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We show that the inclusion of nonlocality in the constitutive relations in photonic structures has
important repercussions in their eigenmode configuration and distribution. In the case of optical activity,
the primary manifestation of nonlocality, these features are traced to a photospin-orbit interaction
analogous to the electron spin-orbit interaction in asymmetric semiconducting compounds; its impact
can be assimilated to that of a magnetic field whose magnitude and direction follow that of the photon
quasimomentum, with implications in photospin transport and photospintronics.

DOI: 10.1103/PhysRevLett.97.193903 PACS numbers: 42.70.Qs, 33.55.Ad, 71.70.Ej

Photonic crystals are media in which the dielectric per-
mittivity is spatially modulated with a period in the range
of optical wavelengths. The electromagnetic (EM) mode
density distribution and configuration that such dielectrics
can sustain is then shaped [1] through the interplay of
Bragg and Mie resonances in photonic bands separated
by forbidden propagation gaps, analogous to the ones
obtained for the electronic band states in crystalline semi-
conducting compounds. As in the latter case, their charac-
teristics and degeneracies reflect the symmetries of the
point symmetry group of the underlying photonic lattice
and its constituents.

The current derivations of the EM eigenmode configu-
ration in photonic crystals have been conducted [1] on the
basis of the constitutive relation D � "0"E between the
electric displacement D and the electric field E and simi-
larly for the relation B � �0�H between the magnetic
induction B and magnetic field H, all taken together with
the corresponding field continuity conditions across inter-
faces of discontinuity of the dielectric permittivity " and
the magnetic permeability �. These relations imply local-
ity in the field-matter interaction, concomitant with the
assumption that the electric dipole coupling is the prevail-
ing one at the microscopic molecular level.

However, the neglect of nonlocality suppresses impor-
tant features of the field-matter interaction, such as optical
activity and spatial dispersion [2]. Such nonlocal effects
might seem to only weakly affect the magnitude of the
dielectric coefficient. However, their real impact is on
transverse features of the EM propagation modes [3],
such as gyrotropy, polarization state, and phase, allowing
for outstanding discrimination from the background.

In this Letter, we address the impact of nonlocality in
photonic crystals formed by optically active constituents.
To fix the ideas, such structures can in their simplest form
be obtained by three-dimensional arrays of optically active
spheres, two-dimensional ones of optically active rods, or
one-dimensional gratings of optically active layers. To the
extent that the EM polarization states can be interpreted as

photon spin states, we show that the breakdown of space
inversion symmetry and the presence of rotatory power
(gyrotropy), both inherent to optical activity [2,4], endow
the EM mode structure and configuration with distinctly
new features analogous to those imparted by the spin-orbit
coupling [5,6] on electronic band states in noncentrosym-
metric semiconducting compounds like GaAs or InSb.

The starting point in the analysis is the phenomenologi-
cal constitutive relations for optically active media [4],
 

D � "0�"E� �r�E�; (1a)

B � �0��H� �r�H�; (1b)

in which the nonlocal character is reflected by the presence
of the spatial derivative (rotation), being a consequence of
the EM induction. At the molecular level, these relations
are justified by their quantum-mechanical expressions [4]
for � and �, as derived by a perturbative approach with the
presence of, for example, a magnetic dipole coupling term
in the EM field-matter interaction. This is performed along
the same line of approach used to derive the expression for
the electric dipole susceptibility � � "� 1 in the local
(electric dipolar) approximation.

These constitutive relations are bound to some important
selection and sum rules; in particular, � and �, which in
the general case are third rank tensors, vanish in centro-
symmetric media and hence prohibit optical activity in
media belonging to point symmetry groups possessing
inversion symmetry. In isotropic media after isotropic
averaging [4], " and � behave as scalars and � and � as
pseudoscalars with � � �, which we for simplicity as-
sume in the following without loss of generality.

