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Abstract: The power-flow lines of light interacting with a metallic
nanoparticle, in the proximity of its plasmon resonance, form whirlpool-like
nanoscale optical vortices. These vortices were independently observed
using analytical Mie theory and 3D finite element numerical modelling of
the Maxwell equations. Two different types of vortex have been detected.
The outward vortex first penetrates the particle near its centerline then, on
exiting the particle, the flow-lines turn away from the centerline and enter
a spiral trajectory. Outward vortices are seen for the wavelengths shorter
then the plasmon resonance. For the wavelengths longer that the plasmon
resonance the vortex is inward: the power-flow lines pass around the sides
of the particle before turning towards the centerline and entering the particle
to begin their spiral trajectory.
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The structures of optical fields around metallic nano-particles are of special interest due to their
role in nanophotonic and plasmonic devices and meta-waveguides [1, 2, 3]. Here we report that
light interacting with an absorbing metallic nanoparticle follows curly trajectories with cur-
vatures on the sub-wavelength scale, creating whirlpool-like nanoscale optical vortices. These
“energy sink” vortices with spiral energy flow line trajectories are seen in the proximity of the
nanoparticle’s plasmon resonance.

Optical vortices have been identified as features in scalar wavefront dislocations of
monochromatic light fields and modal lines corresponding to non-monochromatic light as well
as in singularities in the maps representing vectorial properties of light [4]. It is now recognized
that singularities are often features of fields near sub-wavelength structures. A vortex structure
in the streamlines of the Poynting vector has been detected for Sommerfeld’s edge diffraction
with discussion of the eel-like motion of light at the edge dating back to Newtonian times [5].
Recently vortices were found in light diffracted by narrow slits in silver and silicon [6, 7]. How-
ever, to the best of our knowledge, optical whirlpool have never been studied in ellipsoidal and
spherical metal nanoparticles.

We studied the interaction of light with homogeneous isotropic spherical nanoparticles us-
ing Mie theory and also solving the Maxwell equations numerically. The Mie theory [8] is an
exact analytical wave theory giving time-harmonic electromagnetic fields E and H at frequency
ω that satisfy the wave equations

�2E+ k2E = 0, �2H+ k2H = 0, (1)

where k2 = ω2εµ . The solutions to these equations are presented in the form of a series of
spherical Bessel functions inside the particle and spherical Hankel functions outside it (see
Appendix). The nanoparticle is assumed to have a dielectric coefficient ε and permittivity µ .
Mie theory gives exact solutions of the vector wave equation for the internal and scattered
fields of the particle and has generated a massive body of literature in which field patterns
for angle-dependant scattering, modes of excitation, and integral characteristics such as ab-
sorption and scattering cross-section have been calculated [9, 10]. The theory is still widely
used in nanophotonics, particularly in cases involving single metallic nanoparticles [11] and
nanoparticle waveguides [12]. It has been shown that light can bend near a nanoparticle [13],
however it has never been determined that the interaction of light with a nanoparticle can create
a nanoscale vortex field structure. Here we refer to vortices in the “trajectory” of light near
the nanoparticle as defined by the lines of powerflow, i.e. lines to which the Poynting vec-
tor P = [E×H] is tangential. In the vortex regime of propagation the lines of powerflow are
wound around the nanoparticle to create a nanoscale “whirlpool”, comparable in size to the par-
ticle itself, whereby light seems to pass through the particle several times over. The results for
nanospheres were obtained and visualized in the Mathworks Matlab environment by plotting
the streamlines A(t) = (x(t),y(t),z(t)) of the Pointing vector field computed by integrating the
differential equation: dA/dt = P(A), where t is length of the path [18].

We found that the vortex regime occurs in metallic (e.g. silver) nanoparticles in the vicinity
of the plasmon absorbtion resonance. We analyzed the field structure around a nanoparticle
excited by a plane electromagnetic wave. To illustrate the vortex structures graphically, we
plotted solutions in the plane of polarization of the incident light using powerflow lines and a

#8106 - $15.00 USD Received 15 July 2005; Revised 21 September 2005; Accepted 29 September 2005

(C) 2005 OSA 17 October 2005 / Vol. 13,  No. 21 / OPTICS EXPRESS  8373



color scale for the absolute value of the Poynting vector (reg = high, blue = low). In the field
maps presented below the incident light is polarized in the plane of the page and propagates
from left to right.

