
Research Article Vol. 30, No. 5 / 28 Feb 2022 / Optics Express 7162

Defect-induced nonlinearity in 2D nanoparticles
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Abstract: Optical nonlinearity depends on symmetry and symmetries vanish in the presence of
defects. Vacancy defects in centrosymmetric crystals and thin films are a well-known source of
even-order optical nonlinearity, e.g. causing second harmonic generation. The emerging ability
to manipulate defects in two-dimensional materials and nanoparticles provides an opportunity
for engineering of optical nonlinearity. Here, we demonstrate the effect of defects on the
nonlinear optical response of two-dimensional dielectric nanoparticles. Using a toy model, where
bound optical electrons of linear atoms are coupled by nonlinear Coulomb interactions, we
model defect-induced nonlinearity. We find that defects at particle edges contribute strongly to
even-order optical nonlinearity and that unique nonlinear signatures of different defect states
could provide the smallest conceivable QR-codes and extremely high density optical data storage,
in principle approaching 1 bit per atom.
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1. Introduction

Harmonic generation is of key importance for wavelength conversion of optical signals and optical
information processing. In the electric dipole approximation, media with an inversion center
cannot generate even order harmonics. However, defects can break the inversion center and enable
even order harmonic generation in centrosymmetric media. Harmonic generation as well as
wave mixing in nonlinear photonic crystals with defects have attracted attention [1–4] and defect-
enhanced second harmonic generation (SHG) has been observed in various materials, including
crystals [5,6], 2D materials [7], doped fibers [8], semiconductors [9], their superlattices [10,11] and
interfaces [12,13]. Recent advances in micromachining [14,15], nanoparticle decoration [16,17],
atomic healing [18], lateral heterostructures [19,20] and heterocrystals [21] have established
the feasibility of defect manipulation and postprocessing, which provides an opportunity for
the development of two-dimensional (2D) materials with engineered optical nonlinearity [22].
Second harmonic generation has been used for monitoring of defects engineering in transition
metal dichalcogenides [23] and controlling nonlinear properties through defect engineering
has been reported [24,25]. Effects of vacancy defect concentration on high-order harmonic
generation have also been investigated [26–28].

In this paper, we present a model of defect-induced harmonic generation in 2D dielectric
nanoparticles described as a lattice of linear oscillators coupled by Coulomb interactions. The
model shows how specific defects affect the particle’s even and odd order optical nonlinearities
(Fig. 1). Our results indicate that defects at particle edges have the largest influence on optical
nonlinearity. Different nonlinear optical responses of different defect arrangements indicate
that information could – in principle – be encoded in atomic defects and read optically, via
their harmonic generation signature. This would allow nanoparticles with defects to serve as
the smallest conceivable QR-codes. The fundamental information density limit of such optical
data storage would not be determined by diffraction, but rather by the spacing of atoms. We
illustrate this by showing that harmonic generation is controlled by the location of defects in a
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nanoparticle and by demonstrating harmonic-based recognition of nano-QR-codes representing
different characters. Such information could be written by AFM-based techniques and read by
scanning near-field optical microscopy techniques.

Fig. 1. Defect-induced optical nonlinearity. (a) Along the optical axis, as shown, a square
particle will only generate odd harmonics of the pump frequency ! p without polarization
change. The presence of defects enables even harmonic generation (b) without and (c) with
polarization change.

2. Results and discussion

2.1. Modelling defect-induced optical nonlinearity of 2D nanoparticles

In the confined geometry of a two-dimensional nanoparticle, the collective nonlinear response of
the atomic array can arise from Coulomb interactions [29,30]. We describe atoms as classical
Lorentz oscillators [31], consisting of one optical electron bound to one nucleus. For an individual
atom, the interaction between the electron with coordinate r(t) and its stationary nucleus at R is
described by a linear restoring force. The electromagnetic response of the single atom is strictly
linear and arises from a harmonic potential [29]. However, when an electric field is applied to a
particle of N atoms, the optical electrons start to oscillate and these oscillations are affected by
Coulomb interactions with other electrons and other cores, introducing a nonlinear term in the
equation of motion for each atom:
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where rk is the displacement of electron k in the particle;  is the damping frequency; q and m are
the electron charge and mass; and ! 0 is the angular resonance frequency of an isolated atomic
harmonic oscillator. The resonance angular frequency of a single atom ! 0 is set to 9.4� 1015 rad/s,
corresponding to a resonance at 200 nm wavelength in the UV band, and the damping frequency
is chosen as  = 0.01! 0 to approximate a typical atomic response in dielectrics (such as ITO,
TiOx and SiN). The spacing between atoms is chosen to be 0.5 nm. The pumping electric field
angular frequency is 0.19! 0, i.e. far from the atomic resonance, and corresponds to the 1064 nm
wavelength of an Nd:YAG laser. The pumping electric field magnitude (E0) is set to 8.68� 1010

V/m to explore physical trends and higher-order nonlinear optical effects in a regime, where they
are sufficiently large to make numerical errors of differential equation solvers irrelevant.

