LjCj

(102)

is the single meta-atom resonance frequency, k ≡ |�|/c is the
wave number of the field frequency component,

�E,j ≡ h2
jCjω

4
j

6πε0c3
(103)

is the emission rate due to electric dipole radiation,

�M,j ≡ μ0A
2
jω

4
j

6πc3Lj

(104)

is the emission rate due to magnetic dipole radiation, and

D
(±)
j (�) = 1 ± i

(
ck

ωj

)3
�j,M

ωj

(105)

arises from the inversion of Eq. (99). The interaction of the
meta-atom with its external fields are parameterized by hj and
Aj [see Eq. (78)] and hence by the radiative emission rates �E,j

and �M,j . This is made clear in the point dipole approximation
where we have the external EMF and magnetic flux that drive
the meta-atom [see Eq. (87)]. From Eqs. (103) and (104), one
can infer that, when the meta-atom geometry is altered such
that the self-capacitance and self-inductance remain constant,
an increased interaction strength of the meta-atom with the
external field corresponds to increased radiative emission rates.

4. A meta-atom as an LC circuit

If we neglect the radiative damping and consider a meta-
atom interacting exclusively with its self-generated field, its
dynamics are nothing more than those of an LC circuit with
resonance frequency ωj , which in the time domain satisfies
the equations of motion

d

dt

(
Qj (t)
φj (t)

)
=

(
0 L−1

j

−C−1
j 0

) (
Qj (t)
φj (t)

)
. (106)

The meta-atom normal mode variables

βj ≡ 1√
2ωj

(
Qj√
Cj

+ i
φj√
Lj

)
(107)

and β∗
j evolve with eigenfrequencies ωj and −ωj , respectively,

βj (t) = exp(−iωj t)βj (0). (108)

The collective dynamics within the metamaterial, of course,
arise from the interaction of each meta-atom with its external
field, necessitating the inclusion of radiative losses �E,j ,�M,j .
But, as we will see later in this section, the presence of radiative

085116-12



THEORETICAL FORMALISM FOR COLLECTIVE . . . PHYSICAL REVIEW B 86, 085116 (2012)

interactions not only results in energy being carried away from
the meta-atom by the radiated field, but also allows the meta-
atom to be driven by fields scattered from other meta-atoms.

5. The meta-atom normal oscillator variables

The variables βj represent eigenmodes of a single meta-
atom in the absence of interactions with the external fields. The
presence of these interactions perturbs the single meta-atom
dynamics. Since the incident EM field driving the metamaterial
oscillates at a central frequency �0, it is convenient to analyze
the effects of these perturbations using the slowly varying
normal oscillator variables

bj (t) = ei�0tβj (t) = ei�0t√
2ωj

(
Qj (t)√

Cj

+ φj (t)√
Lj

)
. (109)

The oscillator variables satisfy the Poisson brackets

{b(t),b(t)} = {b∗
j (t),b∗

j ′(t)} = 0, (110a)

{bj (t),b∗
j ′(t)} = −iδj,j ′ . (110b)

One can recover Qj and φj by solving the system of equations
formed by Eq. (109) and its complex conjugate. This yields

Qj (t)√
ωjCj

= 1√
2

[e−i�0t bj (t) + ei�0t b∗
j (t)], (111)

φj (t)√
ωjLj

= −i
1√
2

[e−i�0t bj (t) − ei�0t b∗
j (t)]. (112)

As the incident electric field may consist of a range of
frequencies around �0 reflecting its variation in time, it is
necessary, in general, to examine the frequency components
of the oscillator variables and how they are related to those of
Qj and φj . The Fourier components, for � > 0, of Qj and φj

are given in terms of the normal variables as

Q
(+)
j (�)√
ωjCj

= 1√
2

[bj (δ) + b∗
j (−δ − 2�0)], (113)

φ
(+)
j (�)√
ωjLj

= −i
1√
2

[bj (δ) − b∗
j (−δ − 2�0)], (114)

where

δ ≡ � − �0. (115)

The negative frequency components of Qj and φj [given
in terms of their positive frequency components in the time
domain in Eq. (82)], when � < 0, can be obtained from the re-
lations, Q(−)

j (�) = [Q(+)
j (−�)]∗ and φ

(−)
j (�) = [φ(+)

j (−�)]∗.

6. Dynamics in the rotating wave approximation

Radiative damping and driving of the meta-atom by
external fields alter the current oscillation represented by the
normal variable bj . The interactions leading to these effects
are often sufficiently weak that we can regard their influence as
a small perturbation. We consider this weak interaction limit
here and in Sec. V B where we examine the collective behavior
of the meta-atoms comprising a metamaterial. We thus assume
that bj varies slowly with respect to the dominant frequency
�0 and neglect the fast oscillating components, i.e., we set
bj (−δ − 2�0) = 0 for |δ|  �0. The mode variables bj

are then proportional to the slowly varying envelope of the

positive frequency components of the dynamic variables
Q

(+)
j and their conjugate momenta φ

(+)
j . Neglecting fast

oscillating components of bj is known as the rotating
wave approximation (RWA) and is valid in the limit
�E,j ,�M,j ,|�0 − ωj |,δ�  �0, where δ�  �0 indicates a
narrow bandwidth of the incident field.

In the RWA, the meta-atom driving forces, i.e., the EMF
and flux, can be expressed in terms of their slowly varying
envelopes Ẽj and �̃j (t) defined such that

E (+)
j (t)√
ωjLj

= e−i�0t Ẽj (t), (116)

�
(+)
j (t)√
ωjLj

= e−i�0t �̃j (t), (117)

where the overall factor of
√

ωjLj was included for conve-
nience.

The RWA essentially assumes that all the dynamics are
dominated by the frequency �0. Because the RWA implies
δ�,|ωj − �0|  �0, we can approximate the quantities
(�/ωj )3 appearing in the equations of motion [see Eqs. (100)
and (101)] as (�/ωj )3 ≈ 1. In these limits, the equations
of motion for the frequency components of Qj and φj [see
Eqs. (100) and (101)] yield the relationship for the normal
variables:

−iδbj (δ) =
[
−i(ωj − �0) − �E,j +�M,j

2

]
bj (δ) + fj,ext(δ),

(118)

where the detuning of the meta-atom resonance ωj from
the frequency of the driving field �0 manifests itself as an
oscillation of the normal variable bj at frequency ωj − �0,
while electric and magnetic dipole radiation emanating from
the meta-atom results in the damping of bj at a rate �E,j +
�M,j . The forcing function combines driving of the current
oscillation by the external electric field via the EMF and the
external magnetic field via the flux, and is given by

fj,ext(δ) = i
1√
2

(Ẽj,ext(δ) + iωj �̃j,ext(δ)). (119)

7. The meta-atom as a driven, RLC circuit

Here, we show that in the RWA, a meta-atom behaves as
a damped, driven RLC circuit interacting with the external
driving field. A source of loss that is typically present in a
meta-atom which we have thus far neglected is the ohmic
losses due to resistance to current flow within the meta-atom.
We include the effects of this resistance phenomenologically
through the addition of the ohmic loss rate �O,j to the radiative
damping rate. The approximations leading to Eq. (121) are
still valid provided that �O,j  �0. The total meta-atom
damping becomes

�j ≡ �E,j + �M,j + �O,j . (120)

We obtain equation of motion for bj in the time domain from
Eq. (118) by multiplying by e−iδt and integrating over the
bandwidth of the external field −δ� < δ < δ�,

dbj

dt
=

[
− i(ωj − �0) − �j

2

]
bj (t) + fj,ext(t). (121)
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When the incident field is of finite duration, i.e.,
Ein(r,±∞) = Bin(r,±∞) = 0, bj satisfies Eq. (121)
with the initial condition bj (−∞) = 0.

The interaction of the meta-atom’s current oscillation
with its self-generated EM fields causes the current mode
to oscillate at the resonance frequency ωj [see Eq. (102)]
analogous to that of an LC circuit. When a meta-atom current
oscillation produces net electric and magnetic dipole moments,
this oscillation can be driven by external fields as manifested
by the term fj,ext(t) in Eq. (121). Radiative and ohmic losses
act as a resistance within the meta-atom, and the external EMF
Ẽj,ext and �̃j,ext provide the driving.

The dynamics of this effective RLC circuit can be derived
from the effective Hamiltonian

Heff,j = HLC,j + Hdamp,j + Vext,j , (122)

where HLC,j is the effective Hamiltonian for an undamped LC
circuit,

HLC,j = ωjb
∗
j bj = φ2

j

2Lj

+ Q2
j

2Cj

, (123)

the damping is provided by adding an imaginary term to the
effective Hamiltonian,

Hdamp,j = −i�b∗
j bj , (124)

and the interaction with the external field is provided by

Vext,j = −E (+)
j,extQ

(−)
j − �

(+)
j,ext

φ
(−)
j

Lj

+ c.c.. (125)

The physical significance of the interaction term becomes
clearer in the dipole approximation. When we neglect the
spatial extent of the meta-atoms, the interaction potential with
the external fields becomes

Vext,j = −E(+)
j,ext(Rj ,t) · d(−)

j (t)

− B(+)
j,ext(Rj ,t) · m′(−)

j (t) + c.c., (126)

where d(±)
j (t) ≡ hjQ

(±)
j (t) is the electric dipole of the meta-

atom and

m′(±)
j ≡ Aj

Lj

φ
(±)
j (t) , (127)

is an effective magnetic dipole of the meta-atom. To understand
why m′(±)

j can be interpreted in this way, consider the conjugate
momentum expressed in terms of the self-inductance [Eq. (99)]
in the limits of the RWA (namely, �/ωj ≈ 1),

φ
(±)
j = Lj

(
1 ± �M,j

ωj

)
I

(±)
j + �

(±)
j,ext. (128)

Because �M,j  ωj , when the self-induced magnetic flux
dominates that generated by external fields, the conjugate
momentum is related to the current by

φ
(±)
j ≈ LjI

(±)
j , (129)

and m′(±)
j ≈ m(±)

j is approximately the magnetic dipole created
by the current oscillation in meta-atom j . The effective
interaction Hamiltonian [see Eq. (126)] accounts for the energy
of the meta-atom electric dipole interacting with externally

generated electric fields and the meta-atom’s magnetic dipole
interacting with externally generated magnetic fields.

The energy lost due to radiative damping is carried off
by the scattered fields. The external fields contributing to
the interaction Vext,j include fields scattered from other meta-
atoms in the system. In the following section, we will explore
how these scattered fields drive and influence the dynamics of
the meta-atoms.

B. Collective interactions in the rotating wave approximation

In this section, we examine in detail how the fields
emitted externally to meta-atom j drive the excitation in
that meta-atom. In particular, we will see how the fields
emitted or scattered from the ensemble of meta-atoms mediate
interactions between them. The EM field generated externally
to each meta-atom has two components: the incident field, and
the fields scattered from all other meta-atoms in the system.
The incident field impinges on the metamaterial driving all of
its constituent meta-atoms. Each excited meta-atom, in turn,
radiates an EM field which can drive other meta-atoms while
undergoing multiple scattering between different resonators.
In order to calculate the response of the metamaterial array
to incident EM fields, we need to consider these multiple
scattering processes, which produce a coupling between meta-
atom current oscillations. For near-resonant fields, recurrent
scattering events in which the field scatters off the same
meta-atom multiple times dramatically affect the coupling
between closely spaced resonators.