To relate the parameter field for our calculations to observable values we shall define the di-
mensionless scattering σs and absorbtion σa cross-sections of the nano-particle. In the Rayleigh
approximation, cross-sections for a particle much smaller than the wavelength are introduced
via the particle’s polarizability α and its geometrical cross-section S: σs = (k4/6π)|α |2/S and
σa = kIm(α )/S−σs, where k = 2π/λ is the wave vector, and polarizability is a function of the
particle’s shape and size [14].

We found that the existence of the vortex structure and the topography of the field maps
depend on the values of the real and imaginary parts of the particle’s complex dielectric coef-
ficient ε = ε ′ + iε ′′ (see Fig. 2). Here and below we assume non-magnetic nanoparticles with
µ = 1. Figures 2(a) and (b) show the modification of the field structure around a hypotheti-
cal nanoparticle for different values of ε ′′. In the case depicted in Fig. 2(a) the scattering and
absorption cross-sections are much smaller than the geometrical cross-section and the particle
is almost invisible to the external field (σa = 0.47, σs = 0.03). Most of the powerflow lines
pass by the nanoparticle and only handful of them terminate on the particle, indicating small
losses. In the case depicted in Fig. 2(b) the absorption cross-section approaches the plasmon
resonance (σa = 3.6, σs = 0.24). Many flow-lines terminate at the nanoparticle (entering it from
the front and the back, as in a similar case considered in [13]), indicating high losses. When
the absorbtion and scattering cross-sections increase even further the flow lines create vortex-
like structures around the nanoparticle. Figures 2(c) and (d) show such vortices around a silver
nanoparticle at wavelengths of 354 nm (where ε = −2.0 + i0.28, σa = 5.8 and σs = 1.8) and
367 nm (where ε = −2.71+ i0.25, σa = 4.1 and σs = 2.0). These latter two pictures represent
inward and outward vortices which lie in the plane of incident polarization. Our calculations
show that in this central cross-section, light in the vortex remains linearly polarized in the plane
of incidence. In the vortex regime the energy flow is dramatically disturbed in the vicinity of
the particle. For the outward vortex, energy flow lines inside the particle go along the direc-
tion of the incident wave and are nearly parallel to it. Outside the particle energy moves in the
opposite direction — the energy flow lines bend around the particle and re-enter it again. The
situation is reversed for the inward vortex. Here, the energy flow inside the particle is in the di-
rection opposite to the incident wave, while the energy flow outside the nanoparticle is mainly
in the direction of the incident wave. In the plane perpendicular to the plane of polarization the
powerflow lines exhibit no spiral features.

Figure 1 shows the parameter field where vortex structures can be observed. Two different
types of vortex have been seen. In the first type, which we call an outward vortex, a bunch of
powerflow lines first penetrate the particle near its centerline then, on exiting the particle, they
separate, turn away from the centerline and enter a spiral trajectory. Outward vortices are seen
to the “left” of the the plasmon resonance i.e. for ε ′ > −2.2 (in a spherical nanoparticle with
a radius of 20 nm the plasmon resonance occurs at ε ′ ∼ −2.2). In the second type of vortex,
which we call an inward vortex, the powerflow lines pass around the sides of the particle before
turning towards the centerline and entering the particle to begin their spiral trajectory. Outward
vortexes are seen to the “right” of the the plasmon resonance i.e. for ε ′ < −2.2.

Although Mie theory is well established and trusted, its results are presented in polynomial
form, bringing up the question of conversion. We therefore decided to verify the Mie theory
results by comparing them with numerical solutions of the Maxwell equations. To analyze the
vortex fields near spherical nanoparticles we used 64-bit software, developed by Comsol Inc.,
which implements a true 3D finite element method [16] and applies Perfectly Matched Layer
(PML) [17] boundary conditions on all sides of the computational domain. We found that the
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Fig. 1. Map showing values of the real and imaginary parts of the dielectric constant (in red)
at which vortex field structures appear. The dashed line at ε ′ ∼ −2.2 indicates the position
of the plasmon resonance in a spherical nanoparticle with r ≈ 20 nm (λ /r = 20). The solid
lines show the dispersion characteristics of the dielectric properties of silver.