The quantum-mechanical expression for � � � for the
case of magnetic dipole coupling [4] in isotropic media of
molecular number density N is

 � �
2N
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2 ; (2)

where R0n� Im�h0j�̂jni 	 hnjm̂j0i
��e2=2me�Im�h0jr̂jni 	
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hnjL̂j0i
 is the gyrotropic strength, �̂ � �er̂ and m̂ �
��e=2me�r̂� p̂ � ��e=2me�L̂ are, respectively, the elec-
tric and magnetic dipole operators with p̂ � �i@r being
the linear momentum operator, and j0i and jni the elec-
tronic ground and excited states, respectively, with corre-
sponding transition frequency !n0. The coefficients R0n
satisfy [4] the Rosenfeld sum rule

P
nR0n � 0, being the

analogue of the Thomas-Reiche-Kuhn electric dipole os-
cillator strength sum rule

P
nf0n � 1 related to the electric

dipole susceptibility �.
From Eqs. (1) and (2), it is clear that � measures the

photoinduced modification of the orbital (angular) momen-
tum; through EM induction, this sets up a time varying
magnetic (electric) field which induces the additional elec-
tric (magnetic) moment related to the optical activity in
Eq. (1). This is analogous to the electronic spin-orbit
coupling energy in semiconducting compounds, being
also a (nonlocal) manifestation of the EM induction

 Hso �
e@

4m2
ec

2 �Ee � p̂� 	 �̂; (3)

where �̂ is the electronic spin operator and Ee � rV, with
V being the effective central field potential as experienced
by an electron in the periodic crystalline lattice. In drawing
this analogy and setting up correspondences between pho-
tonic and electronic processes, it is important to keep in
sight that we argue on the polarization in one case and on
the potential energy in the other.

By taking the electric field of the form E�r; t� �
Re�E! exp��i!t�
 and similarly for all other fields in
Maxwell’s equations r� E � �@B=@t and r�H �
@D=@t, one by inserting the constitutive relations (1) gets

 r�
E!

H!

� �
� K

E!

H!

� �
; (4)

where

 K �
1

�1� ��!2=c2�

"�!2=c2 i�0�!
�i"0"! ��!2=c2

� �
:

From Eq. (4), one then obtains the propagation equation

 r�r�
E!

H!

� �
��rK��

E!

H!

� �
�K2 E!

H!

� �
�0; (5)

subject to the transversality conditions r 	D � 0 and r 	
B � 0. With the coefficients "�r�, ��r�, ��r�, and ��r�
being spatially periodic functions over the photonic crystal
lattice, this differential matrix equation provides the eigen-
modes and eigenfrequencies of the electromagnetic field.
The solutions to Eq. (5) can be obtained either by a plane
wave expansion, which however has slow convergence, or
by the Korringa-Kohn-Rostoker Green’s function pertur-

bation technique, using an expansion in spherical harmon-
ics with much faster convergence [1].

For the latter case, one can perform a Bohren trans-
formation [7] in Eq. (4), with

 

E!

B!

� �
� A

Q�
Q�

� �
� AQ;

to diagonalize K or � � A�1KA with

 � �
�� 0
0 ��

� �
; A �

1 a�
a� 1

� �
;

where �� and a� are easily derived from Eq. (4) and
explicited in Ref. [7]. Equation (4) is then recast as

 A�1r� �AQ� � �Q; (6)

while the propagation Eq. (5) transforms to
 

r�r�Q� �r� �A�1rA�Q�

��A�1rA�Q�r��Q
 ��2Q � 0: (7)

For homogeneous and isotropic optically active media, Q�
for plane waves correspond to the left/right circularly
polarized (LCP/RCP) eigenmodes or the ‘‘photospin up/
down states,’’ respectively. One can actually recast the
terms inside the brackets in Eq. (7) in a form reminiscent
of Eq. (5) by inserting the expansion [8] R � �0I� � 	 �
for any 2� 2 matrix R, where I and � are the unity matrix
and the Pauli matrix vector � � ��1; �2; �3�, respectively.