Here, we will derive a coupled set of equations for the
meta-atoms where all the multiple scattering processes are
fully incorporated in the EM field induced interactions between
the meta-atoms. We will then examine how the coupling can
lead to a cooperative response of the metamaterial to the
incident field via excitation of collective modes of current
oscillation. Such modes can have either superradiant character,
where the interactions enhance the radiation emitted from
metamaterial, or a subradiant character, where the radiation
remains trapped as it repeatedly scatters between meta-atoms
leading to a suppressed collective radiative emission rate.

In order to derive a coupled set of equations for the meta-
atoms where the interactions are mediated by the EM fields,
we consider the meta-atom mode variables bj and investigate
their dynamics within the RWA. As stated in Sec. V A, in
order for the RWA to be valid, we assume that the emission
rates satisfy �E,j ,�M,j ,�O,j  �0 and that the driving field’s
bandwidth and its detuning from meta-atom resonance are
small compared to the frequency of the driving field, i.e.,
δ�,|ωj − �0|  �0 for all meta-atoms j . In these limits, the
external field interactions act as a slow perturbation on the fast
oscillations caused by the meta-atoms’ self-generated fields.

A meta-atom j experiences driving from the external
electric and magnetic fields. These fields induce EMFs and
fluxes, which by Eq. (121), impact the dynamics of the current
oscillation. The driving originates from both the incident field
and from the fields scattered from all other meta-atoms j ′ �= j

in the system. As such, we decompose the EMF and flux into
those generated directly by the incident driving, Ẽj,in and �̃j,in,
and those induced by fields arriving from meta-atom j ′, Ẽj,j ′
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and �̃j,j ′ . Explicitly,

Ẽj,ext = Ẽj,in +
∑
j ′ �=j

Ẽj,j ′ , (130)

�̃j,ext = �̃j,in +
∑
j ′ �=j

�̃j,j ′ . (131)

The incident field directly drives each meta-atom, inducing a
forcing term

fj,in ≡ 1√
2

(iẼj,in − ωj�̃j,in), (132)

while the scattered fields produce a coupling between the
resonators. Below, we will show that in the RWA, the scattered
fields emanating from meta-atom j ′ are proportional to the
amplitude bj ′ of the oscillation in meta-atom j ′, and therefore
that Ẽj,j ′ and �̃j,j ′ are proportional to bj ′ . We will find that,
by virtue of the scattered fields, the dynamics of the individual
meta-atoms are coupled. The ensemble will exhibit collective
modes of oscillation, each with its own frequency and radiative
decay rate.

Because the incident field has a narrow bandwidth around
a frequency �0, we find it convenient to define slowly varying
quantities to describe the dynamics of the system. For any
vector field F(r,t) = F(+)(r,t) + F(−)(r,t) with positive and
negative frequency components F(+) and F(−), respectively,
unless otherwise specified, we define the slowly varying
envelope F̃(r,t) of the field such that the positive frequency
component

F(+)(r,t) ≡ e−i�0t F̃(r,t), (133)

or equivalently in frequency space,

F(+)(r,�) = F̃(r,δ), (134)

where again δ ≡ � − �0 [see Eq. (115)]. For the charge and
conjugate momentum on meta-atom j , we define the scaled
slowly varying quantities Q̃j and φ̃j such that

Q
(+)
j (t)√
ωjCj

≡ e−i�0t Q̃j (t), (135)

φ
(+)
j (t)√
ωjLj

≡ e−i�0t φ̃j (t). (136)

In the RWA, Q̃j and φ̃j are trivially related to the normal
variables by

Q̃j (t) = bj (t)√
2

, (137a)

φ̃j (t) = −i
bj (t)√

2
. (137b)

Outside the RWA, bj contains fast oscillating components
whose origins we discuss in Appendix C. In this section,
however, we will assume that Eq. (137) holds. We also define
the scaled current such that√

Lj

ωj

I
(+)
j (t) ≡ e−i�t Ĩj (t). (138)

The relative scale factor of the current was chosen so that, for
a frequency δ  �0, the Fourier components of φ̃j and Ĩj are

related by

φ̃j (δ) = Dj (�0 + δ)Ĩj (δ) + �̃j,ext(δ). (139)

The quantity Dj [Eq. (105)] serves as the dimensionless
complex self-inductance. Because we have assumed �M,j 
�0 in the RWA, the quantity Dj ≈ 1.

Next, we will determine the contribution of the fields
scattered from each meta-atom j ′ to the normalized EMF, Ẽj,j ′ ,
and flux, �̃j,j ′ , of meta-atom j . We express the scattered fields
from the meta-atom j ′ in terms of the normalized variables
Q̃j ′ and Ĩj ′ . We assume the bandwidth of the incident field
is sufficiently small that the time scale over which the fields
vary, 1/δ�, is much longer than the time it takes for light to
propagate across the metamaterial sample. We then obtain the
slowly varying scattered fields by substituting �0 for � in the
radiation kernels, G and G× [see Eqs. (63a) and (63b)] and
exploit Eq. (134) to obtain

ẼS,j ′ = 3

2

√
k3

0

6πε0

(
�0

ωj ′

)3/2 [√
�E,j ′Q̃j ′

×
∫

d3rj ′ G(r − rj ′ ,�0) · pj ′ (rj ′)

hj ′
+ √

�M,j ′ Ĩj ′

×
∫

d3rj ′G×(r − rj ′ ,�0) · wj ′ (rj ′ )

Aj ′

]
(140)

and

H̃S,j ′ = 3

2

√
k3

0

6πμ0

(
�0

ωj ′

)3/2 [√
�M,j ′ Ĩj ′

×
∫

d3rj ′ G(+)(r − rj ′ ,�0) · wj ′ (rj ′)

Aj ′
− √

�E,j ′Q̃j ′

×
∫

d3rj ′G(+)
× (r − rj ′ ,�0) · pj ′ (rj ′ )

hj ′

]
. (141)

The amplitude of the electric and magnetic fields emitted by
the electric dipole of meta-atom j ′, driven by Q̃j ′ , scale with√

�E,j ′ . Similarly, the fields emitted by the magnetic dipole of
meta-atom j ′, driven by Ĩj ′ , scale with

√
�M,j ′ .

These scattered fields provide a portion of the slowly
varying EMF

Ẽj,j ′ = 1√
ωjLj

∫
d3rj pj (rj ) · ẼS,j ′ (rj ) (142)

and flux

�̃j,j ′ = μ0√
ωjLj

∫
d3rj wj (rj ) · H̃S,j ′ (rj ) (143)

at meta-atom j . Substitution of Eqs. (140) and (141) into the
expressions for EMF and flux gives

Ẽj,j ′ =
(

�0√
ωjωj ′

)3[√
�E,j�E,j ′ [GE(�0)]j,j ′Q̃j ′

+ √
�E,j�M,j ′ [G×(�0)]j,j ′ Ĩj ′

]
, (144)

�̃j,j ′ = 1

ωj

(
�0√
ωjωj ′

)3[√
�M,j�M,j ′ [GM(�0)]j,j ′ Ĩj ′

− √
�M,j�E,j ′ [GT

×(�0)]j,j ′Q̃j ′
]
, (145)
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where the matrices GE, GM, and G× determine how
the meta-atoms’ geometries and relative orientations in-
fluence the respective contributions of the scattered elec-
tric fields to the EMFs, the scattered magnetic fields
to the fluxes, and the scattered electric (magnetic) fields the
fluxes (EMFs). These matrices have zero diagonal elements
and off-diagonal elements given by

[GE(�)]j,j ′

= 3

2

∫
d3rj

∫
d3rj ′

pj (rj )

hj

· G(rj − rj ′ ,�) · pj ′ (rj ′)

hj ′
,

(146a)

[GM(�)]j,j ′

= 3

2

∫
d3rj

∫
d3rj ′

wj (rj )

Aj

· G(rj − rj ′ ,�) · wj ′ (rj ′ )

Aj ′
,

(146b)

[G×(�)]j,j ′

= 3

2

∫
d3rj

∫
d3rj ′

pj (rj )

hj

· G×(rj − rj ′ ,�) · wj ′ (rj ′ )

Aj ′
.

(146c)

When the separation between two meta-atoms is much greater
than the spatial extent of the individual elements, these geomet-
rical factors depend exclusively on the relative positions and
orientations of the meta-atoms’ electric and magnetic dipoles.
Explicitly, in that limit,

[GE(�)]j,j ′ = 3
2 d̂j · G(Rj − Rj ′ ,�) · d̂j ′ , (147a)

[GM(�)]j,j ′ = 3
2 m̂j · G(Rj − Rj ′ ,�) · m̂j ′ , (147b)

[G×(�)]j,j ′ = 3
2 d̂j · G×(Rj − Rj ′ ,�) · m̂j ′ . (147c)

The contribution of the electric field scattered by meta-atom j ′
to the EMF, Ẽj,j ′ , scales with the geometric mean of the electric
dipole emission rates of the two meta-atoms,

√
�E,j�E,j ′ .

Similarly, the magnetic field of element j ′ contributes to
the flux �̃j,j ′ with a strength proportional to

√
�M,j�M,j ′ .

When the meta-atoms are sufficiently far away from one and
other, the electric field emitted by the magnetic dipoles and
the magnetic field emitted by the electric dipoles provide
a significant contribution to Ẽj,j ′ and �̃j,j ′ that scale with√

�E,j�M,j ′ and
√

�M,j�E,j ′ , respectively.
We have set out to obtain coupled equations of motion for

the meta-atom normal variables bj mediated by the EM field.
We have obtained contributions to the EMF and flux that are
driven by charges Q̃j and currents Ĩj . However, only Q̃j and
conjugate momenta φ̃j are trivially related to these normal
variables [see Eq. (137)]. The current, on the other hand obeys
the more complex relationship

Ĩj ′ = −i
bj ′√

2
−

∑
j ′′ �=j ′

�̃j ′,j ′′ − �̃j ′,in. (148)

One can thus use Eqs. (137) and (148) to express Ẽj,j ′ and
�̃j,j ′ in terms of the normal variables bj ′ . We note, however,
from Eq. (145), that �̃j ′,j ′′ contains contributions that scale
as

√
�M,j ′�M,j ′′/ωj and

√
�M,j ′�E,j ′′/ωj , which under the

conditions of the RWA, are much less than 1. Furthermore,
Ĩj contains a contribution from the incident field flux �̃j,in.
The contribution of the incident flux to Ĩj can also be ignored

to lowest order since it is about �j/ωj times the direct
contribution of the incident flux to the direct driving fj,in. So, to
determine Ẽj,j ′ and �̃j,j ′ to lowest order in �j/ωj , we therefore
exploit the approximate relationship Ĩj ′ ≈ φ̃j ′ ≈ −ibj ′/

√
2.

