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Abstract: We systematically investigate the optical properties of silver films to clear up the 
inconsistency in the published values of the dielectric function of silver. The silver films were 
deposited on mica by using a facing target sputtering system, which yielded a large area 
single crystal of silver suitable for the fabrication of high-finesse plasmonic devices and 
metamaterials. We confirmed that wide variations in the optical properties of silver were 
associated with the overall quality of the silver films including crystal structure, thickness, 
and surface roughness. The quality factor of the surface plasmon polaritons calculated for the 
obtained single crystal is 5 × 103, which is about five times higher than that for 
polycrystalline films. 
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OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics; (310.6860) Thin films, optical properties; 
(310.6628) Subwavelength structures, nanostructures. 

References and links 

1. V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index 
materials,” Nat. Mater. 5(10), 759–762 (2006).

2. N. I. Zheludev, “The road ahead for metamaterials,” Science 328(5978), 582–583 (2010). 
3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). 
4. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of 

two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).
5. N. I. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354

(2008).
6. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in 

metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
7. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering 

of low-loss metal for nanoplasmonic and metamaterials,” Appl. Phys. Lett. 95(15), 151102 (2009).
8. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles 

calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
9. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better 

Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
10. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot 

luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
11. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of

surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 
93(11), 113110 (2008).

12. V. A. Fedotov, T. Uchino, and J. Y. Ou, “Low-loss plasmonic metamaterial based on epitaxial gold monocrystal
film,” Opt. Express 20(9), 9545–9550 (2012).

13. Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alù, C. K. Shih, and X. 
Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35),
6106–6110 (2014). 

14. C. Y. Wang, H. Y. Chen, L. Sun, W. L. Chen, Y. M. Chang, H. Ahn, X. Li, and S. Gwo, “Giant colloidal silver 
crystals for low-loss linear and nonlinear plasmonics,” Nat. Commun. 6(1), 7734 (2015).

15. A. A. Baski and H. Fuchs, “Epitaxial growth of silver on mica as studied by AFM and STM,” Surf. Sci. 313(3), 
275–288 (1994). 

16. T. Mori, T. Mori, Y. Tanaka, Y. Suzaki, and K. Yamaguchi, “Fabrication of single-crystalline plasmonic 
nanostructures on transparent and flexible amorphous substrates,” Sci. Rep. 7, 42859 (2017).

Vol. 8, No. 6 | 1 Jun 2018 | OPTICAL MATERIALS EXPRESS 1642 

#320678 https://doi.org/10.1364/OME.8.001642 
Journal © 2018 Received 25 Jan 2018; revised 28 Apr 2018; accepted 16 May 2018; published 30 May 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.8.001642&domain=pdf&date_stamp=2018-05-30


17. S. Buchholz, H. Fuchs, and J. P. Rabe, “Surface structure of thin metallic films on mica as seen by scanning 
tunneling microscopy, scanning electron microscopy, and low-energy electron diffraction,” J. Vac. Sci. Technol. 
B 9(2), 857 (1991). 

18. M. J. Hall and M. W. Thompson, “Epitaxy and twinning in foils of some noble metals condensed upon lithium 
fluoride and mica,” Br. J. Appl. Phys. 12(9), 495–498 (1961). 

19. N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. 
Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–
182 (2009). 

20. Y. Jiang, S. Pillai, and M. A. Green, “Re-evaluation of literature values of silver optical constants,” Opt. Express 
23(3), 2133–2144 (2015). 

21. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical 
dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015). 

22. Y. Jiang, S. Pillai, and M. A. Green, “Realistic Silver Optical Constants for Plasmonics,” Sci. Rep. 6(1), 30605 
(2016). 

23. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 
(1972). 

24. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and 
metamaterials,” Science 325(5940), 594–597 (2009). 

25. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure 
Appl. Opt. 8(4), S87–S93 (2006). 

26. S. Kadokura, M. Naoe, S. Nakagawa, and Y. Maeda, “Nano-size magnetic crystallite formation in Co-Cr thin 
films for perpendicular recording media,” IEEE Trans. Magn. 34(4), 1642–1644 (1998). 

27. J. Moon and H. Kim, “Sputtering of aluminum cathodes on OLEDs using linear facing target sputtering with 
ladder-type magnet arrays,” J. Electrochem. Soc. 155(7), J187–J192 (2008). 

28. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances 
in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). 

29. W. P. Davey, “Precision Measurements of the Lattice Constants of Twelve Common Metals,” Phys. Rev. 25(6), 
753–761 (1925). 

30. M. Higo, K. Fujita, M. Mitsushio, T. Yoshidome, and T. Kakoi, “Epitaxial growth and surface morphology of 
aluminum films deposited on mica studied by transmission electron microscopy and atomic force microscopy,” 
Thin Solid Films 516(1), 17–24 (2007). 

