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Abstract: The plasmon analog of the self-imaging Talbot effect is
described and theoretically analyzed. Rich plasmon carpets containing hot
spots are shown to be produced by a row of periodically-spaced surface
features. A row of holes drilled in a metal film and illuminated from the
back side is discussed as a realizable implementation of this concept.
Self-images of the row are produced, separated from the original one by
distances up to several hundreds of wavelengths in the examples under
consideration. The size of the image focal spots is close to half a wavelength
and the spot positions can be controlled by changing the incidence direction
of external illumination, suggesting the possibility of using this effect (and
its extension to non-periodic surface features) for far-field patterning and
for long-distance plasmon-based interconnects in plasmonic circuits, energy
transfer, and related phenomena.
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1. Introduction

An important aspect in the development of new branches of optics is the study of analogues of
classical optical phenomena. In the field of surface waves onmetals (surface plasmons) this ap-
proach has successfully met with engineered nanoscale features providing analogues of lenses
and mirrors for future plasmon-based devices [1, 2, 3]. Suchmanipulation of surface plasmons
is of much interest, both from a fundamental viewpoint [1] and from a view to applications
[2, 3]. In practice, it is more difficult to manipulate plasmon fields than their free-space coun-
terparts, as they are highly sensitive to metal surface imperfections on the scale of the skin depth
(∼ 15 nm); nevertheless, they have certain advantages, like their ability to concentrate the elec-
tromagnetic field near the surface, thus providing a route towards compact light waveguides
[4], or their capacity to unveil Raman emission from single molecules through enhancement of
the local field intensity by several orders of magnitude withrespect to the incident light [5].
Here, we describe and theoretically analyze the plasmon analogue to another well-known phe-
nomenon of classical optics, namely the self-imaging effect discovered by Talbot in 1836 [6]
while studying transmission gratings and arrays of holes perforated in metal films, and later
rediscovered and explained by Lord Rayleigh [7, 8]. The effect is best observed through the
formation of repeated monochromatic images of a grating at various characteristic distances of
the image plane with respect to the grating surface.

More precisely, a transversally periodic field, paraxiallypropagating,revives(self-images) to
its initial configuration after theTalbot distanceτ = 2a2/λ , wherea is the transverse period and
λ is the wavelength. In a simple analytical description, we represent the grating by a periodic
function given in Fourier series form,

f (x,0) = ∑
m

fm exp(i2πmx/a),

wherex is the direction of periodicity. The monochromatic wave function emanating from the
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grating towards they direction reduces then to

f (x,y) = ∑
m

fm exp(i2πmx/a) exp(i2πζmy/λ ), (1)

whereζm =
√

1− (mλ/a)2. The coefficients ofx andy in these exponential functions define
a vector of magnitude 2π/λ , the light momentum. In the paraxial approximation (λ ≪ a), the
binomial expansion

ζm/λ =
1
λ
− m2

τ
−

(

λ
a

)2 m4

4τ
−

(

λ
a

)4 m6

8τ
− . . . (2)

can be truncated at the term proportional tom2, equivalent to Fresnel diffraction. This yields

f (x,y) ≈ exp(i2πy/λ ) ∑
m

fm exp(i2πmx/a) exp(−i2πm2y/τ), (3)

from where we immediately deduce

f (x,τ) ≈ exp(i2πy/λ ) f (x,0), (4)

f (x,τ/2) ≈ exp(i2πy/λ ) f (x−a/2,0). (5)

The lengthτ = 2a2/λ is indeed the Talbot distance at which the initial field self-images (except
for an overall phase that is washed away when observing intensities), while another image is
formed atτ/2, laterally shifted by half a period and leading to an alternate definition of the
Talbot distance [9]. Wheny is a fraction ofτ, the field undergoesfractional revivals, which
in the ideal case are fractal at irrational values ofy/τ [9, 10, 11]. This exotic behavior is a
consequence of Gauss sums arising from paraxial propagation, which relies on the smallness
of the non-paraxiality parameterλ/a. In practice, this approximation stands only for a finite
number ofm’s in (1), but it can be sufficient to render well-defined focalspots, as we shall see
below for self-imaging of small features.

The Talbot effect has been studied in a variety of theoretical and experimental situations
[9, 10, 11, 12, 13]. This phenomenon has an analogue in Schrödinger evolution of quantum
mechanical wavepackets, the quantum and fractional revivals of which have been thoroughly
discussed [14, 15]. Although revivals are an exact consequence of quantum mechanics, they
only arise in optics under the paraxial approximation, and deviation from paraxiality destroys
the sensitive structure of the Talbot revivals [9]. However, non-paraxial propagation, which
only involves a finite number of propagating waves, exhibitssome good but approximate self-
imaging near the paraxial Talbot distance [16, 17].

