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Toy model of harmonic and sum 
frequency generation in 2D 
dielectric nanostructures
Jie Xu, Vassili Savinov & Eric Plum*

Optical nonlinearities of matter are often associated with the response of individual atoms. Here, 
using a toy oscillator model, we show that in the confined geometry of a two-dimensional dielectric 
nanoparticle a collective nonlinear response of the atomic array can arise from the Coulomb 
interactions of the bound optical electrons, even if the individual atoms exhibit no nonlinearity. We 
determine the multipole contributions to the nonlinear response of nanoparticles and demonstrate 
that the odd order and even order nonlinear electric dipole moments scale with the area and perimeter 
of the nanoparticle, respectively.

In nonlinear media, electromagnetic waves can interact, generating new waves at combinatorial frequencies. 
Depending on the generated frequency, the nonlinear phenomena can be classified as harmonic generation, 
parametric down conversion, sum or difference frequency generation, which are important for optical signal 
processing, bio-imaging and spectroscopy. Even order harmonics are usually forbidden in materials with inver-
sion symmetry, but with the presence of inhomogeneity associated with  interfaces1–9, optical field  gradients10,11 
or  chirality12, centrosymmetric media can support even harmonic response. In particular, nanostructuring can 
introduce inhomogeneity and asymmetry in metallic and dielectric films, resulting in even order sum-frequency 
and harmonic generation in structures made from centrosymmetric  media13–22. Such nonlinearities depend 
strongly on geometry, i.e. the shape of particles or the unit cell of periodic structures. The advance of nanofab-
rication to smaller and smaller scales provides an opportunity to engineer the nonlinear properties of particles 
and (meta)surfaces on the nanoscale. Such engineering depends on understanding the dependence of nonlinear 
optical properties on the arrangement of atoms. Full ab-initio quantum treatments of second-23–29 and higher-
order30,31 nonlinearity have been demonstrated, but only for specific materials and under specific conditions, 
whilst experimental measurements, of surface nonlinearity, require pristine surfaces and strict control over the 
bulk  effects3,5,32–34. Sophisticated classical/quantum test models have been previously developed for  metals35,36, 
‘dipolium’  dielectrics29,37, and dielectric particles of quite specific  shapes38. Meanwhile, symmetry-based selec-
tion  rules39,40 identify cases where even harmonic generation is forbidden, but cannot predict its magnitude 
where it is allowed.

Therefore, the motivation of this work is to develop a simple classical model that can predict how harmonic 
and sum frequency generation depend on the size and geometry of dielectric nanostructures. We consider a 2D 
nanoparticle described as a lattice of linear oscillators coupled by Coulomb interactions. The model reveals the 
different origins of the even and odd order nonlinear processes and predicts the dependence of the efficiency of 
nonlinear processes on the incident polarization state and the nanoparticle’s geometry, symmetry and size. We 
show that the even order and odd order nonlinear electric dipole moments scale linearly with the perimeter and 
area of the nanoparticle, respectively, and quantify magnetic dipole and electric quadrupole contributions to 
nonlinearity. The model may be applied to optimize and understand harmonic and sum frequency generation 
in dielectric nanostructures of various shapes.

Results
Coulomb-interaction-induced optical nonlinearity of 2D nanoparticles. Previously, using a Tay-
lor series approach, we reported a model of Coulomb-interaction-induced second harmonic generation in the 
electric dipole  approximation41. Here, enabled by Fourier transformation, we include higher harmonics, sum 
frequencies and higher multipoles.  Following41, a dielectric structure is modelled as a collection of atoms, where 
each atom is described as a classical Lorentz  oscillator42, consisting of one optical electron bound to one nucleus, 
as shown by Fig. 1. The interaction between the electron with coordinate r(t) and its stationary nucleus at R 
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is described by a linear restoring force, which gives rise to a linear optical response. In this model, there is no 
nonlinearity within a single atom (see “Discussion”). However, if we consider a particle, which contains N atoms, 
the Coulomb interaction of electrons with electrons, and electrons with nuclei of other atoms will introduce 
nonlinearity. The equation of motion for each optical electron can be written as 

where rk and Rk is the positions of electron k and its nucleus in the particle; γ is the damping frequency; q and 
m are the electron charge and mass; and ω0 is the angular resonance frequency of an isolated atomic harmonic 
oscillator.

