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Abstract. In the plasmonic regime, an electromagnetic wave bounded to the
surface of a conductor can be confined to a region much smaller than its
wavelength in free space. A major problem of plasmonic technology, however,
is associated with large losses that these surface modes exhibit, intimately linked
to Ohmic resistance of metals. In this work, we show that due to their dominant
kinetic inductance, superconductors are intriguing yet natural plasmonic media
capable of supporting low-loss plasmon waves with extreme confinement and the
potential to serve as information carriers in compact terahertz data processing
circuits.

The field of plasmonics, which deals with the optical properties of metallic nanostructures,
is one of the most fascinating and fast-moving areas of photonics [1]. Its explosive growth
in recent years has been driven by parallel advances in nano-fabrication technologies as well
as a wealth of potential applications in areas ranging from bio-chemical sensing to solar
power generation. The special interest in surface plasmon polaritons—bound oscillations of the
electrons and light propagating along a metal surface—is based largely on the possibility that
they may act as information carriers in highly integrated nanophotonic devices transforming
the chip-scale data transport paradigm by bridging the gap between present-day electronic
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and photonic technologies. The plasmonic response is also a dominant factor underpinning the
functionality of photonic metamaterials [2]. However, the long-awaited promises of plasmonics
are hampered by absorption losses, an inherited feature of metal-based waveguides supporting
propagating plasmon signals. Losses also present a major problem in developing photonic
metamaterial technologies. This challenge has brought about an intensive search for solutions
such as plasmon-loss compensation with gain [3] and using new, better plasmonic materials [4].

Superconductors emerge as an intriguing low-loss alternative to plasmonic media. Low-
dimensional plasma modes (analogous to bulk plasma excitations in metals) were predicted in
thin superconducting wires [5] and layered superconductors [6, 7], and were experimentally
demonstrated in thin superconducting films [8]. We now argue that recent developments in the
field of superconducting metamaterials [9–13] and a clear demonstration of phenomena such as
extraordinary transmission in perforated superconducting films [14, 15] bring about a practical
proposition for propagating superconducting plasmons. We show that the latter are genuine
bound surface modes similar to optical plasmons, which at THz frequencies can be guided with a
nanometer-scale confinement propagating for tens of millimeters without noticeable attenuation.

Indeed, there are striking similarities between the electromagnetic response of metals at
optical frequencies and superconductors at terahertz frequencies and below. In metals exposed to
radio- and lower-frequency electromagnetic waves, the dynamics of a free electron is dominated
by its ubiquitous collisions with atoms and lattice defects, as well as other free electrons taking
place during each cycle of the driving field. As a result, the electron mean velocity and thus the
strength of electrical currents induced by an external wave are proportional to the instantaneous
value of the field with the constant of proportionality—the conductance—determined by the
rate of such collisions. This is the regime described by Ohm’s law, in which the metal is
characterized by a large value of the imaginary part of the metal permittivity and a smaller real
part (see figure 1(a)). In contrast, at higher optical frequencies, electrons oscillate so rapidly
that no collisions happen during at least one optical cycle: the collective dynamics of electron
plasma is dominated by inertia of the carriers. Here we talk about the plasmonic regime: the
displacement currents become important and the real part of the metal permittivity begins to
dominate. In silver such a transition from Ohm’s law electrodynamics to plasmonics occurs at
frequencies above a few THz and extends into the infrared (IR) and the visible (see figure 1(a)).
While the response of plasmonic metals is characterized by a dominant negative real part of the
permittivity at optical frequencies, in the superconducting state such a behavior is found across
most of the terahertz and sub-terahertz spectral domains (figure 1(b)). Indeed, the collective
motion of ‘superconducting electrons’ joined in Cooper pairs experiences no scattering and
proceeds freely through the lattice4. Their electrodynamic response, as in plasmonic metals, is
thus determined by inertia. Moreover, the imaginary part of the permittivity is much lower than
its real part. At higher frequencies, superconductors become lossy as the energy of the incident
quanta is sufficient to break the Cooper pairs and destroy superconductivity. For example, for the
high-temperature superconductor yttrium–barium–copper–oxide (YBCO), the spectral domain
of plasmonic-like behavior extends from dc to a few THz.