analytical and numerical results correlated remarkably well, giving similar energy flow patterns.
Using the same numerical method we also found that vortex fields can exist near non-

spherical nano-objects. Non-spherical nanoparticles are of considerable interest for applica-
tions because flattened or elongated shapes tend to reduce the plasmon resonance frequency,
moving it from the blue-UV part of the spectrum to the more accessible visible-IR range. Mie
theory is unsuitable for objects without spherical symmetry but computational methods provide
an alternative to the analytical approaches and allow consideration of vortex fields around com-
plex nanostructures. We investigated numerically a homogeneous oblate spheroidal nanoparti-
cle with an aspect ratio of 2. Figure 3 shows the modification of the field structure around a
spheroidal nanoparticle for different values of ε ′′. Here again, one can see the weak interac-
tion regime in Fig. 3(a) (σa = 0.42, σs = 0.02), the high-loss regime in Fig. 3(b) (σa = 3.7,
σs = 0.3), the creation of outward vortexes in Fig. 3(c) (σa = 8.7, σs = 2.9), and the creation
of inward vortexes in Fig. 3(d) (σa = 2.9, σs = 1.3).

There are a number of intriguing questions that may be asked in relation to the nanoscale
structuring of the energy flow near and inside the nanoparticle. For instance, a vortex struc-
ture with light passing through a nanoparticle several times backwards and forwards, resembles
a standing wave in a dissipative Fabry-Perot resonator. One may therefore wonder if such a
“nano-resonator” could provide conditions for a hysteresis and bistability in the nanoparticle’s
optical response if its dielectric properties depend on the intensity of light. The experimental
observation of such hysteresis behavior would be clear evidence of the vortex energy flow. The
existence of vortex structures in nanoparticles could provide a graphical interpretation of the
fact that the absorbtion cross-section of a particle can be much bigger that its geometrical cross-
section. When a vortex is created, powerflow lines pass through the nanoparticle several times,
“multiplying” the light-matter interaction and generating the high energy losses associated with
the large optical cross-section. Accurate phase and group delay measurements of light interact-
ing with a nanoparticle near its plasmon resonance might provide further evidence for the long
interaction time and thus for the existence of a vortex structure on the particle. At the stage
of proofreading authors found a recent interesting publication devoted to complex patterns of
energy flux in the near-field region around a small particle and the observation of energy flow
“input windows” on the particle surface [19].

The authors would like to thank M. V. Berry for important comments and useful references
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Fig. 2. [Movie 2.5 MB, 10.5 MB version] Mie Theory: powerflow distribution around a
spherical nanoparticle with a radius of approximately 20 nm (λ /r = 20) in the plane con-
taining the directions of propagation (from left to right) and polarization of the incident
light. The colors indicate the absolute value of the Poynting vector, the white lines show the
direction of powerflow. (a) ε =−2.0+ i10.0, λ = 400 nm; (b) ε =−2.0+ i1.0, λ = 400 nm;
(c) ε = −2.0+ i0.28 — the dielectric coefficient of silver at λ = 354 nm. Red dashed lines
indicate outward vortex structure; (d) ε = −2.71 + i0.25 — the dielectric coefficient of
silver at λ = 367 nm. Red dashed lines indicate inward vortex structure [15].
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Fig. 3. 3D finite element modelling: powerflow distribution around an oblate spheroidal
nanoparticle (with a semi-major axial radius of approximately 20 nm (λ /r = 20) and an
aspect ratio of 2) in the plane containing the directions of propagation (from left to right)
and polarization of the incident light. The colors indicate the absolute value of the Poynting
vector, the white lines show the direction of powerflow. (a) ε =−3.52+ i10.0, λ = 400 nm;
(b) ε =−3.52+ i1.0, λ = 400 nm; (c) ε =−3.37+ i0.2 — the dielectric coefficient of silver
at λ = 380 nm. Red dashed lines indicate outward vortex structure; (d) ε = −4.0+ i0.2 —
the dielectric coefficient of silver at λ = 392 nm. Red dashed lines indicate inward vortex
structure [15].
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and K. F. MacDonald for discussions and assistance with manuscript preparation and also to
acknowledge the support of the Engineering and Physical Sciences Research Council (UK).

Appendix

Following [13] this Appendix shows the formulae used in the analytical Mie theory calculations
of the internal and scattered fields of the metallic sphere. These fields and the incident field are
presented in a spherical coordinate system with the polar axis directed along the incident light
wave.