We consider the radiation generated along z by 2D structures in the xy-plane (nanoparticle
plane) in response to pumping along z, to mimic the structure’s nonlinear optical response along
the propagation direction for pumping at normal incidence. In this case, radiation generated by
the particle is determined only by its total (net) electric dipole moment. Higher multiples cannot
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contribute to the radiation along the z direction. The displacement of each optical electron in the
particle is calculated in the time domain by solving the coupled equations of motion [Eq. (1)].
We consider a square particle cut from a square lattice (main text) and a hexagonal particle cut
from a hexagonal lattice (Supplement 1), introducing defects by removing atoms at specific
positions in the lattice. The coupled system of differential equations is solved in Matlab starting
without optical electron displacement and allowing transitional effects to pass before analyzing
the oscillation of all electrons over 1000 periods of the driving field. The electric dipole moment
of each atom dk is the charge times the electron displacement. The sum of these dipoles over
all atoms, P=

Í
k dk, gives the total electric dipole moment P(t) of the nanostructure in the time

domain. The total electric dipole moment is separated into linear and nonlinear components, P¹1º,
P¹2º, P¹3º . . . , oscillating at the driving frequency ! p and its harmonics 2! p, 3! p . . . , through
Fourier transformation. In the presented Fourier series, the peak values are the dipole amplitudes
in Coulomb meters at harmonic frequencies.

2.2. Defect-induced nonlinearity in a square nanoparticle

Since radiation of even order harmonics along z is forbidden in structures with even-fold rotational
symmetry [32,33], one can easily identify the defect-induced nonlinearity of such structures at
even harmonics. Therefore, we first study a square particle with 25 atoms (D4 symmetry, with
square lattice) and then introduce one vacancy defect at three different positions. As examples,
we have chosen the possible types of edge defects – at a corner, middle or intermediate edge
position – which result in different symmetries of the particle. Figure 2(a) illustrates harmonic
generation in the square particle without defect. The frequency-dependence of the particle’s
total electric dipole moment P generated by electric pump field E0cos(! pt) is shown, where P� ,�
refers to the � -component of the dipole moment caused by a � -polarized pump field and � ,� is x
or y. As required by symmetry, x-polarized excitation generates a dipole only along x, while

Fig. 2. Harmonic generation in a square nanoparticle without and with defects. (a)-(d)
Frequency dependence of the electric dipole moment of a square particle (insert) with no
defect (a), and (b-d) one defect at three different locations, in response to optical pumping
at frequency ! p. P� ,� indicates the � -component of the particle’s electric dipole moment
caused by � -polarized pumping. Arrows indicate the magnitudes of Px,x, Py,y, Px,y and Py,x
at the second harmonic frequency.

https://doi.org/10.6084/m9.figshare.17185682
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y-polarized excitation generates a dipole only along y with the same magnitude. i.e. Px,x = Py,y,
while Px,y and Py,x are forbidden. As expected for a particle with even-fold rotational symmetry
[32,33], we observe only odd harmonics – P¹1º, P¹3º, P¹5º– which appear as peaks in Fig. 2(a).
However, when there is a vacancy defect in the particle, even harmonics can occur, as shown by
Fig. 2(b)-(d).

The defect position has a great influence on the particle’s nonlinear response. When the defect
occurs at a corner (Fig. 2(b)), x or y-polarized excitation generates dipole moments along both the
x and y directions, and we observe Px,x = Py,y and Px,y= Py,x. When the defect occurs in between
a corner and the middle of an edge (Fig. 2(c)), the four components Px,x, Py,y, Px,y and Py,x are all
allowed and different. For a defect in the middle of an edge (Fig. 2(d)), only Px,x, Py,y and one of
Px,y and Py,x are allowed.

Vacancy defects in a hexagonal particle with 19 atoms (D6 symmetry, with hexagonal lattice)
have also been studied and lead to even-order optical nonlinearity in a similar way, see Fig. S1 in
Supplement 1.

2.3. Influence of the defect position on harmonic generation

The importance of the defect position was revealed by Fig. 2. Here we investigate the dependence
of optical nonlinearity on the defect position systematically. Figure 3 shows the calculated
components of the total electric dipole moment P as a function of the position of a single defect.