31. E. Palik, Handbook of Optical Constants of Solids (Academic Press 1998). 
32. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. 

Mod. Opt. 43(1), 81–91 (1996). 
33. J. M. Bennett, J. L. Stanford, and E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. 

Am. 60(2), 224–232 (1970). 

1. Introduction 

Plasmonic structures and metamaterials exploiting surface plasmons have attracted great 
attention over the last decade [1, 2] since they gave rise to some innovative concepts and 
novel devices such as superlenses, nano-antennas, spasers, and subwavelength waveguides 
[3–6]. Research on metamaterials operating in the infrared and visible spectral regions is 
often carried out using metasurfaces rather than their three-dimensional counterparts because 
of the ease of manufacture. However, the response of the metasurfaces is very sensitive to the 
presence of dissipative losses in the subwavelength resonators making it difficult to obtain the 
optimum performance. Several approaches to overcome the losses were investigated, 
including the search for better plasmonic materials among metallic alloys, heavily doped 
semiconductors, graphene, and conductive oxides [7–9] in addition to direct compensation of 
the losses by integrating metamaterials with optical gain media [10]. Although these 
approaches aim to minimize Joule losses, the actual dissipation rates are often much higher 
than those expected from Ohm’s law. The additional drawback associated with surface 
roughness and grain boundary scattering due to polycrystalline nature of thin metal films was 
reported [11]. As a result, employing single crystals of noble metals could become a major 
step towards the reduction of plasmonic losses. We demonstrated that metamaterials 
fabricated using epitaxial gold thin films with a surface roughness of less than 0.2 nm showed 
a strong resonant response in the near-infrared spectral region [12]. Silver is far less 
expensive than gold and has the lowest intrinsic loss in the visible and near-infrared regions 
among all metals. Thus, to improve the performance of plasmonic devices and metamaterials, 
the use of single crystal films of silver is desirable [13–16]. However, silver has low cohesive 
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energy as compared with other metals, while silver films on dielectric substrates are easily 
agglomerated by heating. In fact, it is difficult to obtain continuous silver films with a 
thickness of 100 nm or less using conventional methods [17–19]. To overcome the difficulty, 
chemical methods and molecular beam epitaxy techniques have been developed. They 
enabled the growth of high-quality single-crystal films at temperatures lower than room 
temperature [13, 14]. Another problem related to the use of silver films stems from an 
inconsistency in the measured values of the optical dielectric function [20–24]. The dielectric 
function is important to understand electronic and optical properties of noble metals, 
especially for transmission and reflection of light. The propagation length of surface plasmon 
polaritons, plasmon lifetime, and non-radiative loss are directly related to the dielectric 
function [25]. However, silver has wide variations in the dielectric function associated with 
sample preparation, measurement techniques, and surface texture. While it is well known that 
optical properties are affected by surface roughness, grain boundary, and film thickness [11, 
12], there have been only a few systematic studies on how film structure affects the optical 
dielectric function of silver. 

In this work, we present a systematic investigation of optical properties of silver thin films 
deposited by a facing target sputtering system, which yielded large area single crystal thin 
films. We investigated the effects of film thickness, surface texture, and crystal structure on 
the optical properties of silver thin films. The deposition conditions were optimized by 
evaluating the optical characteristics of silver films. We found that the inconsistency in the 
measured values of the optical dielectric function of silver resulted from the overall quality of 
the films including crystal structure, thickness, and surface roughness. The obtained single 
crystal silver thin films allowed us to reduce plasmonic losses and, in contrast to single crystal 
gold films, extend the useful spectral range to the near ultraviolet wavelengths. The obtained 
films were also used to fabricate a nanostructured metasurface with a structurally complex 
pattern, which showed high-Q resonance in the near infrared region. We believe that the 
silver growth technique, described here, makes it possible to realize inexpensive and low-loss 
plasmonic systems and devices for various practical applications. 