Unfortunately, electromagnetic fields at the surface of superconductors are almost
completely expelled from the medium, making plasmon-polariton-like excitations loosely
bounded to the surface, weakly localized and thus unsuitable for waveguiding applications.

4 In the reverse analogy, plasmonic metals can be considered as behaving like high-frequency superconductors
with the electrons in the macroscopically coherent state created through the coupling with incident light.
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Figure 1. Metallic and superconducting plasmonic waveguides. The permittivity
of silver ε, the Drude model (a), indicates plasmonic behavior in the IR and
visible parts of the spectrum. A high-temperature superconductor, the two-fluid
model (b), exhibits plasmonic-like behavior at terahertz frequencies and below.
Here, f1 is the superconductor gap frequency. (c) and (d) Distribution of electric
field in a TM wave propagating through silver (c) and superconducting (d)
parallel-plate waveguides at 1 THz. E‖ and E⊥ are components of the wave
electric field parallel and perpendicular to the propagation direction. In the silver
waveguide the wave decays rapidly. The wave supported by the superconducting
waveguide is ‘compressed’ (suitable for compact devices) and suffers negligible
losses. Here λ0 = 0.3 mm is the free-space wavelength.

For instance in YBCO at 1 THz, the surface wave extends into vacuum for tens of wavelengths
and thus differs very little from a free-space plane wave propagating nearly parallel to
the surface. Strong localization is a very desirable feature from the perspective of using
superconducting plasmons as information carriers. It can be improved in superconducting films
by significantly increasing the permittivity of the adjacent dielectric and/or at the expense of
increased losses—either by using low-quality granular films [8] or operating at frequencies
close to the bandgap [14].

We argue that there is a much better way to unlock the potential of superconducting
plasmonics: namely, by using the waveguide configuration that literally squeezes the
plasmonic field. This can be achieved by trapping the plasmonic field laterally between two
superconducting surfaces of a parallel-plate waveguide with a sub-wavelength gap of just a few
tens of nanometers (or using a nanometer-wide slot made in a thin superconducting film).
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To prove our point, we simulated the propagation of electromagnetic fields at 1 THz in
a 50 nm wide air gap between (i) two YBCO plates and (ii) two silver plates and compared
the results for the two waveguide systems. In our simulation the superconductor is described
using a well-known two-fluid model, which assumes the existence of two non-interacting
electronic sub-systems contributing to the electromagnetic response of the superconductor at
non-zero temperatures: superconducting electrons (Cooper pairs) with purely inertial dynamics
of motion forming a super-current, and normal electrons participating in scattering and energy
dissipation [16]. A generalized Drude model [17] is used to model the dielectric function of
such a two-component electron plasma at frequencies below the superconductor gap frequency
21/h̄:

ε = ε′ + iε′′
= 1 −

ω2
s

ω2
−

ω2
nτ

2

ω2τ 2 + 1
+ i

ω2
nτ

ω(ω2τ 2 + 1)
. (1)

The second term in equation (1) represents the contribution from the non-dissipating super-
current of Cooper pairs with plasma frequency ωs = (Nse2/mε0)

1/2
= c/λL, where λL is the

London penetration depth, Ns is the density of superconducting electrons, m is their effective
mass and ε0 is the free-space permittivity. The third and fourth terms account for the normal
electron plasma of resonant frequency ωn = (Nne2/mε0)

1/2, where Nn is the density of normal
electrons and τ is the relaxation time. The balance between densities of the superconducting and
normal electrons is described by the empirical Gorter–Casimir relation Ns = N [1 − (T/Tc)

4],
where N is the temperature-independent total density of free carriers, while Nn = N − Ns [15].
We choose the parameters in the superconductor model to describe YBa2Cu3O7 with Tc = 88 K
and N = 1.255 × 1027 m−3. At T = Tc the normal electron plasma frequency has the value
ωn = 2 × 1015 rad s−1, which also corresponds to the super-current plasma frequency ωs at
T = 0. At intermediate temperatures these frequencies are determined by changes in the
densities of superconducting and normal electrons according to the Gorter–Casimir relation.
Additionally, τ is derived from the published experimental temperature dependence of the
scattering rate of quasiparticles for YBa2Cu3O7 films [18]. At the critical temperature we have
τc = 1/γc = 3.57 × 10−14 s, while the experimental temperature dependence of the scattering
rate can be accurately fitted by a curve of the form

