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Foreword

Classical optics has been with us for some considerable time, yet the past decade
has produced a cornucopia of new research, often revealing unsuspected
phenomena hidden like nuggets of gold in the rich lode of optical materials. The
key has often been complexity. The range of optical properties available in
natural materials is limited, but by adding manmade structure to nature’s
offerings we can extend our reach, sometimes to achieve properties not seen
before. I pick one example from the many included in this volume: negative
refraction. Years ago it had been realised that a material with negative magnetic
and electric responses would also have a negative refractive index. There, the
idea languished for nearly half a century, lacking the naturally occurring
materials to realise the effect. However by internally structuring a medium on a
scale less than the relevant wavelength, it was proved possible to make a new
form of material, a ‘metamaterial,” which had the required negatively refracting
properties. This concept alone has given rise to thousands of papers. There are
other examples I could cite from the chapters in this book: exploitation of near-
field properties of nanoparticle arrays, photonic band gap waveguides, metallic
nanostructures for sensing proteins, and so on. All of these examples have in
common that man adds complexity to the offerings of nature.

In the face of these myriad advances, how are students or other new entrants
to the field to educate themselves in the new technology? This book provides the
answer, collecting together a definitive series of tutorials, each provided by an
expert in the field. It is published at a time when there are many such new
entrants and will be of great value.

J. B. Pendry
Imperial College London

XV



Preface

An increasingly large number of high- and low-tech technologies and devices
benefit from employing optics and photonics phenomena, the latter originally
being termed photon-based electronics. Progress in the research fields of optics
and photonics, which have both experienced continuously strong growth over the
last few decades, critically depends on the understanding and utilization of the
physical, chemical and structural properties of optical materials. The optical
materials used in traditional optics technology were macroscopically
homogeneous in that their scale of inhomogeneity was much less than the
wavelength. In more recent years, multiple breakthroughs have involved
inhomogeneous, composite, and multiphase materials, whose structures are either
photoinduced or determined by synthesis or fabrication. Examples include
holography, optics of scattering media, and metamaterials. These breakthroughs
make photonic materials inherently complex. The broad range of physical
phenomena underlying complex photonic media makes it difficult for scientists,
engineers, and students entering the field to navigate through the range of topics
and to understand clearly how they relate to each other.

The purpose of this book is to provide the necessary coverage and inspire the
reader’s curiosity about the fascinating subject of complex photonic media. All of
the tutorial chapters are designed to start with the basics and gradually move
toward discussion of more advanced topics. We thus envisage that students and
scholars with diverse backgrounds and levels of expertise will find this text
interesting and useful. The book can be used as a supplemental text in courses on
nanotechnology or optical materials, or a variety of other courses. It can also be
used as the main text in a more focused course aimed at fundamental properties
of scattering media and metamaterials. The anticipated level of preparation is
equivalent to advanced senior undergraduate level, beginning graduate level, or
higher. The book covers the topics in the following (rather loose) categorization:

Negative index materials (NIMs). One of the most exciting developments in
complex photonic media in recent years is the realization that the basic
parameters describing the electromagnetics of simple, isotropic media can take
simultaneously negative values. This leads to all kinds of interesting phenomena,
from a revised understanding of Snell’s law, to lenses that defeat the
conventional diffraction resolution limit. In “Negative Refraction” (Chapter 1),
Martin W. McCall and Graeme Dewar describe the basic theory and impetus for
negative refraction research. In “Optical Hyperspace: Negative Refractive Index

XVi



xviii Preface

and Subwavelength Imaging” (Chapter 2), Leonid V. Alekseyev, Zubin Jacob,
and Evgenii Narimanov explore nonmagnetic routes that exploit materials with
hyperbolic dispersion relations.

Magneto-optics. The term magneto-optics is used when the direction and
polarization state of light are controlled by the application of external magnetic
fields, offering opportunities for optical storage and isolation in optical systems.
In “Magneto-optics and the Kerr Effect with Ferromagnetic Materials” (Chapter
3), Allan D. Boardman and Neil King introduce the magneto-optics derived from
air-ferroelectric interfaces and glass/ferromagnetic film/air multilayer systems.
“Nonlinear Magneto-Optics” (Chapter 4) by Yutaka Kawabe gives emphasis to
the relationship between the tensors describing the nonlinearity and the
underlying crystal point group symmetry. In “Optical'Magnetism in Plasmonic
Metamaterials” (Chapter 5), Gennady Shvets and Yaroslav A. Urzhumov
describe some of the difficult challenges that lie ahead for achieving magnetic
activity at optical frequencies.