Eqs. (4)–(7) are invariant under time reversal, reflecting
reciprocity [2], as the common ones for optically inactive
photonic crystals [1] to which they reduce when � � � �
0. However, in contrast to the optically inactive case, the
optically active photonic crystals lack invariance under
space inversion. We will now analyze some of the impli-
cations from these on the EM propagation modes, their
eigenfrequencies and eigenstates. We may proceed to sim-
plify Eqs. (5) and (7) by neglecting the magnetization [3],
with B � �0H. For this case Eq. (5) reduces to

 r�r� E! � �!=c�
2�"E! � �r� E!� � 0:

The periodicity of "�r� and ��r� over the lattice of the
photonic crystal is expressed by the translational symme-
tries "�r� ai� � "�r� and ��r� ai� � ��r�, where
ai; i � 1; 2; 3; are the elementary lattice vectors of the
photonic crystal. We can accordingly express the electric
permittivity and gyration coefficient in terms of their
Fourier series "�r� �

P
Q ~"�Q� exp�iQ 	 r� and ��r� �P

Q ~��Q� exp�iQ 	 r� over the reciprocal lattice space Q �P
ilibi spanned by the reciprocal lattice vectors bi such that

ai 	 bj � 2�	ij, and similar for the field E!�r� �P
QEnk�Q� exp�i�k�Q� 	 r
. This gives the eigenmode

equation

 

X
Q0
�k�Q0����k�Q0��Enk�Q0�
� i

!2
nk

c2

X
Q0

~��Q�Q0��k�Q0��Enk�Q0��
!2
nk

c2

X
Q0

~"�Q�Q0�Enk�Q0��0: (8)
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As pointed out in connection with Eqs. (1) and (2), � is a
measure of the coupling of the photospin state with the
opticalrotatory power, and its impact on the photonic band
states is analogous to the spin-orbit coupling [5,6] in the
case of electronic band states in centrosymmetric com-
pounds like GaAs or InSb. This correspondence in physical
origins also reverberates in the impact on the correspond-
ing eigenvalues and eigenmodes. As in the case of the
electron spin-orbit coupling in asymmetric compounds
[6], the modifications that the optical activity terms impart
on the eigenmodes of the photonic crystal can be assessed
by applying a perturbative approach. With the optical
activity term taken as the perturbation, the primary effect
of the breakdown of the space inversion term is the lifting
of the two-fold degeneracy of the mode eigenstates of the
underlying photonic structure if optical activity was absent,
this degeneracy lifting results in different eigenfunctions
for the left and right circular polarization modes or photo-
spin states.

The mode degeneracies in the underlying optically in-
active photonic structure are higher than two-fold and
reflect the space group symmetry of the photonic crystal
lattice; they are to a certain extent lifted in the presence of
optical gyrotropy. This additional degeneracy lifting, be-
sides the previous two-fold one, can be assessed by diago-
nalizing the optical activity perturbation within each
degenerate manifold; this procedure exactly parallels the
one used in evaluating the degeneracy splittings of the
energy band states in asymmetric semiconducting com-
pounds and the analysis of Refs. [5,6] can be transposed
to the present case as such.

We highlight this point for the case of an optically active
one-dimensional stratified grating with the dielectric per-
mittivity and gyration coefficient being periodic functions
along the z-axis, with "�z� a� � "�z� and ��z� a� �
��z�. In their Fourier expansions "�z� �

P
n~"n exp�inKz�

and ��z� �
P
n ~�n exp�inKz�, where K � 2�=a is the

magnitude of the reciprocal grating vector, we limit the
discussion to the dominant lowest order terms n � 0, �1,
adequately describing sinusoidally modulated photonic
crystals. The previously outlined diagonalization proce-
dure shows that the eigenmodes are circularly polarized
plane waves [8], and it is hence convenient to take the
electric field as E�r; t� � Re�e�E��z; t� � e�E��z; t�
, in
which e� � �ex � iey�=

���
2
p

are the LCP/RCP basis vec-
tors. The envelopes E��z; t� are expressed in terms of their
Fourier expansions as