Having computed the contributions of the scattered fields
to the EMF and flux of an individual meta-atom, we find that
these scattered fields produce a coupling between meta-atoms
in the oscillator equations of motion. Substituting the EMF
and flux into Eq. (121), we find the evolution of the column
vector b of normal variables is governed by

ḃ = Cb + fin, (149)

where we have introduced the following notation for b and for
the driving fin caused by the incident field:

b ≡

⎛
⎜⎜⎝

b1

b2
...

bN

⎞
⎟⎟⎠, fin ≡

⎛
⎜⎜⎝

f1,in

f2,in
...

fN,in

⎞
⎟⎟⎠ . (150)

The coupling matrix C is given to lowest order in �E,j /ωj ′ and
�M,j /ωj ′ by

C = −i� − 1
2ϒ + 1

2

(
iϒ

1
2

E GEϒ
1
2

E + iϒ
1
2

MGMϒ
1
2

M

+ϒ
1
2

E G×ϒ
1
2

M + ϒ
1
2

MGT
×ϒ

1
2

E

)
. (151)

Here, the detunings of the incident field from the meta-atom
resonances are contained in the diagonal matrix � with
elements

�j,j ≡ ωj − �0 . (152)

Moreover, the meta-atom emission rates are incorporated in
the diagonal matrices ϒE, ϒM, and ϒO with elements

[ϒE]j,j ≡ �E,j , (153a)

[ϒM]j,j ≡ �M,j , (153b)

[ϒO]j,j ≡ �O,j , (153c)

respectively, and we have defined ϒ ≡ ϒE + ϒM + ϒO.
The interaction matrix C accounts for electric dipole-dipole

interactions, magnetic dipole-dipole interactions, as well as
interactions between electric and magnetic dipoles that arise
from magnetic (electric) fields emitted by electric (magnetic)
dipoles. The diagonal elements of C result from interactions
with the self-generated fields and give rise to the meta-atoms’
resonance frequencies and radiative emission rates.

In the RWA, the dynamic equation [see Eq. (149)] encapsu-
lates all the multiple scattering processes between the different
meta-atoms. These are described by the interaction terms in
the matrix C, mediated by the scattered EM fields. The coupled
set of equations implies a system of N meta-atoms possesses
N collective modes of excitation. These modes correspond to
the eigenvectors of the matrix C. For each collective eigen-
mode, we have collective radiative resonance linewidths and
resonance frequencies that are represented by the eigenvalues
of C. A strong coupling between the resonators can lead to a
cooperative response of the metamaterial sample to the EM
fields, resulting in collective decay rates which are substan-
tially different from those of a single, isolated meta-atom. The
interactions can either enhance radiative emission, producing a
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superradiant mode, or suppress emission, yielding a subradiant
decay rate. We will illustrate the effect of a cooperative
response of a 2D metamaterial array in Sec. VI by considering
an example of closely-spaced split ring resonators. We find
that even in a relatively small sample the strong coupling leads
to a dramatic resonance linewidth narrowing of five orders of
magnitude and to a broad distribution of radiative decay rates.

In order to illustrate the coupling of an incoming field to
collective modes, suppose the incident field is engineered so
that it only excites the ith collective mode, and then is suddenly
turned off. The collective excitation is then distributed over
the sample according to the eigenvector vi of C. Due to the
repeatedly scattered fields that couple the meta-atoms, the
excitation oscillates at its resonance frequency given by
the eigenvalue λi ,

�i ≡ �0 − Im(λi), (154)

and the amplitude of oscillations decay at a rate

γi ≡ −2Re(λi). (155)

As radiation leaks out of the collective excitation and energy
dissipates through ohmic losses. The vector of normal vari-
ables then evolves as

b(t) ∝ exp

{[
−i(�i − �0) − γi

2

]
t

}
vi . (156)

The nature of collective modes could also allow one to
engineer a cooperative response of the metamaterial to the
incident field, addressing linear combinations of modes by
shaping the incident field’s profile, or adjusting its frequency.
Engineering of the collective response may then be used,
for example, to excite isolated subwavelength hot spots in
a metamaterial.39

C. Concluding remarks

In this section, we saw how the interaction of individual
meta-atoms with the EM field governs the collective dynamics
of an ensemble of meta-atoms that make up a metamaterial.
Each meta-atom experiences the influence of its current
oscillation’s self-generated field, the field incident on the
metamaterial, and the fields scattered from all other meta-
atoms in the system. We explored the influence of the self-
generated fields in Sec. V A. In the RWA, the self-generated
field dominates meta-atom dynamics. Each meta-atom can be
seen as an effective RLC circuit which experiences damping
due to electric and magnetic dipole radiation carrying energy
away from the meta-atom. On the other hand, fields generated
externally to the meta-atom, i.e., the incident field and the
fields radiated from all other meta-atoms in the metamaterial,
drive the current oscillations in each meta-atom. In Sec. V B,
we saw how the fields scattered by each meta-atom mediate
interactions between them. Fields emitted by one meta-atom
drive the current oscillations in all the others, producing
the dynamic inter-meta-atom coupling in Eq. (149). While
Appendix C, develops a formalism to account for arbitrarily
strong interactions, in this section, we have gained a significant
physical insight in the RWA in which we assume the meta-
atoms’ interact much more strongly with their self-generated
fields than with the fields generated externally.

In the following section, we will apply this formalism to
examine collective modes in an example metamaterial: an
array of symmetric split ring resonators. This system will
illustrate the vital role cooperative interactions can play in
the dynamics of a metamaterial composed of closely spaced
plasmonic resonators. A metamaterial of N resonators will
have N collective modes of current oscillation, each with
its own resonance frequency and radiative emission rate.
Both of these quantities strongly influence how a given
mode can be excited. The cooperative interactions lead to a
broad distribution of collective decay rates indicating strongly
superradiant or subradiant modes.

VI. AN ENSEMBLE OF SYMMETRIC SPLIT RING
RESONATORS

In this section, we apply the formalism developed in this
article to a metamaterial composed of split ring resonators
(SRRs). As the name suggests, these resonators are composed
of loops with segments that have been removed. Owing to the
curvature of the elements, current oscillations within SRRs can
exhibit both an electric and a magnetic response. Variations
of these resonators have been used to produce metamaterials
that exhibit, e.g., negative indices of refraction.1,2 Here, we
consider a particular realization of the SRR in which a single
ring is cut into two disconnected concentric circular arcs
of equal length. We then study the SRR metamolecule by
assuming that the halves each form a meta-atom that supports
a single mode of current oscillation. The two halves could
either oscillate in phase, producing a net electric dipole, or out
of phase, producing a net magnetic dipole.

In addition to active studies of metamaterial arrays of
SRRs, there has also been an increasing interest in fabricating
metamaterials consisting of split ring resonators in which
the symmetry between the two disconnected halves has
been broken, e.g., by making one of them longer. Sheets of
asymmetric split ring resonators (ASRs) have been shown to
exhibit transmission resonances52 corresponding to excitations
in which all magnetic dipoles in the sheet oscillated in
phase. The quality factor of this resonance, however, was
shown to depend strongly on the number of ASRs in the
system.32 Furthermore, artificially adjusted disorder in the
positions of the unit-cell resonators was observed to destroy
the resonance.34 If interactions mediated by the EM fields were
not important, and the ASRs behaved independently, system
size or positional disorder of the system would have little
effect on the metamaterial response to the EM fields. These
experimental observations provide ample evidence for the vital
role collective interactions play in this particular metamaterial.

Here, we employ the formalism describing collective
interactions to an ensemble of SRRs in the RWA. We describe
a single SRR in Sec. VI A, while we examine the properties of
collective modes of SRRs in a lattice in Sec. VI B.

A. The symmetric SRR

We begin by describing the interaction of a single SRR
unit-cell resonator with incident EM fields. This particular
realization of an SRR metamolecule consists of two meta-
atoms formed by two concentric circular arcs labeled by
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FIG. 1. (Color online) A schematic illustration of a split ring
resonator. An excitation in the left meta-atom (l) produces an
oscillating electric dipole (indicated by the blue arrow) in the direction
d̂ and a magnetic dipole (indicated by the red arrow) in the direction
−m̂, while an excitation in the right meta-atom (r) produces an
electric dipole in the direction d̂ and a magnetic dipole in the direction
m̂. The meta-atoms, in the point source approximation, are separated
by a vector u. When the meta-atoms are excited in phase, the electric
dipoles reinforce each other and the magnetic dipoles cancel out.

j ∈ {l,r} (for “left” and “right”), as shown in Fig. 1. This
metamolecule possesses reflection symmetry about a central
plane.

To illustrate this qualitative physical behavior of an SRR,
we approximate the meta-atoms as two point sources separated
by u ≡ Rr − Rl (see Fig. 1). The current oscillations in meta-
atoms produce electric dipoles with orientation d̂r = d̂l = d̂
associated with charge oscillating between the ends of the
arcs. Owing to the curvature of the meta-atoms, these currents
also produce magnetic dipoles with opposite orientations
m̂r = −m̂l = m̂. The generated electric dipoles lie in the plane
of the SRR and are perpendicular to the displacement between
the meta-atoms (d̂ ⊥ û). The generated magnetic dipoles, on
the other hand, point out of the plane in which the SRR resides
(m̂ ⊥ û,d̂). Each meta-atom in isolation supports a single
mode of oscillation with resonance frequency ω0. Here, we
consider a resonant driving with the frequency of the incident
field satisfying �0 = ω0. For simplicity, we also assume each
element possesses identical radiative and thermal decay rates
�E/M/O,l = �E/M/O,r = �E/M/O.