Self-imaging is not exclusive of periodic objects. The Montgomery effect [18, 19] describes
for instance perfect image reconstruction of aperiodic objects made of incommensurate har-

monic components exp
[

i2π(m/
√

|m|)x/a
]

, leading to replacement of|m| for m2 in Eq. (3),

and obviously maintaining the property (4), but not (5). Recent work on a metal film perforated
by quasiperiodic hole arrays has also revealed concentration of transmitted light intensity in
hot spots at large distances from the film [20], suggesting possible extensions of the plasmon
Talbot effect to aperiodic distributions of surface features.

2. Self-focusing of plasmon carpets on metals: the plasmon Talbot effect

The analog of the Talbot effect using plasmons is illustrated in Fig. 1. A light plane wave is
incident from the back of a metal film, planar except for a periodic one-dimensional array of
nanoholes or other subwavelength structures, with perioda. Light is partly transmitted into
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Fig. 1. Illustration of the plasmon Talbot effect above a metal surface.Light is transmit-
ted through a one-dimensional array of nanoholes, setting up a Talbot carpet of interfering
plasmon waves. At approximately the Talbot distanceτ from the array, the propagating
plasmons revive, giving an array of plasmon focal spots. Plasmon revival at half that dis-
tance is also observed, with the foci displaced by half the period along the array direction.
The dependence of the field on heightzabove the metal is also shown, with the intensity of
thez component of the plasmons at fixed height superimposed. The carpet plotted is as for
Fig. 2(b).

plasmons on the exit side of the film, thus deploying a complexcarpet pattern. The field from
each of the nanoholes is modeled as a dipole, oscillating with a frequency corresponding to the
incident wavelengthλ0. This oscillation sets up surface plasmons, propagating into the plas-
monic far-field with wavelengthλSP = λ0/ℜ{

√

ε/(1+ ε)}, which depends on the particular
frequency-dependent dielectric functionε of the metal. We shall concentrate our description
on the situation most likely to find practical application, with small attenuation and|ε| ≫ 1,
implying that λSP ≈ λ0. We shall also concentrate on values of the periodicitya of similar
lengthscale to the plasmon wavelengthλSP. In our graphical illustrations, we model a silver
surface with incident wavelengthλ0 = 1.55µm, for whichε = −130.83+ i3.32 [21], giving
λSP= 1.544µm.

Our detailed analysis starts with the field due to an oscillating single dipole in they direction
at positionR0 infinitesimally close to the metal surface, incorporating direct propagation and
reflection. The electric field, made dimensionless through multiplication byλ 3

0 , reads [22]

Esingle(r) =
∫

d2Q exp[ik · (r −R0)] F(Q), (6)
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where

F(Q) =
iλ 2

0

Qkz
[êpkzky(1− rp)+ êskkx(1+ rs)] , (7)

k = 2π/λ0 is the free-space light momentum,Q = (kx,ky) is the projection of the wavevectork
into the plane of the metal,kz =

√

k2−Q2 is the component normal to that plane,{k̂, êp, ês} is
the natural orthonormal basis fork, defined aŝes = ẑ× k̂/|ẑ× k̂| andêp = ês× k̂, andrp = (εkz−
k′z)/(εkz+k′z) andrs = (kz−k′z)/(kz+k′z) are the appropriate Fresnel reflection coefficients for
TM (p) and TE (s) polarization, withk′z =

√

k2ε −Q2 [23]. The dominant component toEsingle

is Ez, and this is strongest on the metal plane forr −R0 in the direction of the dipole (the
y direction). Therefore, to maximize the observable effect,we choose to make the periodic
dipole array in thex direction, with the plasmons propagating iny.

The ideal plasmon Talbot field comes from an infinite sum of single dipole fields of the
form of Eq. (6), with positions atRn = (na,0,0). Using the Poisson sum formula [24],
∑nexp(ikxna) = (2π/a)∑mδ (kx − 2πm/a), the infinite sum can be rewritten as a Rayleigh
expansion,

Etotal(r) =
2π
a ∑

m
exp(i2πmx/a)

∫

dky exp(ikyy+ ikzz) F(Qm)

= ∑
m

exp(i2πmx/a) Fm(y,z), (8)

where in the first lineQm = (2πm/a,ky), andF(Q) is defined in Eq. (7). In the second line,
2π/a times the integral has been written as they- andz-dependent Fourier coefficientFm(y,z).
Numerical evaluation of this field, for the values of the parameters above and various choices
of a are shown in Fig. 2(a-c).