Second harmonic generation (SHG) due to Coulomb interactions has been observed experimentally in dimers 
of metallic nanoparticles of deeply sub-wavelength  size43 and a similar nonlinearity arising from electrostatic 
interactions has been considered in the context of nonlinear plasmonic  metamaterials44. Similar approaches 
have been previously employed to study  linear45 and nonlinear properties of  dielectrics46, harmonic generation 
by metallic  structures47 and anharmonic  oscillators48,49, and for treating surface nonlinearity of uniform planar 
 surfaces7,27–29,37. A range of models of sum frequency generation has been reported, e.g. for harmonic  oscillators50 
and liquid  interfaces51–53. Nonlinear oscillator models predicting the nonlinear response of metacrystals have 
been  reported54,55 and applied to split ring resonator magnetic media. Here, our focus is on highly structured 
materials and our model is applicable to planar dielectric nanostructures of any shape. Therefore, it complements 
existing models that describe harmonic or sum frequency generation in specific materials and/or  shapes16,23,35,36,38, 
and symmetry-based selection  rules39,40,56 that predict cases where such processes are forbidden.

In order to predict the nonlinear response of a structured dielectric film, such as a nanoparticle or metamate-
rial unit cell, we consider plane wave illumination (along z) of a 2D (two-dimensional) lattice of ‘atoms’ consisting 
of charges that are confined to the xy-plane. The electromagnetic response of the single atom is strictly linear 
and arises from a harmonic  potential41. The nonlinear response arises exclusively due to inter-atomic Coulomb 
interactions. The ∝ 1/r2 dependence of the Coulomb force, where r is the inter-charge separation, gives rise to 
a nonlinear response of optical electrons in collections of coupled atoms, which is illustrated by curved optical 
electron trajectories in Fig. 1.

We apply this basic principle of one-to-one coupling via the Coulomb force to modelling of the response of 
large collections of atoms that form particles with a square or hexagonal lattice. The resonance frequency of an 
isolated atom is ω0 = 9.4 ×  1015 rad/s, corresponding to a UV resonance at 200 nm wavelength, and the damping 
frequency is γ = 0.01 ω0 to approximate a typical atomic response in dielectrics such as ITO,  TiOx and SiN. In 
order to access a highly nonlinear regime, the amplitude of the pumping electric field (E0) is set to 8.68 ×  1010 V/m, 
corresponding to  1015 W/cm2 pump intensity. While this extreme level of intensity may not be feasible experi-
mentally, it allows us to explore physical trends and higher-order optical nonlinearities in a regime where they 
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Figure 1.  Nonlinear model for the optical response of interacting atoms in a dielectric nanoparticle. The 
atoms are modelled as damped harmonic oscillators consisting of an optical electron constrained to move in 
the xy-plane and a positively charged stationary nucleus at the atom’s centre. The nonlinear optical response 
of a nanoparticle originates from the Coulomb interactions between optical electrons and other atoms. These 
interactions cause sum/harmonic frequency generation by perturbing the harmonic electron oscillation driven 
by an incident light field E(t) at the pump frequency ωp. In particular, Coulomb forces at boundaries become 
direction-dependent and electron trajectories become curved.
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are of sufficient magnitude to make numerical errors of differential equation solvers irrelevant. The pump wave-
length is chosen to be 1064 nm, a common choice for nonlinear optics that is far from the atomic resonance 
(angular pump frequency ωp = 0.19 ω0). In modelling of sum frequency generation, we pump the particle at two 
frequencies, ωp and 0.1ωp, simultaneously. The ratio of 10 of the two pump frequencies is chosen to make the 
sum frequency order easily recognizable. The atomic spacing is chosen to be 0.5 nm in all cases.