Chiral media and vortices. Light, being composed of unit spin photons, is
inherently chiral. However, chirality in optical systems can also be engaged at
structural and macroscopic electromagnetic levels. Structural chirality is covered
by Ian Hodgkinson and Levi Bourke in “Chiral Photonic Media” (Chapter 6),
which describes the multilayer matrix formalism for novel elliptically polarized
filters. When optical beams interfere, phase singularities occur; in “Optigal
- Vortices” (Chapter 7) Kevin O’Holleran, Mark R. Dennis, and Miles J. Padgett
describe some of the remarkable topological kunots and 3D twists that result.

Scattering in periodic and random media. Scattering of light is fundamental to
complex photonic media. Structures that are periodic are generally referred to as
photonic crystals. In “Photonic Crystals: From Fundamentals to Functional
Photonic Materials” (Chapter 8), Durga P. Aryal, Kosmas L. Tsakmakidis, and
Ortwin Hess describe how photonic bandstructure emerges in both 1- and 2D
structures, and how optical switching is achievable in inverse-opal structures.
When the material inhomogeneity is random, different methods must be
employed. In “Wave Interference and Modes in Random Media” (Chapter 9),
Azriel Z. Genack and Sheng Zhang describe photon transport in a medium in
terms of the interference of multiply scattered partial waves as well as by
considering the different spatial, spectral, and temporal characters of the
electromagnetic modes.

Photonic media with gain and lasing phenomena. Photonic media with gain
and lasing phenomena represents the generic class of active photonic media.
“Chaotic Behavior of Random Lasers” (Chapter 10) by Diederik Wiersma, Sushil
Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo,-and Stefano Lepri
examines the irreproducibility of experimental emission spectra and the change
of statistics at near threshold. “Lasing in Random Media” (Chapter 11) by Hui
Cao provides a detailed review of the concepts and advances in the field of
random lasers. ‘“Feedback in Random Lasers” (Chapter 12) by Mikhail A.



Preface Xix

Noginov emphasizes the significance of the strength of scattering and/or
feedback in determining the properties of random lasers. In “Optical
Metamaterials with Zero Loss and Plasmonic Nanolasers” (Chapter 13), Andrey
Sarychev discusses how nano-horseshoe inclusion in an active host medium
results in a plasmonic nanolaser.

Fundamentals. In “Resonance Energy Transfer: Theoretical Foundations and
Developing Applications” (Chapter 14), David L. Andrews explores how the
intricate interplay between quantum mechanical and electromagnetic medium
properties leads to schemes for energy fransfer and all-optical switching. In
“Optics of Nanostructured Materials from First Principle Theories” (Chapter 15)
Vladimir 1. Gavrilenko provides a tutorial on the microscopic modelling of
optical response functions using density functional theory and related
approaches.

Organic photonic materials. Materials whose nonlinear coefficients often
exceed their inorganic counterparts both in magnitude and response rate are
examined in “Organic Photonic Materials” (Chapter 16) by Larry R. Dalton,
Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbricht,
Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. These authors
explore organic optical material design in terms of critical structure/function
relationships. “Charge Transport and Optical Effects in Disordered Organic
Semiconductors” (Chapter 17) by Harry H. L. Kwok, You-Lin Wu, and Tai-Ping
Sun highlights how, as with regular semiconductors, charge transport can be
modified by doping in organic materials, which possess enhanced carrier
mobilities.

Holographic media. “Holography and Its Applications” (Chapter 18) by H. John
Caulfield and Chandra S. Vikram discusses holograms used as parts of complex
light-controlled or light-defined systems that manipulate the direction, spectrum,
polarization, or speed of pulse propagation of light in 2 medium.

Slow and fast light. Slow and fast light is an intriguing topic demystified by
Joseph E. Vornehm, Jr. and Robert W. Boyd in the final chapter “Slow and Fast
Light” (Chapter 19). The authors show how manipulation of the material
dispersion can lead to very slow, halted, or even backward propagating optical
pulses.

The conception of Tutorials in Complex Photonic Media lies in an effort to
consolidate the conference series, Complex Mediums: Light and Complexity, a
subconference of the annual SPIE Optics and Photonics meeting held over the
years 2003-2006". Incentive for this book was also largely compelled by

!'In 2003 the conference was titled Complex Mediums IV: Beyond Linear Isotropic Dielectrics; in
2006 it was titled Complex Photonic Media.