For a = λSP, the Talbot effect is not yet developed, although an interesting periodic pattern
appears that could be employed to imprint hight-quality 2D arrays. When we move to larger
spacing [a= 5λSP in Fig. 2(b)], clear evidence of self-imaging is observed, which is particularly
intense at half the Talbot distance. With even larger spacing [a = 20λSP in Fig. 2(c)] a fine
Talbot carpet is deployed, showing structures reminiscentof cusp caustics atτ andτ/2 [25].
The focal-spot intensities decrease with distance from thehole array due to plasmon attenuation
(≈ 1.26 mm for silver atλ0 = 1.55µm), to which image contrast is however insensitive at these
low-absorption levels.

The plasmon intensity in the vicinity of slightly less than half the paraxial Talbot distance
is shown in Fig. 3 for the same conditions as in Fig. 2(c). The plot on the left shows the field
intensity of a focal spot, with cross sectional intensitiesrepresented on the right. The lateral
width of the spot is≈ 0.5λSP, whereas its extension alongy is considerably larger. This type of
behavior is also observed for other values of the period and for spots at integer Talbot distances.
The width alongx varies from case to case, but it is always close to half a wavelength.

3. Analytical approach

It is possible to approximate the field of Eq. (8) analytically from the observation that the main
contribution to the integral overky, particularly in the plasmon far-field, comes from the pole of
therp reflection coefficient, in theQupper-half complex plane. After all, the plasmon dispersion
relation derives from that pole (i.e.,εkz+k′z = 0), so that the plasmon itself possesp symmetry.
This contribution may be approximated by the Cauchy integral theorem using therp plasmon
pole of wavenumberQSP = k

√

ε/(ε +1), corresponding to real plasmon wavelengthλSP =

2π/ℜ{QSP} [22]. The remainingz component of the wavevector iskz,SP =
√

k2−QSP
2 =
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Fig. 2. Plasmon Talbot carpets, numerically computed (a-c) from Eqs.(7)-(8) and analyti-
cally approximated (d) from Eqs. (7) and (9) for different choices of the lattice spacinga:
(a)a= λSP; (b) a= 5λSP; (c,d)a= 20λSP. The amplitude of theEz component of the plas-
mon field is plotted at a heightz= 0.5 µm over a silver surface for a free-space wavelength
λ0 = 1.55 µm, with λSP = 1.544µm the surface plasmon wavelength. Different scales
along horizontal and vertical directions are used in each plot: horizontaldouble arrows
show the perioda, while vertical arrows signal the paraxial Talbot distanceτ = 2a2/λSP
(long arrows) and half that distance (short arrows). The hole arrayis represented by circles
in the lower part of each plot. The incident light wavevector is alongz and its polarization
alongy (see axes in the center of the figure).
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Fig. 3. Shape of a plasmon focal spot near half the Talbot distance in Fig. 2(c). The contour
plot (left) shows a square of side 2λSP centered at(x,y) = (a/2,b), with a = 20λSP and
b= τ/2−5λSP= 395λSP. Plasmon intensities at cross sections of the spot are given on the
right along directions parallel (solid curve) and perpendicular (broken curve) with respect
to the hole array.

k/
√

1+ ε. The approximation of the integral by the pole residue is appropriate with a cutoff on
the Fourier sum in|m| ≤ N, whereN ≈ a/λSP. Form in this range, the approximation gives

Fm(y,z) ≈ 2λ0(2π)3ε2

a(ε +1)2(ε −1)
exp

(

ikz√
ε +1

)

exp(iQSPζmy)

(

−m
λ0

a

√
ε +1
ε

,
−ζm√

ε
, 1

)

, (9)

whereζm =
√

1− (2πm/aQSP)2. This analytical expression yields the same structure as Eq.
(1), and therefore the general explanation of the Talbot effect offered in Sec. 1 applies here
as well (assuming that the imaginary part ofQSP is small enough to be neglected), apart from
the extreme non-paraxiality of the regime under consideration. It should be noted that them
dependence ofFm is only in the vector and in the exponent ofy, and therefore, the Talbot carpet
is independent ofz in this plasmon-pole approximation, except for a global exponential decay
away from the surface.

The evaluation of Eq. (9) corresponding to the conditions ofFig. 2(c) is plotted in Fig. 2(d).
Clearly, the approximation yields excellent results, particularly in the plasmonic far-field. How-
ever, the finite cutoff in the Fourier sum implies that there is a finite resolution to all of the
interference features in the plasmon field, and hence a finitenumber of fractional revivals (and
obviously no fractal revivals), within a Talbot length.