By solving the coupled equations of motion [Eq. (1)] of all optical electrons within 2D nanoparticles numeri-
cally, we calculate the displacement of each optical electron in the time domain. We solve the coupled system of 
differential equations in Matlab starting without optical electron displacement and allowing transitional effects to 
pass before analysing the oscillation of all electrons over 1000 periods of the driving field. This allows the calcula-
tion of the particle’s net multipole moments. In the interest of simplicity, our initial discussion will be limited to 
the particle’s electric dipole moment in order to describe radiation emitted normal to the plane of the particle. 
The electric dipole moment is proportional to the displacement of electrons. Therefore, a displacement of the 
kth electron relative to its nucleus, rk − Rk, results in an electric dipole due to the kth atom of dk = q(rk − Rk), and 
the total electric dipole of the particle is the sum over all atoms, P = ∑kdk. This gives the electric dipole moment 
d(t) of each atom and the net electric dipole moment P(t) of the nanostructure in the time domain. The net 
electric dipole moment is separated into linear and nonlinear components, P(1), P(2), P(3) …, oscillating at the 
driving frequency ωp and its harmonics 2ωp, 3ωp …, by Fourier transformation. In the presented Fourier series, 
the peak values are the dipole amplitudes in Coulomb meters at harmonic and sum frequencies. For pumping 
of a 2D particle at normal incidence, as considered here, radiation emitted normal to the plane of the particle 
is determined by its net electric dipole moment alone. Towards the end of this paper, we will consider other 
multipoles, which contribute to radiation in other directions.

Harmonic and sum-frequency generation in nanostructures of D4 symmetry. Here we consider 
how a structure in the xy-plane radiates along z in response to pumping along z. According to symmetry analy-
sis, radiation of even order harmonics along z is forbidden in structures with even-fold rotational symmetry and 
allowed in structures of no or threefold rotational  symmetry39,40. In order to reveal how nonlinear frequency 
generation appears/vanishes in cases where it is allowed/forbidden, we study harmonic and sum frequency gen-
eration in simple 2D particles of either square shape (D4 symmetry, with square lattice) or triangular shape (D3 
symmetry, with hexagonal lattice).

Figure 2a illustrates harmonic generation in a square particle of 25 atoms. The frequency-dependence of 
the total electric dipole moment P generated by electric pump field E0cos(ωpt) is shown, where Pi,j refers to the 
i-component of the dipole moment caused by a j-polarized pump field, with i,j being x or y. As required by sym-
metry, x-polarized excitation generates a dipole only along x, while y-polarized excitation generates a dipole 
only along y with the same magnitude. i.e. Px,x = Py,y are observed, while Px,y and Py,x are forbidden. As expected 
for a particle with even-fold rotational  symmetry39,40, we observe only odd harmonics—P(1), P(3), P(5) , P(7) and 
P(9)—which appear as peaks in Fig. 2a.

Harmonic generation is a special case of sum frequency generation. The latter becomes apparent when pump-
ing the square particle with a combination of two frequencies, ωp and 0.1ωp. This is illustrated by Fig. 2b, which 
considers a pump field E0/2[cos(ωpt) + cos(0.1ωpt)]. As for harmonic generation, also mixed frequency pumping 
results in an electric dipole moment of the particle that is parallel to the pump polarization, Px,x and Py,y. We 
observe only odd order sum frequencies, i.e. odd harmonics of the higher and lower pump frequencies (ωp, 3ωp, 
5ωp, … and 0.1ωp, 0.3ωp, …) and sums of odd combinations of both pump frequencies (1.2ωp, 2.1ωp, 2.3ωp …), 
indicating that the model can predict wave mixing in 2D particles. We observe that different dipole moments of 
the same order tend to be of similar magnitude, but resonant enhancement near the atomic resonance at 5.26 
ωp and the background level also influence the magnitude of the calculated dipole moments. (Similar results are 
obtained for different choices of pump frequency, see Supplementary Fig. S1).