2. Experimental details 

Silver thin films were deposited on freshly cleaved mica substrates (Nilaco) with the help of a 
facing target sputtering system (Biemtron LS-420R), which enabled to avoid plasma damage. 
The parallel facing target direction was perpendicular to the substrate holder in this system 
[26, 27]. The substrates were heated during deposition from the back side of the substrate 
holder. The deposition temperature ranged from room temperature to 500 °C, and the film 
thickness ranged from 44 to 150 nm. The sputtering was performed at a deposition rate of 2 
nm/s and a base pressure of less than 3 × 10−5 Pa. For comparison, we also prepared samples 
deposited at room temperature on both mica and glass substrates. The mica sheets were cut 
into pieces of approximately 1 × 1 cm2 and freshly cleaved to expose clean and atomically flat 
surface just before loading into the sputtering system. Mica is a highly transparent dielectric 
with an exceptionally broad transmission window spanning from UV to mid-IR (0.2 to 10 
μm) which makes it an ideal substrate for hosting metamaterial-based optical devices. The 
glass substrates were cleaned with acetone, isopropanol, and distilled water before the 
deposition. The thin films were characterized by using various analytical techniques including 
scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution 
transmission electron microscopy (HRTEM). The surface morphology of the samples was 
examined by using atomic force microscope (AFM) operating in a tapping mode under 
ambient conditions. Spectroscopic ellipsometry measurements using a spectroscopic 
ellipsometer (J. A. Woollam M-2000) were carried out to extract the optical constants of 
silver in the wavelength range of 200-1700 nm and at an incidence angle of 60°. The complex 
dielectric constant ε = ε1 ‒ iε2 was obtained from the measured ellipsometric angles Ψ and Δ  
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in the metal, are smaller than those in the case of polycrystalline silver film. This result is 
consistent with the fact that the electron scattering due to surface roughness and grain 
boundaries in polycrystalline metal films causes losses [11] and, hence single crystal silver 
film should have a lower loss in the visible and near-infrared region. The obtained values of 
ε2 are comparable to those recently reported for silver films grown by molecular beam epitaxy 
(MBE) [13] and smaller than previously published values including widely used data by 
Johnson and Christy [23, 31, 32]. 

The quality factors of SPP for all samples were estimated using the measured dielectric 
permittivity. Figure 6(a) shows the quality factors of SPP at the wavelength of 1 µm as a 
function of the thickness of silver films deposited at room temperature. The quality factors 
corresponding to silver films on mica are seen to increase with increasing film thickness, and 
their values are about two times larger than those in the case of silver films on the glass when 
the film thickness exceeds 100 nm. On the other hand, silver films on glass are characterized 
by only a small increase in the quality factors for thicker samples. These results are consistent 
with the previous results [11] and suggest that the penetration of SPPs into single crystal films 
is deeper than into polycrystalline ones. Correspondingly, the presence of grain boundaries 
and surface roughness lead to the reduction of the quality factors of SPP. Figure 6(b) shows 
the quality factors of SPP for the silver films on mica as a function of deposition temperature. 
The quality factor corresponding to the single crystal silver film with 110-nm-thick is around  
5 × 103, which is about five times higher than the value of the commonly used silver film on 
glass. The drastic increase in the quality factors is seen around 350 °C in the case of 110-nm-
thick silver films, which is attributed to the transition from polycrystalline to the single crystal 
structure. As for 70-nm-thick silver films, the deposition at temperatures above 350 °C causes 
the formation of voids on the film surface, and consequently, the quality factor was reduced. 

As an additional quality test for the obtained single crystal silver films, we investigated 
plasmonic metasurfaces exhibiting sharp Fano resonances. Figure 7(a) shows an SEM image 
of a high-finesse plasmonic metasurface fabricated in a 110-nm-thick single crystal silver film 
deposited at 500 °C. The metasurface is formed by an array of 40 nm wide slits shaped in the 
form of asymmetrically-split rings (ASR). The radius of the rings is 120 nm and the period of 
the array is 320 nm. The long and short arcs have the length of 377 and 272 nm and are 
separated by narrow gaps of about 53 nm. Figure 7(b) shows the reflection spectra of the 
fabricated metasurface. The spectra feature a Fano resonance at around 1.4 µm, which are 
similar results of the previously demonstrated ASR metasurface using epitaxial gold films on 
LiF substrates [12]. Remarkably, the resonances from both 110-nm-thick silver films and 80-
nm-thick gold films have the same Q-factors even though the volume of ASR metamolecules 
in the silver metasurface is larger by about 40%. This result indicates that intrinsic loss in the 
obtained silver films was substantially lower than that in the epitaxial gold films, suggesting 
high quality. The endurance of the silver films is great concerns in practical use. The dot-and-
dash line in Fig. 7(b) shows the reflection spectrum of the silver ASR metasurface after 
leaving the sample in air for nine months. The aged silver ASR metasurface exhibits an 
almost identical reflection spectrum with only a slight red-shift. Exposing the sample to high 
vacuum did not affect the spectrum, which suggested that the red shift could not have resulted 
from the accumulation of moisture. The other possible explanation was that over time a 
certain fraction of silver in the film had been transformed into silver sulfide. To test the 
conjecture, we performed an energy dispersive X-ray spectroscopy (EDX) analysis of the 
sample. It revealed the presence of 0.5% of sulfur on the background of 67% of silver (with 
the remaining 32.5% taken mostly by aluminum and oxygen, which came from the mica 
substrate). Given that the thickness of the silver film was 110 nm, the detected amount of 
sulfur would be equivalent to a 0.8-nm-thick surface layer of silver sulfide, which is a 
monolayer of the compound. Such a thin surface layer  
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