 E��z; t� �
X1

m��1

~E�m exp�i�k� �mK�z� i!�t
;

where ~E�m is the Fourier coefficients of the circularly
polarized eigenmodes, to get the infinite chain of eigen-
mode equations

 q�m ~E�m�1 � d
�
m

~E�m � r�m ~E�m�1 � 0; (9)

for m � 0;�1;�2, . . ., in which the coefficients are

 

q�m � �!�=c�
2�~"�1 � ~��1�k� � �m� 1�K�
;

d�m � �!�=c�2�~"0 � ~�0�k� �mK�
 � �k� �mK�2;

r�m � �!�=c�2�~"�1 � ~��1�k� � �m� 1�K�
:

We may cut off the expansion at m � �M to yield a
system of 2M� 1 terms for each circular polarization
state. The requirement on the corresponding system deter-
minant of Eq. (9) to yield zero then gives the dispersion
relations !��k��, which are obtained analytically as poly-
nomial equations in !� and k�. In Fig. 1, we map these
dispersion relations for a photonic crystal, possessing ma-
terial parameters corresponding to those of optically active
quartz, together with the dispersion for an optically inac-
tive grating with otherwise same parameters, the later
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FIG. 1 (color online). The dispersion relations !��k�� of right
(blue/solid line) and !��k�� of left (red/dashed line) circularly
polarized modes propagating in an infinite periodic and optically
active medium. The limiting band diagram in the absence of
rotatory power is shown as dot-dashed curved lines. The insets
show enlargements of the (a) first- and (b) second-order band
gaps, in which the wave vector splitting of the circular polariza-
tion states is manifested as an asymmetry in the band diagram.
Parameter values were taken as those for crystalline quartz of
trigonal point symmetry group 32, which at a vacuum wave-
length of 633 nm possesses a refractive index of ~n0 � ~"1=2

0 �

1:54 and a rotatory power of 19:0 deg =mm, or ~�0K � 2:1�
10�4, with a spatial bottom-to-peak index modulation of 2:7�
10�5 (~"�1 � 1:0� 10�4) and ~��1 � ~�0=10. The grating period
was chosen as � � 206 nm, corresponding to a first-order Bragg
resonance at 633 nm vacuum wavelength. The wave vector
splitting of the second-order bandgap is k� � k� �
1:7� 10�4�=� � 26 cm�1. For visual clarity, inset (c) shows
the corresponding band diagram with parameters ~"�1 and ~�0

greatly exaggerated.
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possessing two-fold degeneracy. The splitting of the two-
fold degeneracy in the presence of optical activity is evi-
dent as is also its vanishing at k � 0. Even more striking is
the introduced asymmetry in the photonic band shape and
the shift of the photonic band gap from the Brillouin zone
border resulting from band anticrossing, as in detail illus-
trated in the right inset of Fig. 1, which shows the first-
order band gap in the positive direction of wave propaga-
tion. The opposite horizontal shift of the dispersion rela-
tions of opposite circular polarization states increases with
the value of the wave vector, as evident from Eq. (8) and
explicitly demonstrated in the left inset of Fig. 1, showing
the second-order band gap. This endows these gratings
with functionalities such as photospin splitting and filter-
ing. Referring for instance to inset (a) of Fig. 1 and the axis
convention therein, for a linearly polarized beam of fre-
quency close to the edge of the band gap, the RCP compo-
nent will be totally transmitted while the LCP component
is totally reflected. This configuration reverses by reversing
the beam propagation.

The photospin-orbit splitting of the eigenmodes in pho-
tonic crystals with optical activity present is analogous to
an effective Zeeman-like splitting [9] by a magnetic field
whose magnitude and direction follow those of the wave
vector. As can be inferred from Eq. (9) in the first Brillouin
zone, the displacement D! � "0�"E! � i�k� E!� has
the same functional form as the displacement [3] D! �
"0�"E! � i
Be � E!� in the presence of a static magnetic
field Be applied in the direction of the wave vector and of
magnitude Be � �k=
, with 
 being the Faraday rotation
coefficient of the material. However, in contrast to the true
Faraday effect in the presence of an external magnetic
field, which is nonreciprocal, the present one is reciprocal
as the equivalent magnetic field Be reverses direction with
the wave vector and clearly vanishes with k! 0, leading
to a zero photospin splitting at the center of the Brillouin
zone; this is consistent with the Onsager reciprocity
relations.