γ (t) = γc
t

(1 + a t (t−ξ − 1))
,

where a and ξ are the fitting parameters, and t = T/Tc. In our model we use a = 10 and
ξ = 1.5. The dielectric constant of silver is also calculated using the Drude model with a
plasma frequency ωn = 2π × 2.18 × 1015 rad s−1 and scattering time τ = 2.297 × 10−13 s [19].
The propagation of the electromagnetic modes in the gap waveguide is modeled using the three-
dimensional Maxwell equations solver COMSOL Multiphysics.

The results of our simulations are presented in figures 1(c) and (d). Quite remarkably, the
superconducting waveguide supports a mode that is different from the usual TEM mode existing
between two perfectly conducting plates. It has the component of electric field parallel to the
propagation direction (TM mode) and is therefore analogous to the surface plasmon waves
supported by metals at optical frequencies. At 1 THz this mode has a wavelength several times
shorter than in free space (good for miniaturization) and can propagate in a 50 nm wide gap
without significant attenuation for tens of millimeters (see figure 1(d)). In comparison, a TM
mode of the same frequency in a silver waveguide of identical geometry is damped within a
distance of just one wavelength (figure 1(c)).

New Journal of Physics 14 (2012) 115006 (http://www.njp.org/)

http://www.njp.org/


5

Figure 2. Dispersion and propagation characteristics of superconducting YBCO
plasmonic waveguides at 40 K. (a) Schematics of the waveguide configurations
used for the analytical model (top) and simulations (bottom). (b) Dispersion
curves calculated for the terahertz modes propagating in free-space (black) and
superconducting gap (blue) and slot (magenta) waveguides. The light blue curve
represents the mode dispersion in the superconducting gap waveguide calculated
analytically (superconductor at 0 K). (c) Effective refractive index (dotted curve)
and propagation distance (solid curve) of the gap-plasmon calculated at 1 THz
as a function of the gap width, w. The inset shows the plasmon propagation
distance as a function of waveguide temperature calculated for w = 50 nm. (d)
Effective refractive index (dotted curve) and propagation distance (solid curve)
of the slot-plasmon calculated at 1 THz as a function of the superconducting film
thickness, h.

Such a dramatic difference between nanoscale waveguiding efficiencies in the
superconducting and the normal-conduction regimes can be explained by a simple analytical
model. Consider a nanometer-sized dielectric slab embedded in either a conductor or a
superconductor (see figure 2(a)). At terahertz frequencies and below, the relative permittivity of
both types of host material, ε′, is extremely large compared to that of the slab, ε(i.e.|ε′/ε| � 1).
Also, given that the thickness of the slab d is in the nanometer range, kd � 1, where k is the
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light wave vector inside the dielectric. Guided modes of the dielectric slab are then defined by
the Fabry–Perot condition

1 − r 2 exp (2i k⊥d) = 0, (2)

where r = (ε′k⊥ − εk ′

⊥
)/(ε′k⊥ + εk ′

⊥
) is the Fresnel reflection coefficient of the interface

between the superconductor/metal and the dielectric, and k⊥ and k ′

⊥
are the wave vector

components normal to the interface in the dielectric slab and in the host material, respectively.
Equation (2) is the condition for a wave to be in-phase after an up-and-down excursion
across the slab, including reflections at both slab interfaces. Given this condition and the
assumptions made, the propagation wave vector of the only mode supported by the gap-
waveguide configuration can be expressed as

k‖ =

√
k2 − k2

⊥
≈ k

√
1 +

2i

k d
√

ε′/ε
. (3)

Since both d and ε′ appear in a single denominator in equation (3), the value of k‖ can be
significantly different from k even in the case of an air gap (ε = 1). If ε′ is real and negative
(which is a good approximation for the superconductors), k‖ is also real. In normal conductors
ε′ is dominated by its imaginary part and therefore gives rise to a large imaginary part in k‖,
which hinders mode propagation in the gap. Furthermore, Im[k‖] increases with decreasing gap
size, thus rendering metals completely incapable of nanoscale waveguiding at low frequencies
(see the appendix for details).