The origin of harmonic and sum frequency generation is revealed by the distribution of atomic dipole 
moments at the relevant frequencies. Figure 2c illustrates this for the square particle pumped at frequency ωp. 
The top row shows the distributions of dipole components oriented normal to the pump polarization at odd (left) 
and even (right) harmonic frequencies. Notably, all harmonics are generated locally, but the symmetry of the 
particle implies that the atomic electric dipole component normal to the pump field has the same magnitude and 
a π phase difference on opposite sides of the structure, resulting in overall cancellation. Therefore, the structure 
of D4 symmetry has no net electric dipole moment in the direction normal to the pump polarization. The net 
electric dipole component parallel to the pump polarization also cancels for even harmonics (bottom row, right). 
In contrast, the dipole component parallel to the pump polarization does not vanish for odd harmonics (bottom 
row, left). In-phase oscillation of all atoms causes the atomic dipoles to add up to a net electric dipole moment 
of the particle at odd harmonic frequencies.

Indeed, the symmetry of the experimental arrangement, including structure and pump beam, means that no 
light can be emitted at even harmonics along z and therefore the net electric dipole moment must vanish. In these 
cases, the fields “radiated” from different parts of the particle cancel by destructive interference in the normal 
direction. Radiation in other directions may not vanish, can be described in terms of other multipoles, and will be 
discussed towards the end of this paper. Here, we describe radiation emitted normal to the plane of the particle.

While the allowed component of odd harmonic generation originates from the entire particle, we notice that 
the even harmonics—which do not add up to any net electric dipole moment—are associated with edges of the 
particle. In the interest of simplicity, we have shown dipole distributions for harmonic frequency generation in 
Fig. 2c. Dipole distributions for sum frequency generation with different pump frequencies (see Supplementary 
Fig. S2) have the same characteristics as those for harmonic generation of the same order.
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The dependence of the nanoparticle’s odd harmonic response on its size is shown by Fig. 2d. We find that the 
total nonlinear electric dipole at the generated odd harmonics is proportional to the total number of atoms (2D 
particle area). The pump power dependence of the generated harmonics is illustrated by Fig. 2e, which shows the 
electric dipole moment generated in the square particle for different pump field amplitudes at different harmonic 
frequencies. The magnitude of the electric dipole moments at the first, third and fifth harmonic frequencies—P(1), 
P(3), P(5)—is proportional to the first, third and fifth power of the pump amplitude, as expected for first, third 
and fifth order (non)linear optical processes.

Harmonic and sum-frequency generation in nanostructures of D3 symmetry. While the even-
fold rotational symmetry discussed above only permits odd order nonlinear electric dipole moments, three-fold 
rotational symmetry allows a more complex nonlinear response. Now we will discuss harmonic generation in 
a particle of D3 symmetry, a triangular particle consisting of 28 atoms arranged in a hexagonal lattice as shown 
by Fig. 3. The spectral dependence of the triangular particle’s electric dipole moment in response to pumping at 
frequency ωp is shown by Fig. 3a–d. Also here, the electric dipole moment at the kth harmonic is proportional 
to the kth power of the pump field amplitude, causing higher harmonics to vanish quickly with reducing pump 
amplitude, as it should be (see Supplementary Fig. S3). An x-polarized pump field generates an electric dipole 
moment of the particle along x at odd harmonic frequencies (Fig. 3a) and along y at even harmonic frequen-
cies (Fig. 3b). A y-polarized pump field generates a dipole moment along y only at all harmonic frequencies 
(Fig. 3c,d). The distribution of the atomic dipole moments within the nanoparticle is shown for the second and 
third harmonic frequencies (insets), which are representative of the even and odd harmonic cases. While the 
particle exhibits local charge oscillations along x and y at all harmonics, overall cancellation of components of 

Figure 2.  Harmonic and sum frequency generation in a nanoparticle of D4 symmetry. (a, b) Frequency 
dependence of the electric dipole moment of a square particle (blue outline) consisting of 25 atoms (red crosses) 
in response to optical pumping at (a) a single frequency ωp and (b) a combination of two frequencies, ωp and 
0.1ωp. Py,x indicates the y-component of the particle’s electric dipole moment caused by x-polarized pumping. 
For either x- or y-polarized pumping, the orientations of pump polarization and generated dipole are parallel, 
and the generated dipoles have the same magnitude for both cases. (c) Magnitude (colours) and sign (“+” and 
“−”) of the dipole moment per atom, d generated at harmonic frequencies (multiples of ωp) in response to 
pumping at frequency ωp. The top (bottom) row shows the dipole component orthogonal (parallel) to the pump 
polarization. Stacked images for different—either even or odd—harmonics show the same qualitative behaviour. 
(d) Scaling of the particle’s electric dipole moment with its size at the first three odd harmonic frequencies 
[corresponding to peaks in (a)]. These odd order dipole moments scale with the particle’s number of atoms 
(area). (e) Scaling of the particle’s electric dipole moment with the pump field amplitude for the same cases.
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the particle’s electric dipole moment at even (Fig. 3a), odd (Fig. 3b) or all (Fig. 3d) harmonics results from charge 
oscillations with equal amplitude and opposite phase at opposite edges of the triangle.