This exactly parallels the situation encountered in asym-
metric semiconducting compounds with spin-orbit interac-
tion included. Its effect on the electron spin dynamics there
is equivalent [10] to a Zeeman-like splitting by an effective
magnetic field whose magnitude and direction depend on
the electron band k-vector;, in particular, it also for this
case reverts with the later and vanishes at the center of the
Brillouin zone. This plays a key role in electron spin
orientation dynamics, transport and filtering, in particular,
such as in the D’Yakonov-Perel and Rashba [10] mecha-
nisms in spintronics, and the same considerations can be
transposed to photospin orientation and transport in pho-
tonic structures as well, with certain provisions for the

different statistics for photons (bosons) and electrons
(fermions).

In conclusion, we have in this Letter derived the eigen-
mode equations in photonic crystals formed with optically
active constituents and shown that the combined effect of
space inversion symmetry breakdown and gyrotropy there
has the same impact on the eigenmode structure and con-
figuration as in the spin-orbit coupling in electronic band
states in asymmetric semiconducting compounds, allowing
us to draw certain parallels between electron spin and
photospin transport in such periodic structures.

Photonic crystals with optically active components
embedded in an optically inactive dielectric can be made
with quartz as the optically active component in the form
of spheres, cylindrical rods or plane layers in three-
dimensional, two-dimensional, or one-dimensional arrays;
the embedding medium can be amorphous glass, a trans-
parent polymeric solid or liquid matrix; self-organized
arrays of such objects can now be envisaged. An even
more interesting case is that of chiral molecular complexes,
spheres or rods or layers arrayed in a throughout dielectric
solid or liquid. The latter case clearly is of relevance in
different situations in biophotonics where the polarization
state evolution and photospin transport in ordered molecu-
lar complexes can play an important role.

[1] S. G. Johnson and J. D. Joannopoulos, Photonic Crystals
(Kluwer, Boston, 2002); Photonic Crystals, edited by
K. Inoue and K. Ohtaka (Springer-Verlag, Berlin, 2004).

[2] R. Hornreich and S. Shtrikman, Phys. Rev. 171, 1065
(1968); V. M. Agranovich and V. L. Ginzburg, Usp. Fiz.
Nauk 77, 663 (1962) [Sov. Phys. Usp. 5, 675 (1963)].

[3] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski��,
Electrodynamics of Continuous Media (Butterworth-
Heinemann, Oxford, 1984), 2nd ed..

[4] E. U. Condon, Rev. Mod. Phys. 9, 432 (1937); W. J.
Kauzmann, J. E. Walter, and H. Eyring, Chem. Rev. 26,
339 (1940).

[5] G. Dresselhaus, Phys. Rev. 100, 580 (1955); J. M.
Luttinger, Phys. Rev. 102, 1030 (1956).

[6] C. Kittel, Quantum Theory of Solids (John Wiley & Sons,
New York, 1987), 2nd ed..

[7] C. F. Bohren, Chem. Phys. Lett. 29, 458 (1974); C. F.
Bohren, J. Chem. Phys. 62, 1566 (1975).

[8] C. Brosseau, Fundamentals of Polarized Light (John
Wiley & Sons, New York, 1998).

[9] F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 96, 063902
(2006).

[10] M. I. D’Yakonov and V. I. Perel, Zh. Eksp. Teor. Fiz. 60,
1954 (1971) [Sov. Phys. JETP 33, 1053 (1971)]; E. I.
Rashba, Usp. Fiz. Nauk 84, 557 (1964) [Sov. Phys. Usp.
7, 823 (1965)].

PRL 97, 193903 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 NOVEMBER 2006

193903-4