Low-loss superconducting waveguides are a promising solution for large-bandwidth
terahertz and sub-terahertz plasmonic circuits. They offer key advantages characteristic of the
plasmonic regime, such as strong lateral confinement and longitudinal compression necessary
for high-density integration, but without dissipative losses that hamper plasmonic applications
at optical frequencies. As an added bonus, superconducting plasmonic waveguides enable
higher bandwidth and faster data transfer rates due to their extremely weak dispersion. This
is demonstrated below for superconducting YBCO at 40 K for both gap- and slot-waveguide
configurations (see figure 2(a)). The characteristics of the gap mode are obtained from the
analytical form of its dispersion equation, which is solved using the algorithm described in [20].
The dispersion of the slot mode, as well as its effective refractive index and propagation distance,
are retrieved from the results of COMSOL simulations.

Figure 2(b) shows dispersion curves calculated in the 0.5–1.5 THz range of frequencies
for the modes propagating in 50 nm wide gap and slot waveguides. Similar to free-space
propagation in air, the dispersion of the bounded superconducting plasmons here appears to
be linear, effectively corresponding to free-space propagation in denser dielectrics. The slope of
the dispersion curves can be decreased further by increasing the refractive index of the guiding
regions, but more importantly, the longitudinal compression of the modes can be efficiently
controlled by the size of the cross-section and the temperature of the waveguides. As is clear
from figure 2(c), the effective refractive index of the plasmonic mode in the gap waveguide
monotonically increases with decreasing gap size and can reach a value of 5 for a gap as
large as 10 nm. Similar to optical plasmons, superconducting plasmons are also subject to the
trade-off between confinement and propagation distance. However, considering a nanoscale
confinement that was so far exclusive of optical plasmons, the propagation distance of its
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superconducting counterpart at 1 THz extends here to a colossal value of 6.5 mm (about 60
effective wavelengths). Interestingly, the propagation distance is significantly affected by the
temperature of the waveguide and can be in the range of meters near 10 K, while it drops to just
a fraction of the guided wavelength near the critical temperature, as illustrated in the inset to
figure 2(c). For the slot waveguide configuration (which is technologically more appealing), the
plasmonic mode is confined laterally in two dimensions, and the dependences of its refractive
index and propagation distance on the parameters of the waveguide cross-section are more
complex (see figure 2(d)). For example, the effective refractive index of the mode residing in
a 50 nm wide slot reaches a minimum value of 1.67 for a superconducting film thickness of
100 nm. The propagation distance of the plasmonic mode in such a waveguide at 1 THz is of the
order of a few tens of millimeters, which corresponds to an impressive value of 100 effective
wavelengths.

Obviously, we will be able to speak about plasmonics as a data handling and processing
paradigm in the same way as we speak about photonics only when efficient techniques for
active manipulation of plasmon signals are identified [21]. In this respect, superconductors have
another important advantage over metals: the electromagnetic characteristics of superconductors
may be readily altered (especially close to their critical temperature) by external stimuli such as
magnetic fields, optical illumination, surface currents or heat. This opens up a new path toward
‘active plasmonic’ applications when the plasmon signal can be efficiently controlled in data
processing and interconnect applications.