The choices of the periodicitya ≤ 20λSP in Fig. 2 are in the non-paraxial regime. In Ref.
[9], a post-paraxial approximation to the classical Talboteffect was studied, in which Eq. (2)
was truncated at the term proportional tom4. The inclusion of this and later terms implies that
the field is no longer perfectly periodic, and that the distance in y at which the (imperfect)
self-imaging occurs is less thanτ (as in Fig. 2). However, as our simulations and analytic ap-
proximation demonstrate, good, if not perfect, Talbot focusing of plasmons should nevertheless
be possible in practice (similar effects have been noticed in free-space propagation [16, 17]).
The dependence on the period of the focal spot near(x,y) = (a/2,τ/2), calculated from Eq.
(8), is illustrated in Fig. 4, which shows a complex evolution of the spot positions, generally
belowy = τ/2. An interesting consequence of these results is that the position of the focal spot
can be controlled through small changes in wavelength.
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Fig. 4. Lattice-period dependence of the intensity near half the Talbot distance atx= a/2 –
in the paraxial Talbot effect [Eq. (3)] the focal spot occurs at exactly y= τ/2. The plasmon
intensity is represented alongy (vertical axis) as a function of lattice perioda at a height
z= 0.5 µm over a silver surface for a free-space wavelengthλ0 = 1.55 µm. The intensity
is normalized to the maximum within the plotted range ofy for each period.

For very large values of|ε|, electric dipoles parallel to the metal surface are quenched by
their image charges. Then, the transmission through the holes depicted in Fig. 1 relies on par-
allel magnetic dipoles (provided such dipoles can be induced, for instance under the condition
that the metal skin depth is small compared to the hole size [26]). Magnetic dipoles couple best
to plasmons propagating in they direction when they are oriented alongx. The above analy-
sis remains valid in that case, and in particular Eq. (9) is only corrected by a factor

√
ε +1

multiplying the right-hand side. Normal electric dipoles (‖ ẑ) are also relevant under these
conditions, induced byp-polarized light under oblique incidence. Again, Eq. (9) can be still
applied, amended by a factor

√
ε/ζm.

4. Discussion

Some degree of control over the position of the hot spots is possible when the incident light
direction has non-zero projection along the hole array direction x: the self-image is displaced
alongy from the Talbot distance and it is also laterally shifted along x, as shown both theo-
retically and experimentally in Ref. [12]. Under these conditions, the projection of the inci-
dent light momentum along the hole array,ki

x, enters Eq. (9) through an uninteresting overall
phase factor, but also through the coefficient of the exponential in y, QSPζm, which becomes
√

QSP
2− (2πm/a+ki

x)
2. In the paraxial approximation, one recovers self-imagingat the cor-

rected Talbot distanceτ × (ky,SP/QSP)
3, whereky,SP=

√

QSP
2− (ki

x)
2. Simultaneously, the re-

vival is shifted alongx a distancey ki
x/ky,SP that increases with separation from the array. Thus,

the position of the focal spots can be controlled through obliquity of the external illumination
in a setup as in Fig. 1. One should therefore be able to raster the plasmon focus with nanometer
accuracy for potential applications in nanolithography and biosensing.

Controllable plasmon focal spots can be particularly advantageous when combined with re-
cently developed adaptive ultrafast nano-optics [27], in which femtosecond laser pulses are
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shaped to achieve a desired objective, such as a time-controlled excursion of focal spots in the
setup of Fig. 1.

Superoscillating fields with sub-wavelength localization[28] should also be observed with
surface plasmon waves using appropriately designed diffraction gratings, as has been recently
observed in free-space fields generated by a quasi-crystal array of holes [20].

The analysis presented here can be straightforwardly extrapolated to other types of 2D light
waves, such as guided modes in (lossless) dielectric films, long-range surface exciton polaritons
[29], or surface modes in patterned perfect-conductor surfaces [30], with interference between
metal patterns and Talbot carpets possibly giving rise to unexpected effects in the finer details of
the surface modes. The Talbot effect is an attribute of waves, regardless their nature, so it must
occur in sound, in elastic waves, and in the more exotic scenario offered by electronic surface
states in clean surfaces like Au(111), involving wavelengths in the range of a few nanometers
at the Fermi level [31] (e.g., Talbot carpets could be produced in the vicinity of straight-line
steps periodically decorated with adhered nanoparticles).

5. Conclusion

We have described theoretically the surface plasmon analogue to the classical Talbot effect.
Our numerical calculation of the dominant normal componentagrees well with our analytic
approximation in the plasmon far-field. With weak plasmon attenuation, strong focusing of
plasmon waves is attainable, even in the non-paraxial regime that we have studied, and some
control over the position of this focusing is possible by oblique illumination of the incident
optical field.

The plasmonic Talbot effect suggests a straightforward andimplementable way of tightly
focusing plasmon waves on a metal surface. Despite the lack of perfect self-imaging imposed
by the diffraction limit, the focusing is strong enough to allow applications in sensing and
imaging. Other potential applications include optical interconnects based upon plasmon focal
spots aimed at plasmon waveguides. We have emphasized the simplest case in which the effect
should be strongest, namely the normal component of the fieldemanating from a periodic array
of holes on the metal surface. Extensions of the present workto the general case of arbitrary
distributions of holes could become an avenue to produce on-demand plasmon fields at far
distances from the holes.
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