In the RWA, the normal variables br and bl [see Eq. (109)
with j ∈ {r,l}] describe the states of the right and left halves,
respectively, of a single SRR metamolecule in isolation. We
may now apply the previously developed theory for the EM
field mediated interactions between meta-atoms to a single
SRR unit-cell resonator consisting of these two meta-atoms.
According to Eq. (149), the normal variables br and bl are
coupled by the EM fields as

(
ḃr

ḃl

)
= CSRR

(
br

bl

)
+

(
fr,in

fl,in

)
. (157)

Here, CSRR denotes the specific coupling matrix in this case
between the two meta-atoms, as described in detail below. The
incident field impinging on the SRR produces the driving terms
fj,in for each meta-atom j = l,r [see Eq. (132)]. Considering
the meta-atoms as point emitters, the incident field excites
their electric and magnetic dipoles resulting in the simplified

driving terms:

fr,in = ih
d̂ · Ẽ(Rr ,t)√

2ω0L
− ω0A

m̂ · B̃(Rr ,t)√
2ω0L

, (158)

fl,in = ih
d̂ · Ẽ(Rl ,t)√

2ω0L
+ ω0A

m̂ · B̃(Rl ,t)√
2ω0L

. (159)

The quantity h is an effective length along which charge flows
to form the meta-atoms’ electric dipoles and is related to
�E through Eq. (103). Similarly, A is an effective area that
indicates the strength of the magnetic dipole interaction and
is related to the magnetic dipole emission rate �M through
Eq. (104) and L is the self-inductance of each meta-atom.
Once excited, each half of the SRR scatters both electric and
magnetic fields. These fields then impact the other meta-atom,
driving its electric and magnetic dipoles. Repeated absorption
and reemission of scattered fields produces a dynamic interac-
tion between the two halves of the SRR. From Eq. (151), the
coupling matrix governing the interaction is given by

CSRR =
( −�/2 id�G − �̄S

id�G − �̄S −�/2

)
, (160)

where a single meta-atom has a total decay rate

� ≡ �E + �M + �O (161)

appearing in the diagonal elements of CSRR, and we have
defined

�̄ ≡
√

�E�M, (162)

d� ≡ �E − �M . (163)

Coupling between the two halves of the SRR, represented by
the off-diagonal elements of CSRR, arises from interactions
between the meta-atoms’ electric dipoles, the meta-atoms’
magnetic dipoles as well as a cross interaction between the
electric dipole of one meta-atom and the magnetic dipole of the
other. The strength of the electric and magnetic dipole-dipole
interactions is proportional to the radiative decay rates
�E and �M, respectively. These dipole-dipole interactions
also depend on the spacing between the meta-atoms and
the relative orientations of the dipoles. This geometrical
dependence shows up in the factor

G ≡ 3
4 d̂ · G(u,�0) · d̂ = 3

4 m̂ · G(u,�0) · m̂. (164)

Notice that because identical meta-atom excitations (i.e., when
bl = br ) produce parallel electric dipoles, but antiparallel
magnetic dipoles, the electric and magnetic dipole interactions
work against each other; the strength of interaction arising
from the geometrical factor G is proportional to �E − �M.
An additional interaction arises from the electric dipoles
interacting with fields scattered from the magnetic dipoles and
vice versa. The geometric mean of the radiative decay rates,
�̄ [see Eq. (162)], governs the strength of this interaction.
Relative orientations of the electric dipole of the left (right)
meta-atom and the magnetic dipole of the right (left)
meta-atom appear in the geometrical factor

S ≡ 3
4 d̂ · G×(u,�0) · m̂r , (165)

To analyze the collective modes of the SRR, we consider
the dynamics of symmetric c+ and antisymmetric c− modes
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of oscillation defined by

c± ≡ 1√
2

(br ± bl) . (166)

These symmetric and antisymmetric variables represent the
eigenmodes of the SRR. From the dynamic equation [see
Eq. (149)] and the SRR coupling matrix [see Eq. (160)], one
finds

d

dt
c± =

(
−γ±

2
∓ i�SRR

)
c± + F± , (167)

where an incident field produces the driving terms

F± = 1√
2

(fr,in ± fl,in). (168)

The interaction between the elements produces the decay rates
γ± and shifts the resonance frequencies of the symmetric and
antisymmetric modes by equal and opposite amounts, �SRR:

γ± = �E [1 ± 2Im(G)]

+�M [1 ∓ 2Im(G)] + 2�̄Re(S) + �O, (169)

�SRR = −2Re(G) (�E − �M) − 2�̄Im(S). (170)

An analogy can be drawn between these metamolecular
current oscillations and atomic or molecular energy levels.48,49

The symmetric and antisymmetric modes have respective
resonance frequencies ω0 + �SRR and ω0 − �SRR. When
excited, the symmetric mode decays at a rate γ+, while an
excitation of the antisymmetric mode decays at a rate γ−.

Excitation of the symmetric mode (c+) produces a net
electric dipole since the individual meta-atom electric dipoles
oscillate in phase while the meta-atom magnetic dipoles
approximately cancel each other out. Similarly, excitation
of the antisymmetric mode (c−) produces a net magnetic
dipole and the net effect of the electric dipole approximately
cancels out. The symmetric and antisymmetric excitations will
thus be referred to electric and magnetic dipole excitations,
respectively. When the spacing between the arcs u  λ, the
decay rates simplify to

γ+ ≈ 2�E + �O, (171a)

γ− ≈ 2�M + �O. (171b)

The electric mode loses energy via electric dipole radiation,
while the magnetic mode emits magnetic dipole radiation. In
the absence of magnetic dipole interactions, the symmetric
and antisymmetric modes are analogous to superradiant and
subradiant states in a pair of closely spaced two-level atoms:
when the two-level atoms are excited in phase, the radiative
emission rate is enhanced, and it is suppressed when the
atoms are excited out of phase. Furthermore, in the SRR
metamolecule, the electric and magnetic modes are driven
purely by the electric and magnetic fields, respectively, with
F+ ∝ d̂ · Ẽin(R,t) and F− ∝ m̂ · B̃in(R,t), where R denotes
the center of mass coordinate of the SRR.

When more than one SRR is present, radiation emitted
from one SRR impacts and drives oscillations in another. The
resulting interactions produce collective modes of oscillation
for the whole system. We examine this collective behavior in
the following section.

B. Collective modes in an ensemble of symmetric split rings

Having discussed how EM field induced interactions arise
between two meta-atoms in a single SRR metamolecule, we
now explore how a collection of metamolecules can behave
in concert when brought together to form a metamaterial.
As an example, we consider a 2D Nx × Ny array of SRRs
arranged in a square lattice with lattice vectors a1 = aêx and
a2 = aêy . This finite array resides in a region with free space
(as opposed to, e.g., periodic) boundary conditions. A single
SRR occupies each unit cell of the lattice. They are oriented
such that symmetric oscillations produce electric dipoles along
the direction d̂ = êy , and antisymmetric oscillations produce
magnetic dipoles pointing out of the lattice in the direction
m̂ = êz. In this section, we quantify the collective interactions
by examining the collective eigenmodes of the system and
showing how the interactions can lead to strongly modified
radiative emission rates. We also illustrate from this model
how a subwavelength intermolecular spacing enhances the
collective behavior of the system. In particular, we find that
a subwavelength lattice spacing produces a much broader
distribution of subradiant and superradiant collective decay
rates.

While an SRR in isolation possesses two modes with two
collective resonance frequencies and two decay rates, the
presence of interactions in an ensemble can produce a broad
distribution of collective linewidths. The lattice of Nx × Ny

SRRs possesses 2NxNy collective modes of oscillation, where
the ith mode corresponds to an eigenvector vi of the interaction
matrix C [see Eq. (151)]. The resonance frequency of this
collective mode is shifted from �0 by δi ≡ �i − �0 and has a
collective decay rate γi . These are given in terms of the mode’s
eigenvalue λi as

δi = −Im λi, (172a)

γi = −2Re λi, (172b)

respectively. Here, we consider an ensemble of SRRs whose
elements have equal single-meta-atom electric and magnetic
decay rates �E = �M, and we take the separation between
constituent meta-atoms of an SRR to be u = 0.12λ. Because
the thermal losses are equal in all meta-atoms, their presence
would add to the decay rates of each collective mode equally.
Since here we are interested in how interactions modify
collective radiative decay rates, we take the ohmic loss rate
to be zero in this section.

We numerically calculate all the eigenmodes of the system
that are modified by the multiple scattering processes. Figure 2
illustrates how interactions mediated by the EM field tend to
broaden the distribution of collective linewidths in a 33 × 33
lattice of SRRs. In Fig. 2(a), where the lattice spacing is
a = 0.5λ, the radiative emission rates range from the very
subradiant 1.2 × 10−5� to the superradiant 11�, where � is
the decay rate of a single meta-atom in isolation. Figure 2(b),
on the other hand, illustrates how the collective effects are
diminished when the lattice spacing a = 1.4λ exceeds a
wavelength. The distribution of decay rates is considerably
narrower with the decreased inter-SRR interactions associated
with lattice spacings exceeding a wavelength. Although the
effects of collective interactions are significantly reduced, they
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FIG. 2. (Color online) The distributions of collective radiative
emission rates in a 33 × 33 square array of SRRs. The distribution is
represented as a histogram of the log10 of the collective emission rates.
(a) The distribution for an ensemble of SRRs with lattice spacing
a = 0.5λ. (b) The distribution when the lattice spacing a = 1.4λ.
When the lattice spacing is larger, interactions become weaker, and
cooperative effects are diminished, leading to a narrower distribution
of collective mode linewidths.

do not disappear entirely. The radiative decay rates still range
from 0.2� to 3�.

The dramatically narrowed radiative resonance linewidth
of some of the collective modes and the sensitive dependence
of the narrowing on the spatial separation of the resonators
indicates a strong cooperative response of the system to EM
fields. For very closely spaced resonators, multiple scattering
is considerably influenced by recurrent scattering events in
which the field repeatedly scatters from the same meta-atoms.
In the example studied here, this leads to the resonance
linewidth narrowing of almost five orders of magnitude. Such
narrowing could not have been described by independent
scatterer approach.

The recurrent scattering that is responsible for the dramatic
linewidth narrowing can be characterized by repeated scatter-
ing events between pairs of scatterers, triplets of scatterers,
etc.20,21,23–25,27 In the present work, we have not analyzed
the relative contribution of the different processes to the
distribution of linewidths. In the case of electric dipole
scatterers, the contribution, for instance, of repeated exchanges
of a photon between pairs of dipoles to the distribution
of resonance linewidths was studied in Ref. 54. A similar
calculation could, in principle, be performed in our system,
although the interplay between the magnetic and electric
dipoles may notably complicate the analysis.

An alternative approach to quantify the contribution of
different recurrent scattering processes was performed in
Ref. 25. Numerical simulation results were compared with
the equations for correlation functions. One, in essence,
constructs a hierarchy of equations in which the nth level
describes the recurrent scattering between subsets of n discrete
resonators. Truncating the hierarchy after the nth level may,
therefore, be used to quantify the contribution of the nth
order recurrent scattering. In the case of randomly distributed,
uncorrelated scatterers, the role of recurrent scattering between
n resonators scales with the nth power of density.20,21,23–25,27

Correlations in the positions of the scatterers modify this
density dependence.25,27 It was found for the both correlated
and uncorrelated samples25 that changes in scattering reso-
nance properties as a function of the density of scatterers
corresponded to the increased role of recurrent scattering;
at higher densities, the higher-order recurrent scattering

FIG. 3. (Color online) An illustration of the most subradiant of
the collective modes in a 33 × 33 array of SRRs. The height of the
surface represents the energy of the SRR symmetric oscillations |c+|2
normalized to the peak SRR energy E0 = max�(|c+,�|2 + c−,�|2). The
colored patches indicate the phase of the electric dipole oscillations
for each SRR. The black dots indicate the position of each SRR,
while their height indicates the normalized total energy within each
unit cell, so that the energy in the magnetic dipole oscillations is given
by the difference between the black dots’ height and the height of the
surface. This subradiant mode is ferroelectric in nature, and has a
radiative emission rate 1.2 × 10−5�. The lattice spacing a = 0.5λ,
the meta-atom separation within the SRRs u = 0.12λ, and �E = �M.

processes become increasingly more important leading to the
emergence of more strongly subradiant modes.23–25

We now examine the characteristics of some of the
collective modes in a 33 × 33 lattice with an inter-SRR
separation of a = 0.5λ. As with a single SRR, we can
characterize the state of the system by specifying a complex
amplitude for both the symmetric (electric) and antisymmetric
(magnetic) oscillations. Where the state of the system is
fully specified by the vector of single meta-atom amplitudes
(b1,b2, . . . ,b2NxNy

)T , we represent the electric and magnetic
oscillations of a single SRR, labelled by � = 1, . . . ,NxNy , as
c+,� and c−,�, respectively, where

c±,� = 1√
2

(b2�−1 ± b2�). (173)

As noted earlier, the subwavelength proximity of adjacent
SRRs permits the creation of extremely subradiant collective
modes. We illustrate the most subradiant of these modes for
a lattice spacing of a = 0.5λ in Fig. 3. The energy of this
mode resides almost exclusively in symmetric oscillations of
the SRRs. However, although the meta-atoms in each SRR
oscillate symmetrically, the electric dipole of each unit-cell
resonator element points in the opposite direction to that of
its nearest neighbor. This mode is antiferroelectric in nature.
The phase of each electric dipole, indicated by the color of the
unit cell, forms a checkerboard pattern in the phase profile.
This mode consists of more strongly excited electric dipole
oscillations in the center of the array with smaller contributions
from SRRs on the edges. When this mode is excited, the fields
emitted from the SRRs tend to remain trapped in the ensemble
as they repeatedly scatter from one meta-atom to another.
The scattered fields will leak out if this mode very slowly
as indicated by the collective emission rate of 1.2 × 10−5�.