XX Preface

Introduction to Complex Mediums for Optics and Electromagnetics, edited by
Werner S. Weiglhofer and Akhlesh Lakhtakia, SPIE Press (2003), which is a
consolidation of the Complex Mediums conferences from 1999 to 2002. We have
taken special emphasis in this book to avoid the somewhat disjointed
presentation that often accompanies books based on conferences. To this end, all
of the chapters underwent round-robin reviews by several editors and coauthors
who were frequently not directly involved in the research area. Much “back and
forth” has hopefully ironed out the specialist’s tendency to dive headlong into
details that can only be appreciated once sufficient underpinning motivational
material has been presented. Another issue is notation. Eventually, we decided
that keeping a consistent notation throughout the book would be self-defeating,
as anyone entering a new area must, to a certain extent, be flexible to individual
authors’ preferences. Nevertheless, we went to some lengths to ensure that the
notation within each chapter is consistent.

The four editors who undertook this project have had a unique opportunity to
work with some of the leading specialists in the field. Of course, there have been
frustrations, but in the end, we hope that that this book presents a broad and
balanced summary that will lead many others to take up the exciting challenges
of working in complex photonic media. In the introduction to the predecessor
volume noted above, Akhlesh Lakhtakia wrote ‘I shall be delighted if a
companion volume were published after another two or three editions of this
conference.” Well, here it is.

Mikhail A. Noginov
Graeme Dewar
Martin W. McCall
Nikolay 1. Zheludev
September 2009
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List of Abbreviations

AFM atomic force microscopy
APC amorphous polycarbonate
APTE addition de photons par transfers d’énergie

ASE amplified spontaneous emission
ATR attenuated total reflection

BCOG  binary chromophore organic glass
BEC Bose-Einstein condensate

BER bit-error rate

BZ Brillouin zone

CCD charge-coupled device
CCW coupled-cavity waveguide
CDM correlated disorder model

CGH computer-generated hologram
CGS centimeter-gram-second

CP circularly polarized

CPO coherent population oscillation

CQED cavity QED

CROW  coupled-resonator optical waveguide
CT charge transfer

CVD chemical vapor deposition

DBP delay—bandwidth product

DFB distributed feedback

DFT density functional theory

DIOPC  double-inverse-opal PC

DOS density of states

DPCM  double phase-conjugate mirror

DSC differential scanning calorimetry

ECP effective core potential

EE electrostatic eigenvalue

EET electronic energy transfer

EFISH electric-field-induced second harmonic
EIT electromagnetically induced transparency
EM electromagnetic

EO electro-optic

fee face-center cubic

FEFD finite element frequency domain
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FRET fluorescence RET

FWHM  full width at half maximum
FWM four-wave mixing

GDM Gaussian disorder model

GEDE  generalized eigenvalue differential equation
GLC geometric LC

GMR gap-to-midgap ratio

GVD group velocity dispersion

hep hexagonal close-packed

HOE holographic optical element
HOMO  highest occupied molecular orbit
HRS hyper-Raleigh scattering

IR infrared

IVR intramolecular vibrational redistribution
JCM Jaynes-Cummings model

LAP laser-assisted poling

LCP left-circular polarization

LDA local density approximation
LED light-emitting diode

LF local field

LHM left-handed material

LO longitudinal optical

LUMO  lowest unoccupied molecular orbit
ME magneto-electric

MO magneto-optic

MOCVD metalorganic CVD

MPR magnetic plasmon resonance
MSHG  magnetization-induced SHG
MTHG  magnetization-induced THG
NA numerical aperture

NIM negative index material

NLO nonlinear optical

NPV negative phase velocity

OCRET optically controlled RET

OCT optical coherence tomography
OEO optical-electrical-optical

OLED organic light-emitting diode
OPD optical path length distance

OPO optical parameter oscillator

PC (PhC) photonic crystal

PEC perfect electric conductor

PFT power Fourier transform

PGB photonic band gap

PMT photomultiplier tubes

PWE plane wave expansion
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QED
QD
QP
QW
RCP
RET
RF
RIE
ms
RPA
SBS
SE
SEIRA
SEM
SFG
SERS
SHG
SLM
SOA
SP
SPD
SPOF
SPP
SPR
SR
SRS
SRR
TD-DFT
TE

TF
THG
TLS
™
uv
VCSEL
WDM
XC

quantum electrodynamics
quantum dot

quasi-particle

quantum well

right-circular polarization
resonance energy transfer
radiofrequency

reaction ion etching

root mean square
random-phase approximation
stimulated Brillouin scattering
stimulated emission
surface-enhanced IR absorption
scanning electron microscope
sum frequency generation
surface-enhanced Raman scattering
second-harmonic generation
spatial light modulator
semiconductor optical amplifier
surface plasmon

square of the polarizability derivative
strip pair-one film

spiral phase plate

surface plasmon resonance

slit ring

stimulated Raman scattering
split-ring resonator
time-dependent DFT

transverse electric
Thomas-Fermi

third-harmonic generation
two-level amplifying system
transverse magnetic

ultraviolet

vertical-cavity surface-emitting laser
wavelength division multipling
exchange and correlation
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