It has been reported that the total linear and second-order nonlinear responses of a particle scale differently 
with its size. For a 3D particle made from centrosymmetric material, the total linear electric dipole moment is 
proportional to its volume (number of atoms), while the second-order dipole is proportional to its surface  area32. 
For a 2D particle, as considered here, the linear electric dipole moment is proportional to its area (number of 
atoms), while the second-order electric dipole is proportional to its  perimeter41. However, how does particle 
size affect higher order harmonics? Fig. 3e–h shows how the electric dipole moment of a triangular 2D particle 
changes with particle size. The magnitudes of the total dipole moments, P(1), P(2), P(3), P(4), at the first four har-
monic frequencies are shown for triangular particles with perimeter from 1.5 nm (3 atoms in total) to 9 nm (28 
atoms). We find that the total nonlinear electric dipole at odd harmonics is proportional to the total number of 
atoms (2D particle area), while the dipole at even harmonics is proportional to the particle’s perimeter. At the 
first three harmonic frequencies, x-polarized and y-polarized pump light induce dipole moments of the same 
magnitude, while at the fourth harmonic P(4)y,y = 4P

(4)
y,x.

Sum frequency generation in the triangular particle is consistent with harmonic generation. An x-polarized 
pump electric field at a combination of two different frequencies generates a nonlinear electric dipole moment 
along x for odd sum frequencies and along y for even sum frequencies, while a y-polarized pump field generates 
a nonlinear dipole moment along y only for all sum frequencies, where more and more sum frequencies are 
generated with increasing pump amplitude (Supplementary Fig. S4). For sum frequency generation resulting 
from cross-polarized pump fields of different frequencies see Supplementary Fig. S5. In this case, x-polarized 
electric dipole moments are generated at sum frequencies containing an odd multiple (1, 3, …) of the x-polarized 
pump frequency and generated y-polarized sum frequencies contain an even multiple (0, 2, …) of the x-polarized 
pump frequency.

Figure 3.  Harmonic generation in a nanoparticle of D3 symmetry. (a–d) Frequency-dependence of the electric 
dipole moment of a triangular particle pumped at frequency ωp. Components of the dipole moment (a, c) 
parallel and (b, d) orthogonal to the (a, b) x-polarized and (c, d) y-polarized pump field. Absence of curves in 
case (d) indicates cancellation of the electric dipole component at all frequencies. The inset shows the outline 
(blue line) and the 28 atoms (red crosses) of the triangular particle. Colourmaps show the distribution of the 
atomic dipole moments at the 2nd and 3rd harmonic frequencies, which are representative of even and odd 
harmonics. Colour represents the dipole magnitude and regions oscillating in anti-phase are indicated by 
opposite signs as in Fig. 2c. (e–h) Scaling of the particle’s dipole moment with its size at the first four harmonic 
frequencies. The particle’s electric dipole moment scales with its number of atoms (area) at odd harmonics and 
with its perimeter length at even harmonics.
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Multipole contributions to harmonic generation. While radiation normal to the plane of the 2D par-
ticle pumped at normal incidence is determined by its electric dipole moment, other  multipoles57 contribute to 
radiation in other directions.