The most superradiant of the collective modes, shown
in Fig. 4, by contrast couples very strongly to radiation
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FIG. 4. (Color online) An illustration of the most superradiant of
the collective modes in a 33 × 33 array of SRRs. The height of the
surface represents the energy of the SRR antisymmetric oscillations
|c−|2 normalized to the peak SRR energy E0 = max�(|c+,�|2 + c−,�|2.
The black dots indicate the position of each SRR, while their height
indicates the normalized total energy within each unit cell. The total
excitation, |c+,�|2, of the electric dipole oscillations is given by the
difference between the black dots’ height and the height of the surface.
All parameters of the ensemble are as in Fig. 3. This superradiant
mode has a radiative emission rate of about 11� and consists largely
of magnetic dipole oscillations whose phase variation is matched with
EM waves propagating in the ±x directions.

propagating away from the ensemble. This mode is almost
entirely magnetic in nature with the SRRs oscillating anti-
symmetrically. These magnetic dipole oscillations consist of
stripes of constant phase in the y direction, while the phase
variation in the x direction is phase matched with radiation
propagating along ±êx . An EM plane wave propagating
in the ±x direction whose magnetic field is polarized in
the z direction would have an electric field polarized along
±êy . Since the electric dipoles in this most superradiant of
modes are largely unexcited, this mode radiates into an equal
superposition of EM fields propagating in the positive and
negative x directions. The collective excitation coupling to
these propagating fields results in a spontaneous emission rate
of 11�, more than ten times the single meta-atom emission
rate.

In many experimental situations, however, a plane-wave
incident field, with nearly uniform phase and intensity in the
metamaterial plane, drives the ensemble. The incident field
propagates perpendicular to the plane of the metamaterial
along the z direction so that it drives the SRRs in phase. It
is, therefore, worthwhile to examine modes whose oscillations
are phase matched with the incident field since they can be
addressed directly. The two modes of interest are the uniform
electric mode, with all electric dipoles oscillating in phase,
and the uniform magnetic mode, where all magnetic dipoles
oscillate in phase.

Figure 5 shows the structure of the uniform electric
mode. As desired, an excitation in this mode has its energy
almost purely in electric dipole oscillations of the split rings.
Furthermore, because all electric dipoles oscillate in phase,
this mode efficiently couples to EM fields propagating out of
the plane along ±êz whose electric field polarization is along
the electric dipoles d̂ = êy . Because the fields scattered by this
mode propagate out of the plane, excitation of the mode by an
incident plane wave results in reflection of the incident field

FIG. 5. (Color online) An illustration of the uniform electric
collective mode in a 33 × 33 array of SRRs. The height of the surface
represents the excitation energy of the SRR symmetric oscillations
|c+|2 normalized to the peak SRR energy E0 = max�(|c+,�|2 + c−,�|2.
The colored patches indicate the phase of the electric dipole
oscillations for each SRR. The black dots indicate the position of
each SRR, while their height indicates the normalized total energy
within each unit cell. All parameters of the ensemble are as in Fig. 3.
This mode consists of the split ring electric dipoles oscillating in
phase and has a radiative emission rate of approximately the single
meta-atom emission rate �.

from the metamaterial. In the geometry considered here, the
uniform electric mode has a radiative decay rate of γe ≈ �,
about as strong as the single meta-atom decay rate.

The second phase matched mode, the uniform magnetic
mode, is illustrated in Fig. 6. This uniform mode is almost
purely magnetic in nature, with all of the metamolecule
magnetic moments oscillating in phase, producing a sheet of
magnetization pointing out of the metamaterial. In contrast
to the uniform electric mode, however, this mode cannot
strongly couple to fields propagating out of the plane. In
fact, we have found that for lattice spacings sufficiently less
than a wavelength, scattered radiation remains trapped in the
ensemble and this mode is subradiant. Here, with a lattice
spacing of a = 0.5λ, the radiative emission rate is suppressed

FIG. 6. (Color online) An illustration of the uniform magnetic
collective mode in a 33 × 33 array of SRRs. The height of the surface
represents the energy of the SRR antisymmetric oscillations |c−|2
normalized to the peak SRR energy E0 = max�(|c+,�|2 + c−,�|2. The
black dots indicate the position of each SRR, while their height
indicates the normalized total energy within each unit cell. All
parameters of the ensemble are as in Fig. 3. This mode is composed of
all SRRs oscillating antisymmetrically, producing magnetic dipoles
in phase. The radiative emission rate of this mode is 0.02�.
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by about a factor of 50 below the single meta-atom decay rate.
The form of the magnetic mode does not differ substantially
from that in Fig. 6 for larger lattice spacings; however, inter-
resonator spacing affects cooperative interactions and strongly
influence the mode’s decay rate.46 In Ref. 46, it was shown how
a subradiant mode analogous to the uniform magnetic mode we
discussed here is responsible for the transmission resonance
observed in an array of ASRs.32

The calculated collective modes of the system also de-
termine the propagation dynamics of localized excitations.
The propagation of excitations are influenced by strong
interactions between the resonators. Specifically, in disordered
systems, where the locations of scatterers vary randomly,
the transition to localization can be characterized from
transport properties.37 In the studied system, the positions
of the resonators are fixed, so the propagation dynamics is
determined by the particular excitation. An initial excitation
of SSR dipoles will be comprised of some linear combination
of collective modes. The more radiant components will quickly
decay, leaving behind only the contributions from subradiant
modes which oscillate at differing frequencies. This behavior
manifests itself as a decaying propagation and spreading of
current oscillations through the metamaterial as EM fields
scatter in the array. The lifetime of the residual excitation
strongly depends on the presence of recurrent scattering and
subradiant modes.

In order to demonstrate the time dynamics of excitations,
we have studied the specific example of an excitation of the
left-most strip of magnetic dipoles along the y axis in the
square array. Such a pattern will lose 90% of its energy and
propagate a single lattice site in a time t = 10/� for a lattice
spacing of a = 0.5λ. As the excitation propagates, it begins to
broaden so that at time t = 500/�, the remaining excitation,
containing 2 × 10−4 of the initial energy, has spread through
the sample. When the lattice spacing is larger, a = 1.5λ, the
excitation spreads more quickly through the sample (at time
20/�), indicating weaker EM-mediated interactions between
the resonators. In this case, only 5 × 10−8 of the initial energy
has not been radiated away.

VII. QUANTIZING THE METAMATERIAL DYNAMICS

In this paper, we have developed a general formalism to
describe collective oscillations in ensembles of meta-atoms
that comprise a metamaterial. In systems where thermal losses
are suppressed and can be neglected, however, this formalism
can easily be quantized. In the quantized system, the meta-
atom dynamic variables Qj and their conjugate momenta φj ,
whose Poisson brackets are {Qj,φj ′ } = δj,j ′ , become quantum
mechanical operators Q̂j and φ̂j that obey the commutation
relations

[Q̂j ,Q̂j ′] = [φ̂j ,φ̂j ′] = 0, (174a)

[Q̂j ,φ̂j ′] = ih̄δj,j ′ . (174b)

When quantizing the system, the classical normal variables
undergo the transformations bj → √

h̄b̂j and b∗
j → √

h̄b̂
†
j .

The normal variables thus become harmonic oscillator cre-
ation and annihilation operators that obey the commutation

relations

[b̂j ,b̂j ′ ] = [b̂†j ,b̂
†
h′] = 0, (175a)

[b̂j ,b̂
†
j ′ ] = δj,j ′ . (175b)

Similarly, the normal variables for the EM field [see Eqs. (23)
and (24)] transform as aq,λ → √

h̄âq,λ. The EM field normal
variables then commute with those of the meta-atoms and
satisfy the commutation relations

[âq,λ,âq′,λ′] = [â†
q,λ,â

†
q′,λ′ ] = 0, (176a)

[âq,λ,â
†
q′,λ′] = δλ,λ′δ(q − q′). (176b)

The ability to easily quantize this formalism may be useful in
describing the interactions of low loss metamaterials with non-
classical fields. Furthermore, generalizations of the formalism
to nonlinear metamaterials, e.g., involving superconductors,
may in and of itself produce nonclassical cooperative effects.

VIII. CONCLUSIONS

In conclusion, we developed a theoretical formalism
to describe cooperative interactions of a magnetodielectic
metamaterial sample with an EM field. We modeled the
metamaterial as an ensemble of discrete EM resonators, or
meta-atoms, that each support a single mode of current oscil-
lation. The meta-atoms could, for example, be subwavelength
circuit elements that support plasmonic oscillations. From
a Lagrangian describing dynamics of the EM field and its
interactions with systems of charged particles, we derived the
conjugate momenta for the EM field and meta-atom dynamic
variables as well as Hamiltonian for the metamaterial system.
Hamilton’s equations of motion then describe a coupled
dynamics between the meta-atoms and the EM field.

We showed how the EM fields are emitted from excited
current oscillations within each meta-atom, and in turn, how
the EM fields drive the meta-atom dynamics. A single meta-
atom interacting with its own self-generated field behaves as a
radiatively damped LC circuit. In an ensemble of resonators,
the meta-atoms also interact with each other. Initially excited
by an external field, a meta-atom emits EM radiation that
then impinges on other meta-atoms. The other meta-atoms
then rescatter the field. Multiple scattering events mediate an
interaction between the meta-atoms’ current oscillations. The
interactions culminate in a discrete, coupled set of equations
for the meta-atoms, which describe the collective metamaterial
dynamics. The coupled dynamics constituted the main results
of this article.

In Sec. V, we examined the collective dynamics in a regime
where the influence of a meta-atom’s self-generated fields
dominates over that of the incident field or the fields scattered
by all other meta-atoms in the metamaterial. This assumption
allowed us to employ the rotating wave approximation to
simplify the description of the dynamics. Appendix C, on
the other hand, generalized the formalism to provide for a
dynamical description outside the limits of the RWA.