Incident field (Ei = E0eikr cosθex):

Eir =
∞

∑
n=1

En

(
−icosφn(n+1)sinθπn(cosθ)

jn(kr)
kr

)
. (2)

Eiθ =
∞

∑
n=1

En

(
cosφπn(cosθ) jn(kr)− icosφτn(cosθ)

[kr jn(kr)]′

kr

)
. (3)

Eiφ =
∞

∑
n=1

En

(
−sinφτn(cosθ) jn(kr)+ isinφπn(cosθ)

[kr jn(kr)]′

kr

)
. (4)

Hir = − k
ω

∞

∑
n=1

En

(
isinφn(n+1)sinθπn(cosθ)

jn(kr)
kr

)
. (5)

Hiθ = − k
ω

∞

∑
n=1

En

(
−sinφπn(cosθ) jn(kr)+ isinφτn(cosθ)

[kr jn(kr)]′

kr

)
. (6)

Hiφ = − k
ω

∞

∑
n=1

En

(
−cosφτn(cosθ) jn(kr)+ icosφπn(cosθ)

[kr jn(kr)]′

kr

)
. (7)

Field inside the sphere:

E1r =
∞

∑
n=1

En

(
−idn cosφn(n+1)sinθπn(cosθ)

jn(k1r)
k1r

)
. (8)

Eiθ =
∞

∑
n=1

En

(
cn cosφπn(cosθ) jn(k1r)− idn cosφτn(cosθ)

[k1r jn(k1r)]′

k1r

)
. (9)

Eiφ =
∞

∑
n=1

En

(
−cn sinφτn(cosθ) jn(kr)+ idn sinφπn(cosθ)

[k1r jn(k1r)]′

k1r

)
. (10)

Hir = −k1

ω

∞

∑
n=1

En

(
icn sinφn(n+1)sinθπn(cosθ)

jn(k1r)
k1r

)
. (11)

Hiθ = −k1

ω

∞

∑
n=1

En

(
−dn sinφπn(cosθ) jn(kr)+ icn sinφτn(cosθ)

[k1r jn(k1r)]′

k1r

)
. (12)

Hiφ = −k1

ω

∞

∑
n=1

En

(
−dn cosφτn(cosθ) jn(kr)+ icn cosφπn(cosθ)

[k1r jn(k1r)]′

k1r

)
. (13)

Scattered field:

Esr =
∞

∑
n=1

En

(
ian cosφn(n+1)sinθπn(cosθ)

hn(kr)
kr

)
. (14)
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Eiθ =
∞

∑
n=1

En

(
−bn cosφπn(cosθ)hn(kr)+ ian cosφτn(cosθ)

[krhn(kr)]′

kr

)
. (15)

Eiφ =
∞

∑
n=1

En

(
bn sinφτn(cosθ)hn(kr)− ian sinφπn(cosθ)

[krhn(kr)]′

kr

)
. (16)

Hir =
k
ω

∞

∑
n=1

En

(
ibn sinφn(n+1)sinθπn(cosθ)

hn(kr)
kr

)
. (17)

Hiθ =
k
ω

∞

∑
n=1

En

(
−an sinφπn(cosθ)hn(kr)+ ibn sinφτn(cosθ)

[krhn(kr)]′

kr

)
. (18)

Hiφ =
k
ω

∞

∑
n=1

En

(
−an cosφτn(cosθ)hn(kr)+ ibn cosφπn(cosθ)

[krhn(kr)]′

kr

)
. (19)

Where

an =
m2 jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

m2 jn(mx)[xhn(x)]′ −hn(x)[mx jn(mx)]′
, (20)

bn =
jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

jn(mx)[xhn(x)]′ −hn(x)[mx jn(mx)]′
(21)

— coefficients inside the sphere.

cn =
jn(x)[xhn(x)]′ −hn(x)[x jn(x)]′

jn(mx)[xhn(x)]′ −hn(x)[mx jn(mx)]′
. (22)

dn =
m jn(x)[xhn(x)]′ −mhn(x)[x jn(x)]′

m2 jn(mx)[xhn(x)]′ −hn(x)[mx jn(mx)]′
. (23)

— the scattering coefficients.

En = E0in(2n+1)/n(n+1).
x = ka — size parameter, a — sphere radius, k — wavenumber of incident wave,

k1 = mk — wavenumber inside the sphere, m =
√

ε — relative refractive index, ε —
dielectric constant of the sphere, ω — frequency of incident wave.

jn(ρ) =
√ π

2ρ
Jn+1/2(ρ) — spherical Bessel function, Jn+1/2(ρ) — Bessel function.

hn(ρ) =
√ π

2ρ
Yn+1/2(ρ) — spherical Hankel function, Yn+1/2(ρ) — Hankel function.

πn =
P1

n

sinθ
, τn =

dP1
n

dθ
, P1

n — associated Legendre function.
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