The α-component of the particle’s net electric dipole moment is given by

where ρ(r) is the charge density as a function of position r . In our 2D case, only Px and Py are allowed and the 
radiated power is given by the following expression, where Z0 is the impedance of free space, c is the speed of 
light and k = ω/c

The α-component of the particle’s magnetic dipole moment is

where J is the current density and ṙi is the electron velocity. Here, only mz is allowed and the radiated power is

The α,β-component of the particle’s electric quadrupole is given by

where δα,β is the Kronecker delta. In our geometry, Qx,x , Qy,y and Qx,y = Qy,x are allowed and the radiated power 
is

Figure 4 shows the power radiated by different multipoles for the square and triangular particles, where 
the coordinate origin is placed at the centre of each particle. For the square particle, electric dipole radiation is 
emitted at odd harmonics and considerably weaker electric quadrupole radiation ( Qx,x , Qy,y ) is emitted at even 
harmonics, while magnetic dipole contributions are negligible, Fig. 4a. Therefore, only odd harmonics will be 
radiated along z. In other directions, all harmonics will be radiated, with even harmonics being several orders 
of magnitude weaker than odd harmonics of similar order. For the triangular particle, electric dipole radiation 
dominates at odd harmonics, while electric dipole and quadrupole radiation have a comparable magnitude at 
the second harmonic frequency, Fig. 4b,c.

The multipole contributions are also revealed by the polarization surface densities (electric dipole distribu-
tions) in Figs. 2c and 3a–d. For example, for both the square and triangular particles, the net quadrupole at even 
harmonics originates from electrons on opposite edges of the particle, that oscillate towards and away from each 
other (→ ←, ← →). The net magnetic dipole at the third harmonic frequency for x-polarized pumping of the 
triangular particle arises from anti-parallel electron oscillations (↑↓,↓↑), see Fig. 3b.

Discussion
The presented model describes the contribution of Coulomb interactions between different atoms to the nonlin-
ear response of dielectric nanostructures. To focus on the universal collective nonlinear response of any dielectric, 
we purposefully remove all possible atom-specific nonlinearities by describing atoms with the harmonic poten-
tial of a classical Lorentz oscillator model (and pumping far away from resonance). However, real atoms can be 
nonlinear. Considering the inversion symmetry of atoms in the ground-state, opposite directions of electron 
displacement yield opposite restoring forces. Therefore, the simplest approximation of a nonlinear atom would 
involve a symmetric anharmonic potential. Within this approximation, an individual atom can only have odd 
orders of optical response, i.e. contribute to 3rd, 5th, … order nonlinearity. With respect to the particle’s electric 
dipole, such atomic nonlinearity would contribute to the odd-order components that are parallel to the excita-
tion field. This atomic contribution to a particle’s odd order nonlinear dipole moment will be proportional to 
the particle’s number of atoms, just like the contribution from Coulomb interactions between atoms (Figs. 2d, 
3g). Therefore, the atomic nonlinearity will affect the magnitude of the particle’s odd order nonlinear electric 
dipole response parallel to the pump field, but not its qualitative behaviour. It has no bearing on the particle’s 
even order nonlinearity, which arises entirely from interactions between atoms.
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Conclusion
In summary, we have shown that harmonic and sum frequency generation in 2D dielectric nanostructures can 
be modelled in terms of harmonic oscillators (atoms) coupled by the Coulomb force. This approach allows 
modelling of large collections of atoms and mapping of the origin of harmonic and sum frequency generation 
in nanostructures. Odd order sum frequency generation has been found to originate from the whole structure 
with corresponding net electric dipole moments scaling with the number of atoms. Even order sum frequency 
generation has been traced to the boundaries of 2D nanostructures, with corresponding net electric dipole 
moments scaling with the structure’s perimeter. The model allows the design and optimization of nonlinear 
dielectric nanostructures for nanophotonics, such as structures and particles cut from 2D materials and dielec-
tric layers that are thin compared to the pump wavelength. 3D geometries may also be considered by solving 
Eq. (1) in three dimensions.

Data availability
Data from this paper is available from the University of Southampton ePrints research repository: https:// doi. 
org/ 10. 5258/ SOTON/ D1792.

Figure 4.  Power radiated by different multipoles at harmonics of the pump frequency ωp for particles of (a) D4 
and (b, c) D3 symmetry as a function of particle perimeter. Only the electric dipole (black) radiates along z.

https://doi.org/10.5258/SOTON/D1792
https://doi.org/10.5258/SOTON/D1792
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