A metamaterial possesses as many collective modes as
there are meta-atoms in the sample, each with its own
resonance frequency and decay rate. These collective modes
can behave very differently from oscillations in a single,
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isolated meta-atom. The cooperative interactions could result
in superradiant modes in which energy is radiated away more
quickly than an ensemble of meta-atoms acting independently.
Other modes, by contrast, are subradiant, for which the mode’s
radiative emission rate is suppressed. As an example, we
examined the dynamics of a planar metamaterial formed from
a 33 × 33 square lattice of SRRs. When the resonators are
closely spaced the collective modes have a broad distribution of
radiative decay rates. For a lattice spacing of 0.5λ, cooperative
interactions suppress the most subradiant mode’s emission rate
by about five orders of magnitude, while the most super-radiant
mode radiates eleven times faster than a single meta-molecule.
Similarly, by analyzing the propagation dynamics of current
excitations in the metamaterial array using the collective
eigenmodes, we found that the close spacing of resonators
suppresses the rate at which magnetic dipole excitations spread
over the sample. In addition to SRRs, the formalism we
developed could be used to describe interactions between
emitters with other geometries, e.g., dielectric spheres.55

The collective dynamics derived from the discrete resonator
model can be successfully employed to explain experimentally
observed phenomena. For example, in Ref. 46, we used this
model to calculate the resonance linewidth narrowing as a
function of the system size, associated with the experimental
observations of the transmission resonance by Fedotov et al.32

The theoretical model provided an excellent agreement with
experimental findings. This example illustrates how the for-
malism developed here lays the ground work allowing one to
model collective dynamics in large metamaterial systems in
which finite-size effects or irregularities may play a role.
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APPENDIX A: THE LAGRANGIAN AND THE
POWER-ZIENAU-WOOLLEY TRANSFORMATION

In this Appendix, we derive the Lagrangian describing
the dynamics of meta-atoms interacting with the EM field
given in Eq. (13). We start from the standard Lagrangian
for the EM field in the Coulomb gauge interacting with
arbitrary charge and current distributions. Then, using the
Power-Zienau-Woolley transformation,41–43 we express the
equivalent Lagrangian in terms of polarization and magnetiza-
tion densities. Given the expressions for the polarization and
magnetization densities in Eq. (10), we express the Lagrangian
in terms of effective magnetic fluxes and EMFs as in Eq. (13).

An arbitrary vector field V(r) can be decomposed into its
longitudinal V‖ and transverse V⊥ components,

V = V‖ + V⊥ , (A1)

defined such that ∇ × V‖ ≡ 0 and ∇ · V⊥ ≡ 0. In the Coulomb
gauge, the EM vector potential is set purely transverse by
requiring that ∇ · A(r) = 0. It follows from Maxwell’s equa-
tions that B(r) is purely transverse and that the longitudinal
component of the electric field E‖ is not a true dynamical
variable but is given by an algebraic relation by the charge

density.50 In particular, we may write

E‖ = −∇U , (A2)

where

U (r) = 1

4πε0

∫
d3r ′ ρ(r′)

|r − r′| (A3)

is the scalar potential. The Coulomb energy VCoul is given in
terms of the meta-atom charge densities in Eq. (15) and can be
expressed directly in terms of E‖ as

VCoul = ε0

2

∫
d3r |E‖|2. (A4)

The transverse component of the electric field is given in terms
of the vector potential A as

E⊥ = −Ȧ. (A5)

The standard Lagrangian in the Coulomb gauge may be
written as

LC = K − VCoul + LEM + LI, (A6)

where

LI =
∫

d3r j(r,t) · A(r,t) (A7)

accounts for the interaction between the matter and the free
EM field, and j ≡ ∑

j jj is the total current density with
the contribution from meta-atom j . The meta-atom current
densities jj are given in terms of the generalized velocities
Ij = Q̇j by Eq. (10). The vector potential A(r,t) provides the
continuum of dynamic variables describing the evolution of
the EM field. The EM field dynamics in the absence of charge
and current sources is governed by the Lagrangian, LEM [see
Eq. (18)]. The charge carriers that give rise to the charge and
current densities have an inertia, and hence the current in a
meta-atom, resulting from the motion of these carriers, must
have an associated kinetic energy. This kinetic energy K is
given in terms of phenomenological inertial inductances in
Eq. (14).

The canonical momentum for the fields in the Coulomb
gauge is given in terms of the time derivative of the vector
potential and is proportional to the transverse component of
the electric field:

(C)(r) ≡ ∂LC

∂Ȧ
= ε0Ȧ(r) = −ε0E⊥(r). (A8)

Similarly, the canonical momentum corresponding to the
charges Qj is given by

φ
(C)
j ≡ ∂LC

∂Ij

= lj Ij + χj (t), (A9)

where

χj ≡
∫

d3r A(r,t) · [pj (r) + ∇ × wj (r)]. (A10)

The factor χj originates from the interaction Lagrangian
LI [see Eq. (A7)]; its specific form arises from how the
current density jj within each meta-atom j depends on that
meta-atom’s generalized velocity Ij [see Eq. (10b)]. This
factor represents an averaged projection of the vector potential
onto the current oscillation’s mode functions pj and wj . The
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Hamiltonian in the Coulomb gauge may then be derived from
the Lagrangian [see Eq. (A6)]

H(C) = 1

2lj
(φj − χj )2 + H(C)

EM + VCoul, (A11)

where the energy of the transverse EM field, or the radiation
field, is responsible for the excitations of the meta-atoms,

H(C)
EM = ε0

2

∫
d3r [E2

⊥(r) + c2B2(r)]. (A12)

The quantity χj originates from the assumption that a
mode of current oscillation depends on a single dynamic
variable with units of charge. The amplitude of the charge
distribution may change in time, but its spatial distribution
will not. By contrast, in the more familiar scenario where one
describes the motion of particles with fixed charge qj at a
time varying position rj (t), the conjugate momentum for the
position coordinates is given by the vector ṙj + qj A(rj (t)).
The scalar quantity χj arising from our model plays the
same role as the quantity qj A(rj (t)) appearing in the familiar
minimal coupling Hamiltonian for moving charged particles.

Although Eq. (A11) is analogous to the standard minimal
coupling Hamiltonian description of charged particles in
an EM field, it does not turn out to be the most suitable
representation to study the interaction of discrete scatterers
with the EM field. We find it convenient to express the
dynamics in terms of polarization and magnetization densities
rather than charge and current densities. In this way, when
the circuit elements are much smaller than a wavelength of
EM field with which they interact, we may more easily treat
the dynamics in terms of interacting electric and magnetic
multipoles. To that end, we employ the Power-Zienau-Woolley
transformation.43 For any globally neutral charge distribution
with respective charge and current density ρ and j, there exists
a corresponding polarization P and magnetization density M
such that

ρ(r,t) = −∇ · P(r,t), (A13a)

j(r,t) = Ṗ(r,t) + ∇ × M(r,t). (A13b)

Here, the polarization density is a function of the dynamic
variables Qj and the magnetization density is a function of
their rates of change Ij [see Eq. (9)]. One can modify the
Lagrangian by adding the total time derivative dF/dt of a
function to the original Lagrangian. Here, we take

F = −
∫

d3r P(r,t) · A(r,t) , (A14)

and the equivalent Lagrangian in the length gauge is thus

L = LC + dF

dt
. (A15)

Because F is only a function of the dynamic variables Qj

and A, the Lagrange equations of motion are invariant under
this transformation. Explicitly, adding dF/dt to the interaction
term LI yields

L′
I ≡LI + dF

dt
=

∫
d3r (j − Ṗ) · A −

∫
d3r P · Ȧ. (A16)

From Eq. (A13b), the first integral in Eq. (A16) can be
expressed as∫

d3r (j − Ṗ) · A =
∫

d3rA · (∇ × M) . (A17)

Integrating this by parts, we obtain the interaction Lagrangian

L′
I = −

∫
d3rB · M −

∫
d3rȦ · P. (A18)

To evaluate the second integral, we recognize that −Ȧ = E +
∇U , where U (r,t) is the electric scalar potential. The last
integral appearing in Eq. (A18) thus becomes

−
∫

d3rȦ · P =
∫

d3rE · P +
∫

d3rP · ∇U. (A19)

We integrate the last term of Eq. (A19) by parts, and because
U is the Coulomb gauge scalar potential, we obtain∫

d3rP · ∇U = −
∫

d3r (∇ · P)U =
∫

d3r ρU = 2VCoul.

(A20)

Therefore the Lagrangian in the Power-Zienau-Woolley pic-
ture can be expressed in terms of the total electric and magnetic
fields as

L = K + VCoul + LEM +
∫

d3r [B · M + E · P] . (A21)

Although we derived the Lagrangian in Eq. (A21) for a system
composed of ensembles of circuit elements, its form is valid
for any system of charges where the charge density is described
by any generalized dynamic variables and the current density
is a function of their generalized velocities. In our system, the
total polarization P = ∑

j Pj and magnetization M = ∑
j Mj ,

with the corresponding densities Pj and Mj expressed in terms
of the dynamic variable Qj and velocity Ij for meta-atom j

given by Eqs. (9). Thus, in an ensemble of meta-atoms, the
system Lagrangian is given by Eq. (13).

APPENDIX B: ELIMINATION OF INSTANTANEOUS,
NONLOCAL INTERACTIONS IN THE

POWER-ZIENAU-WOOLLEY PICTURE

In this Appendix, we provide details of the derivation of
the Hamiltonian in the length gauge obtained by the Power-
Zienau-Woolley transformation. The derivation is analogous to
the one discussed in Ref. 50 in determining the Power-Zienau-
Woolley Hamiltonian for systems of charged particles. We
begin by examining the portion of the Hamiltonian, HE [see
Eq. (30)],

HE =
∫

d3r E⊥ · D −
∫

d3r E · P − VCoul − LEM . (B1)

We will show how the Coulomb potential is absorbed by
the Power-Zienau-Woolley Hamiltonian. We will express
each term in HE in terms of the displacement field D and
the polarization density P. The various components then
combine to yield the Hamiltonian for the free EM field,
HEM [see Eq. (32)], the local polarization contact interaction,
and an interaction between the polarization density and the
displacement field.
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We noted in Sec. IV A that an advantage of working
with the Hamiltonian formalism in the Power-Zienau-Woolley
picture is that long-range, instantaneous interactions between
meta-atoms do not appear in the Hamiltonian. In any treatment
of electrodynamics, the instantaneous noncausal nature of
the Coulomb interaction is canceled by other noncausal
contributions to dynamics. The form of this cancelation,
however, is often rather subtle. In the Power-Zienau-Woolley
Hamiltonian, the Coulomb potential is absorbed into a local
polarization self-energy. Interactions between meta-atoms are
then mediated entirely by the variables describing the scattered
EM fields.