In essence, high-temperature superconducting waveguides constitute a promising avenue
for developing ultra-compact terahertz data processing circuits, providing a superior alternative
to sub-millimeter metal single-wire transmission lines and circular waveguides [22–24]. Also,
propagation distances of up to several meters and truly nanoscale confinement of the guided
terahertz plasmonic modes, which can be actively manipulated through various easy-to-
implement routes, make the superconducting waveguides superior to other possible terahertz
waveguiding solutions based on the use of semiconductors, corrugated metal surfaces or
graphene. Indeed, although semiconductors can exhibit plasmonic behavior in the range of
1–10 THz with lower losses compared to metals, their conductance and kinetic inductance are
both still substantially lower than in superconductors, resulting in shorter mode propagation
length and weaker confinement. For example, for a semiconductor such as InSb, which has
one of the lowest scattering rates of all the III–IV compounds with ε = −14–i12 [25], the
propagation length of a surface-guided plasmon wave at 1 THz is only 1.3 mm (around four
effective wavelengths), whereas its field extends into vacuum for more than 0.18 mm. If YBCO
were replaced with InSb in the gap waveguide configuration, the propagation distance of the
gap mode would be 6.4 µm, only a fraction of the mode effective wavelength of 14.4 µm.
Corrugated metal surfaces can, in principle, guide terahertz waves in the form of the so-called
spoof plasmons [26, 27], but they offer no means of active control, whereas the scale of
the mode localization is much larger than in the superconducting waveguides (typically tens
of microns). And the efficiency of waveguides based on graphene, which has been shown
to support plasmonic excitations at terahertz frequencies [28], can be severely limited by
imperfections in the actual samples [29].

Finally, we would like to point out that the cryo-cooling requirement for the
superconducting waveguides is no longer a serious technological limitation, as compact
cryogenic devices are now widely deployed in telecommunications and sensing equipment.
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Appendix. Dispersion characteristics of the gap-waveguide mode

We consider a dielectric slab buried into either a conductor or a superconductor (gap
waveguide), and assume that |ε′/ε| � 1 and kd � 1, where ε′ is the permittivity of the
conductor/superconductor, ε is the permittivity of the dielectric slab, d is the thickness of the
slab and k is the light wave vector inside the dielectric. The guided modes are defined by
the Fabry–Perot condition for waves traveling up and down the slab and reflecting from both
interfaces, as shown in figure 2(a):

1 − r 2 exp(2ik±d) = 0, (A.1)

where

r = (ε′k⊥ − εk ′

⊥
)/(ε′k⊥ + εk ′

⊥
) (A.2)

is the TM Fresnel reflection coefficient for the interface between the superconductor/conductor
and the dielectric, k⊥ = (k2

− k2
‖
)1/2 and k ′

⊥
= (k2 ε′/ε − k2

‖
)1/2 are the wave vector components

normal to the interface in the dielectric slab and superconductor/conductor, and k‖ is the wave
vector component parallel to the interface.

Equation (A.1) reflects the fact that the wave must be in-phase after one round trip in the
dielectric slab, including reflections at the upper and lower interfaces. Under the approximations
made we can write k ′

⊥
≈ k(ε′/ε)1/2 and simplify expression (A.2) as

r ≈

(
1 −

k

k⊥

√
ε′/ε

)/(
1 +

k

k⊥

√
ε′/ε

)
≈ 1 −

2k

k⊥

√
ε′/ε

. (A.2a)

Substituting (A.2a) into equation (A.1), we obtain

1 −
4k

k⊥

√
ε′/ε

≈ 1 − 2i k⊥d, (A.3)

so that

k⊥ ≈

√
−2ik

d
√

ε′/ε
. (A.3a)

From (A.3a) the wave vector component parallel to the interface can be obtained in the form

k‖ =

√
k2 − k2

⊥
≈ k

√
1 +

2i

k d
√

ε′/ε
. (A.4)
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Expression (A.4) is valid if |ε′/ε| � 1 and kd � 1. Since these two conditions affect the same
denominator in (A.4), k‖ can be either very close to or different from k. We consider two limiting
cases:

(i) The ideal superconductor (T → 0)
In this case ε′

∼ −ω2
s /ω

2 with ω = ωs, which immediately leads to

k‖ ≈ k

√
1 +

2(ω/ωs)
√

ε

k d
. (A.4a)

Expression (A.4a) reflects the fact that the mode propagates in an ideal superconducting
gap waveguide without losses (k‖ is real) and its dispersion can significantly deviate from
the light line for small d (stronger confinement).

(ii) The ideal conductor (ω → 0)
In this case ε′

∼ iω2
nτ/ω, which leads to

k‖ ≈ k

√
1 +

2(ω/ωn)

k d

√
iε

ωτ
. (A.4b)

Thus, there are significant losses for the mode propagating in an ideal conducting gap
waveguide, and the level of losses increases with the departure of k‖ from the light line, i.e.
when the mode is subjected to stronger confinement (d decreases).
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