In carrying out the simplification, it is useful to note
the following properties of the longitudinal and transverse
components of any two vector fields V1 and V2. The first is
that ∫

d3r V1,‖(r) · V2,⊥(r) = 0 (B2)

and, as a consequence,∫
d3r V1 · V2 =

∫
d3r (V1,‖ · V2,‖ + V1,⊥ · V2,⊥). (B3)

We also note, that because the charge density in our ensemble
of meta-atoms is accounted for entirely by the polarization [see
Eq. (A13a)], the displacement field D is transverse, i.e., D =
D⊥. We may therefore write the transverse and longitudinal
electric fields as

E⊥ = 1

ε0
(D − P⊥) , E‖ = − 1

ε0
P‖ . (B4)

The Coulomb interaction energy [see Eq. (A4)] and the
Lagrangian for the free electromagnetic field [see Eq. (18)]
then becomes

VCoul = 1

2ε0

∫
d3r |P‖|2, (B5)

LEM = 1

2ε0

∫
d3r (|D|2 − c2|B|2)

+ 1

2ε0

∫
d3r |P⊥|2 − 1

ε0

∫
d3r D · P . (B6)

Similarly, the other two integrals appearing in Eq. (B1) can be
expressed as∫

d3r E⊥ · D = 1

ε0

∫
d3r (|D|2 − D · P), (B7)∫

d3r E · P = 1

ε0

∫
d3r (D · P − |P|2). (B8)

By the property of Eq. (B3), we may write the portion of the
Hamiltonian HE as

HE = HEM + 1

2ε0

∫
d3r |P|2 − 1

ε0

∫
d3r D · P , (B9)

where HEM, given in Eq. (32), is the Hamiltonian for the
electromagnetic field. The second term in Eq. (B9) has
absorbed the Coulomb interaction and results only in a local
meta-atom self-interaction as discussed in Sec. IV A. The
final term of Eq. (B9) accounts for interaction between the

distribution of electric dipoles in the polarization density and
the displacement field. The total Hamiltonian for the system
is then given in Eq. (31).

APPENDIX C: COLLECTIVE INTERACTIONS OF
STRONGLY INTERACTING META-ATOMS OUTSIDE THE

ROTATING WAVE APPROXIMATION

In Sec. V, we saw how the EM field scattered from the
metamaterial elements produces interactions between meta-
atom current oscillations in the RWA. For this approximation
to be strictly valid, the meta-atoms must weakly interact
with the field, radiatively decaying at rates much slower
than the oscillator frequencies. In many metamaterial systems,
however, such assumptions can be violated, and the RWA may
not be employed. In this Appendix, we develop a more general
framework for the dynamics that allows us to account for very
strong radiative coupling between the oscillator variables. We
begin by reframing the equations of motion for the dynamic
variables Qj and their conjugate momenta in terms of column
vectors of scaled quantities [see Eqs. (135) and (136)]

Q̃ ≡ (Q̃1,Q̃2, . . . ,Q̃N )T , (C1)

φ̃ ≡ (φ̃1, . . . ,φ̃N )T (C2)

in the frequency domain. For each meta-atom j , the scaled
charge Q̃j and its scaled conjugate momentum φ̃j are slowly
varying, with bandwidths comparable to that of the incident
field’s positive frequency component. In the time domain, they
are related to the physical quantities Qj and φj by

Qj (t) = √
ωjCj [e−i�0t Q̃j (t) + ei�0t Q̃∗

j (t)], (C3)

φj (t) = √
ωjLj [e−i�0t φ̃j (t) + ei�0t φ̃∗

j (t)] . (C4)

In deriving the coupling between the elements, we will find
that φ̃ is related to the scaled currents [see Eq. (138)]

Ĩ ≡ (Ĩ1, . . . ,ĨN )T (C5)

through a dimensionless mutual inductance matrix M, and
similarly, that the vector of scaled EMFs [see Eq. (116)]

Ẽ ≡ (Ẽ1, . . . ,ẼN )T (C6)

is related to Q̃ through a matrix resembling a mutual ca-
pacitance. Since the meta-atoms are separated by significant
fractions of a wavelength and interactions between them
are mediated by the radiated field, φ̃ contains an additional
contribution from Q̃. In addition, Ẽ is linearly coupled to
φ̃. This is because oscillating dipoles, whether electric or
magnetic, produce both electric and magnetic fields which
drive Ẽ and φ̃, respectively. We find that, in general, this
produces an additional nontrivial coupling between resonators.

We first examine the behavior of the Fourier components of
Q̃ and φ̃ for a frequency � > 0, detuned from the central
frequency of the incident field by δ = � − �0. Since, by
construction, Q̃, φ̃, Ẽ , and �̃ are related only to the positive
frequency components of Qj , φj , Ej , and �j , the scaled
variables have no Fourier components for δ < −�0. From the
equations of motion for the unscaled variables [see Eq. (38)]
and the definitions of the scaled variables, we arrive at the
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relations for δ > −�0:

−i(δ + �0)Q̃(δ) = ωĨ(δ), (C7a)

−i(δ + �0)φ̃(δ) = Ẽ(δ), (C7b)

where ω represents a diagonal matrix whose elements [ω]j,j ≡
ωj are the resonance frequencies of the individual meta-atoms.
Equations (C7) represent the coupling of the meta-atom
dynamic variables to the EM fields, including the incident
field, the fields emitted by all other meta-atoms, and the field
generated from the meta-atom itself. The self-interactions were
derived in Sec. V A [see Eqs. (94) and (95)], while we obtained
the contributions from the scattered fields in Sec. V B [see
Eqs. (144) and (145) with δ + �0 substituted for �0].

As presently written, Eq. (C7a) states in terms of scaled
variables in frequency space that the rate of change of the
meta-atom charge is equal to its current. Here, we are interested
in how these rates of change are related to the states of the
meta-atom dynamic variables and their conjugate momenta.
To express these currents Ĩ in terms of charges and conjugate
momenta, we recognize that the conjugate momentum is the
sum of the magnetic flux and the current multiplied by the
kinetic inductance lj [see Eq. (19)],

φ̃j = lj

Lj

Ĩj + �̃j . (C8)

The scaled fluxes, �̃j [see Eq. (117)], contain contributions
from the meta-atoms’ self-generated fields [see Eq. (95)],
which result in magnetic self-inductances as well as to the
magnetic fields generated externally. The kinetic and magnetic
self-inductances combine to provide the total self-inductance
[see Eq. (98)]. Equation (139) thus relates the conjugate
momentum, φ̃j , for meta-atom j to its current Ĩj and the
externally generated flux. The contributions to the external flux
from the incident magnetic field and fields scattered from other
meta-atoms in the system [see Eq. (145) with � substituted
for �0] combine to provide the external magnetic driving
of individual meta-atoms. We synthesize these contributions
to obtain the relationship between the column vectors of
scaled conjugate momenta φ̃, currents Ĩ, charges Q̃, and fluxes
induced by the incident field �̃in expressed as

φ̃(δ) = M(�)Ĩ(δ) − ω−1ϒ
1
2

MGT
×(�)ϒ

1
2

E Q̃(δ) + �̃in(δ),

(C9)

where we have redefined the diagonal matrices ϒE and
ϒM containing the meta-atom electric and magnetic dipole
emission rates so that they reflect the frequency dependence of
meta-atom scattering rates outside the RWA. These matrices
have the diagonal matrix elements

[ϒE]j,j ≡
(

�

ωj

)3

�E,j , (C10)

[ϒM]j,j ≡
(

�

ωj

)3

�E,j . (C11)

The scaled mutual inductance M, is given by

M(�) = (
1 + iω−1ϒM + ω−1ϒ

1
2

MGMϒ
1
2

M

)
, (C12)

and the matrices GM and G× are given in Eq. (146). The diag-
onal portion of M has both real and imaginary components:

the real part is the self-inductances’ contribution to this scaled
mutual inductance matrix, while the imaginary part arises from
emission of magnetic dipole radiation from the meta-atoms
current oscillations. Solving Eq. (C9) for Ĩ, yields

Ĩ(δ) = M−1(�)
[
φ̃(δ) − �̃in(δ) + ω−1ϒ

1
2

MGT
×(�)ϒ

1
2

E Q̃(δ)
]
.

(C13)

The current Ĩj on an element j is not just related to the
conjugate momentum φ̃j , but to the conjugate momenta and
charges of all other meta-atoms in the system, as well as the
flux from the incident field. In the absence of electric dipole
radiation ϒE = 0, we recover the relationship between currents
and magnetic field fluxes found in systems of interacting,
radiating, inductive circuits. The additional coupling that
results from oscillating electric dipoles when ϒE �= 0 adds
some richness to the dynamics of metamaterial systems outside
the RWA.

As with the magnetic fluxes, the EMFs Ẽ contain contribu-
tions from the self-generated electric fields of the meta-atom
[see Eq. (94)] and from electric fields generated by all other
meta-atoms in the system [see Eq. (144) with � substituted
for �0]. From the previous results, we can express the column
vector of EMFs as

Ẽ(δ) = −[
ω − iϒE − ϒ

1
2

E GE(�)ϒ
1
2

E

]
Q̃(δ)

+ ϒ
1
2

E G×(�)ϒ
1
2

MĨ(δ) + Ẽin(δ). (C14)

The diagonal matrix, ω − iϒE, results from the coupling
of each element with its self-generated field where ϒE

accounts for decay due to electric dipole radiation. The

matrix ϒ
1
2

E GE(�)ϒ
1
2

E , where GE is given in Eq. (146), provides
dipole-dipole coupling between electric polarization densities

of distinct meta-atoms, while ϒ
1
2

E G×(�)ϒ
1
2

M provides radiated
contributions of oscillating magnetic dipoles to the EMFs.
Since we wish to express the EMFs exclusively in terms of
the charges and their conjugate momenta, we eliminate Ĩ by
substituting Eq. (C13) into Eq. (C14) to obtain

Ẽ(δ) = −ω�−1(�)Q̃(δ) + ϒ
1
2

E G×(�)ϒ
1
2

MM−1(�)φ̃(δ)

+ Ẽin(δ) − ϒ
1
2

E G×(�)ϒ
1
2

MM−1(�)�̃in(δ), (C15)

where �(�) is an effective dimensionless mutual capacitance
matrix defined such that

�−1(�) ≡ 1 − iω−1ϒE − ω−1ϒ
1
2

E GE(�)ϒ
1
2

E

− ω−1ϒ
1
2

E G×(�)ϒ
1
2

MM−1(�)ω−1ϒ
1
2

MGT
×(�)ϒ

1
2

E ,

(C16)

where the matrix expression on the final line arises from the
expression for current in terms of conjugate momenta and
charges. This matrix expression is reminiscent of a scattering
process in which oscillating charges couple to oscillating

conjugate momenta in other meta-atoms via ϒ
1
2

MGT
×(�)ϒ

1
2

E ,
these conjugate momenta are transformed into currents by
M−1(�), and these currents produce electric fields in neigh-

boring meta-atoms through ϒ
1
2

E G×(�)ϒ
1
2

M.
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Having expressed the currents [see Eq. (C13)] and EMFs
[see Eq. (C15)] exclusively in terms of charges, conjugate
momenta and driving due to the incident field, we may finally
write the equations of motion in frequency space for the slowly
varying charges Q̃(δ) and conjugate momenta φ̃(δ):

−i(δ + �0)

(
Q̃(δ)
φ̃(δ)

)

=
(

ωM−1ω−1ϒ
1
2

MGT
×ϒ

1
2

E ωM−1

−ω�−1 ϒ
1
2

E G×ϒ
1
2
MM−1

)

×
(

Q̃(δ)
φ̃(δ)

)
+

(
−ωM−1�̃in(δ)

Ẽin(δ) − ϒ
1
2

E G×ϒ
1
2

MM−1�̃in(δ)

)
.

(C17)

The physical content of Eq. (C17) becomes more evident
in the limits where the meta-atoms are spaced far enough
apart that their interactions can be seen as interactions
between point sources [i.e., where the approximation in
Eq. (147) holds] and when the magnetic interaction is weak
(�M,j  �0). Then, writing Eq. (C17) to lowest order in
�M,j /ωj , we obtain dynamic equations where Q̃j and φ̃j

are driven by fields scattered from the meta-atom electric
dipoles d(+)

j ′ (�) ≡ hj ′
√

ωj ′Cj ′Q̃j ′(δ) and magnetic dipoles

m(+)
j ′ (�) ≡ Aj ′

√
ωj ′/Lj ′ Ĩj ′ (δ) [see Eqs. (77), (135), (136),

(138), and (147)]:

−i�Q̃j (δ) +
[
ωj − i

(
�

ωj

)3

�M,j

]
φ̃j (δ)

= −ωj�̃in,j (δ) − αj m̂j · μ0k
3

4π

∑
j ′ �=j

[G(rj − rj ′ ,�)

· m(+)
j ′ (�) − cG×(rj − rj ′ ,�) · d(+)

j ′ (�)], (C18a)

−i�φ̃j (δ) +
[
ωj − i

(
�

ωj

)3

�E,j

]
Q̃j (δ)

= Ẽin,j + χj d̂j · k3

4πε0

∑
j ′ �=j

[
G(rj − rj ′ ,�) · d(+)

j ′ (�)

+ 1

c
G×(rj − rj ′ ,�) · m(+)

j ′ (�)

]
, (C18b)

where αj ≡ (2Aj/3)
√

ωj/Lj/3 and χj ≡ 2hj

√
ωjCj/3. The

incident field drives the meta-atom electric and magnetic
dipoles, producing the terms −ωj�̃in,j and Ẽin,j . The effects
of the meta-atoms’ self-generated fields are included on the
left-hand side of Eq. (C18). The magnetic fields produced
by all other meta-atomic dipoles in the system j ′ �= j drive
the dynamics of Q̃j , while the electric fields scattered
from these meta-atoms drive the dynamics of the conjugate
momentum φ̃j .

In principle, one could solve Eq. (C17) in the narrow
bandwidth approximation in which the driving field envelopes
Ẽin and B̃in vary on time scales much larger than 1/�0. One
would accomplish this by substituting �0 for � in the coupling
matrices GE/M/× and ϒE/M, then inverse Fourier transforming
Eq. (C17). This procedure, however, may not be particularly
illuminating. We find it useful to explore the dynamics in terms

of the oscillator normal variables b. But first, we will revisit the
basic characteristics of these normal variables to understand
how they behave outside the RWA.

1. The normal meta-atom variables revisited

In Sec. V, we have assumed the meta-atom normal variables
b = (b1,b2, . . . ,bN )T are slowly varying and are proportional
to the slowly varying envelopes of the charges Q̃ and conjugate
momenta φ̃. This was a good approximation when we
assumed each meta-atom coupled to its self-generated fields
much more strongly than it couples to the external fields,
i.e., when �E,j ,�M,j  ωj ,�0. In those limits, the external
field interactions act as a perturbation that slowly alters the
dominant behavior of the meta-atoms oscillating as effective
LC circuits. When the coupling to the external field is stronger,
however, we will see that this is no longer the case.

While the normal variables are slowly varying in the RWA,
in general, they contain fast oscillating components even when
Q̃ and φ̃ have narrow bandwidths. To see this, we rewrite
the normal variables [defined in Eq. (109)] in terms of the
slowly varying dynamic variables. Recall that in terms of the
slowly varying quantities, the original charges and conjugate
momenta are expressed as

Qj (t)√
ωjCj

= e−i�0t Q̃j (t) + ei�0t Q̃∗
j (t), (C19a)

φj (t)√
ωjLj

= e−i�0t φ̃j (t) + ei�0t φ̃∗
j (t). (C19b)

We therefore express the column vector of normal variables as

b(t) = b̃(+)(t) + e2i�0 [b̃(−)(t)]∗ , (C20)

where we have defined the slowly varying normal variable
components

b̃(±)(t) ≡ 1√
2

[Q̃(t) ± iφ̃(t)] . (C21)

The normal variables b therefore have a bimodal spectrum
with a slowly varying component peaked at zero frequency
and fast oscillating component peaked at frequency −2�0.
Note that despite the apparent similarity between the definition
of bj [see Eq. (109)] and b̃(±) [see Eq. (C21)], b̃(−) is not
equal to [b̃(+)]∗. In the RWA, for example, we ignore the
rapidly rotating term {exp(2i�0)[b̃(−)(t)]∗ in Eq. (C20)} and
make the approximation b̃(−) ≈ 0. Physically, the RWA implies
that the normalized conjugate momentum φ̃j (t) has the same
amplitude as Q̃j (t) but its oscillation lags by a definite phase
π/2 in accordance with Eq. (137). However, outside the RWA,
the contributions of b̃(−) cannot be neglected.

2. Normal variable dynamics outside the RWA

We can obtain the normal variable dynamics from those
for the slowly varying charges and conjugate momenta from
Eq. (C17). In terms of the normal variables the vectors Q̃ and
φ̃ are given by(

Q̃
φ̃

)
= 1√

2

(
1 1
−i i

)(
b̃(+)

b̃(−)

)
. (C22)
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The vectors of normal variables b̃(±) therefore evolve according
to

−iδ

(
b̃(+)(δ)

b̃(−)(δ)

)
=

(C(+,+)(�) C(+,−)(�)
C(−,+)(�) C(−,−)(�)

) (
b̃(+)(δ)

b̃(−)(δ)

)

+
(

f(+)
in (δ)

f(−)
in (δ)

)
, (C23)

where C(s1,s2) (s1,s2 = ±) are N × N matrices that provide
a linear coupling between the column vectors b̃(s2) and b̃(s1).
These coupling matrices are given by

C(s1,s2) ≡ i (�0 − s1ω) δs1,s2 − s1ϒE + s2ϒMM−1

2

+ i
s1ϒ

1
2

E GEϒ
1
2

E + s2ϒ
1
2

MGMϒ
1
2

MM−1

2

+ 1

2

(
ω + is1ϒ

1
2

E G×ϒ
1
2

M

)
M−1ω−1ϒ

1
2

MGT
×ϒ

1
2

E

+ s1s2ϒ
1
2

E G×ϒ
1
2

MM−1

2
. (C24)

The top line of Eq. (C24) contains the diagonal elements
of the matrices C(s1,s2) that arise from the interaction of
the meta-atoms with their self-generated fields. For example
the diagonal elements of C(+,+) contain the detunings �

[see Eq. (152)] and the total radiative decay rate ϒE + ϒM.
The interaction matrices C(s1,s2) contain the effects of all
scattering processes, including those resulting from scattered
electric fields emitted from electric and magnetic dipoles and
those resulting from magnetic fields emitted from magnetic
and electric dipoles. Interaction with the incident field pro-
duces the driving represented by the column vectors

f(±)
in (δ) ≡ 1√

2

[ ± iẼ − (
ω ± iϒ

1
2

E G×ϒ
1
2

M

)
M−1�̃in

]
.

(C25)

The EM mediated interactions simplify greatly if we
assume the self-inductance of a meta-atom is much greater
than the mutual inductance between any two meta-atoms.
A necessary condition for this is that �M,j  ωj for all
j since M = 1 + O(�Mω−1). In this limit, we neglect
all contributions of order �M,j /ωj to the mutual induc-
tance, allowing us to make the substitution M−1 ≈ 1. This
yields

C(s1,s2) ≈ i (�0 − s1ω) δs1,s2 − s1ϒE + s2ϒM

2

+ i
s1ϒ

1
2

E GEϒ
1
2

E + s2ϒ
1
2

MGMϒ
1
2

M

2

+ ϒ
1
2

MGT
×ϒ

1
2

E + s1s2ϒ
1
2

E G×ϒ
1
2

M

2
. (C26)

Under the additional assumption that all meta-atom resonance
frequencies lie in a narrow bandwidth around �0, the matrix
providing the dynamic coupling between the various b̃

(+)
j

and b̃
(+)
j ′ is identical to the coupling matrix between normal

variables in the RWA [see Eq. (151)], i.e., C(+,+) ≈ C.

3. Temporal dynamics and collective modes outside the RWA

When the incident field possesses a narrow bandwidth
around �0 and varies much more slowly than the time it takes
for light to propagate across the metamaterial sample, we can
obtain a simple expression for the collective temporal evolution
of the metamaterial. With this slowly varying incident field,
we can approximate the dynamics by replacing the frequencies
� ≡ �0 + δ appearing in the interaction matrices with �0. We
then inverse Fourier transform Eq. (C23) to obtain

d

dt

(
b̃(+)(t)
b̃(−)(t)

)
=

(
C(+,+)(�0) C(+,−)(�0)
C(−,+)(�0) C(−,−)(�0)

) (
b̃(+)(t)
b̃(−)(t)

)

+
(

f(+)
in (t)

f(−)
in (t)

)
. (C27)

These equations describe the collective response of a meta-
material to a narrow bandwidth incident field where the inter-
resonator interactions and emission rates can be arbitrarily
large. Unlike the simplified collective dynamics derived in
Sec. V B, Eq. (C27) is not subject to the constraints of
the RWA.

4. Recovering the dynamics of the RWA

The dynamics in the RWA that we explored earlier in
Sec. V amounted to neglecting the fast oscillating components
of the normal variables b. Here, this equates to assuming
b̃(−) = 0, and therefore b = b̃(+). We argued earlier that this
approximation is valid in the limits of weak interaction—
i.e., �E,j , �M,j  �0—and in which all single meta-atom
resonance frequencies lie within a narrow bandwidth about
the driving frequency, i.e., |�j |  �0. Indeed, when the
interactions are sufficiently weak, the diagonal elements of
C(−,−) [see Eq. (C23)] [i(�0 + ω) + (�E + �M)/2] dominate
over every other element of the coupling. As a result, in the
response of the metamaterial to the incident field, the elements
of b̃(−) would be negligible in comparison to b̃(+). Note,
however, that although �E/M  �0 is a necessary condition for
the validity of the RWA, it is not sufficient in and of itself. This
is because the interaction between elements can still become
very strong if the separation between them is much less than a
wavelength. Here, however, we will assume the inter-element
separation is sufficiently large that the limits on �E/M are
sufficient. In the RWA, we may therefore expand C(+,+) to
lowest order in �E and �M and make the approximation
(�/ωj )3 ≈ 1. Upon doing this, we recover precisely the
dynamics given in Eq. (149) of Sec. V B.
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