Fig. 3. Total electric dipole moment P of a square nanoparticle as a function of the position
of a single vacancy defect. The amplitude at each atom position (black dot) represents the
total dipole moment of the particle when the atom is vacant. The top (bottom) row shows
the dipole component parallel (orthogonal) to the x-polarized pump. Stacked images for
different – either even or odd – harmonics show the same qualitative behaviour. (Py,y and
Px,y are obtained by 90° rotation of the color maps in the top and bottom rows, respectively.)

https://doi.org/10.6084/m9.figshare.17185682
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The top row shows the total electric dipole moment along the x-direction for x-polarized pumping,
Px,x at odd (left) and even (right) harmonic frequencies. At odd harmonic frequencies, Px,x is
of almost the same magnitude for all the 25 defect positions. In contrast, Px,x at even harmonic
frequencies depends strongly on the defect’s location, being strongest for defects on the left
and right edges and vanishing only for defects that do not break the y symmetry axis of the
nanoparticle. The bottom row shows the total dipole moment along the y-direction for x-polarized
pumping, Py,x at odd (left) and even (right) harmonic frequencies. At odd harmonics, defects
at corners induce the strongest dipole moment Py,x, while this component does not arise from
defects that maintain the horizontal or vertical mirror symmetry of the nanoparticle. In contrast,
for even harmonics the total electric dipole Py,x is strongest for defects at the top and bottom edges
and vanishes only for defects that do not break the nanoparticle’s x symmetry axis. Due to the
square particle’s symmetry with respect to x and y, the 25 possible single vacancy defect states
give rise to 9 distinguishable nonlinear signatures, corresponding to the 9 possible vacancies
within a quadrant of the particle, and the second harmonic total electric dipole components are
sufficient to distinguish them. Similar behavior is seen for hexagonal particles (see Fig. S2 in
Supplement 1).

2.4. Harmonic generation signatures of atomic defect patterns

Recent progress in 2D material fabrication demonstrates the feasibility of defect manipulation
and postprocessing techniques and SHG has already been used for monitoring defect engineering
in transition metal dichalcogenides [23]. Our model can instruct defect engineering. We argue
that 2D defect patterns could act as the smallest conceivable 2D barcodes, i.e. nano-QR-codes,
that could be read based on their nonlinear optical properties. Figure 4 shows the frequency
dependence of the total electric dipole moment of four defect patterns – “1, 2, 3, 4” – in a square
lattice in response to a pump field E0cos(! pt). We can identify each of them by looking into

Fig. 4. Nano-QR-codes. Harmonic generation in a square nanoparticle with different atomic
defect patterns. (a)-(d) Frequency dependence of the electric dipole moment of a square
particle (insert) with defect patterns (a) “1”, (b) “2”, (c) “3”, (d) “4” in response to optical
pumping at frequency ! p. P� ,� indicates the � -component of the particle’s electric dipole
moment caused by � -polarized pumping.

https://doi.org/10.6084/m9.figshare.17185682
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their second harmonic generation. Defect pattern “1” does not generate an overall electric dipole
moment at the second harmonic frequency (Fig. 4(a)), while for pattern “3” (Fig. 4(c)) only the
electric dipoles along x can be generated at the second harmonic frequency. Although all four
electric dipole components are allowed for defect patterns “2” and “4” (Fig. 4(b),(d)), components
of equal amplitudes Px,x = Py,y and Px,y= Py,x are only observed for pattern “4”. Thus, the relative
strength of the second harmonic total electric dipole components can be used to identify different
defect patterns. We note that other polarizations and harmonics could also be considered. In
general, both the number and position of defects affect a particle’s total electric dipole response.
Indeed, odd harmonic total electric dipole moments (Px,x, Py,y) scale with the number of atoms
[30], and could thus be used to reveal the number of occupied atom positions.

In principle, a square lattice containing N atom positions can have 2N different defect states.
Mirror symmetry with respect to x and y in Fig. 3 implies that up to four different defect states –
that are related by reflections with respect to x, y, or both – share the same nonlinear signature.
(Fewer in case of defect states that have one or more relevant mirror symmetries.) Therefore,
� 2N � 2 defect states of a particle with N atom positions may have distinguishable nonlinear
signatures. As 2N � 2 distinguishable states would be sufficient to store N� 2 bits of information,
this suggests that nonlinear detection of defect states could enable extremely high density optical
data storage, in principle approaching 1 bit per atom position.

3. Conclusion

In summary, we have shown that defects have a large influence on even harmonic generation by
2D nanostructures. Information could be encoded in atomic defects via defect engineering and
read by its harmonic generation signature. Such information could be written by AFM-based
techniques and read by scanning near-field optical microscopy techniques. We illustrate this by
showing that harmonic generation is controlled by the location of defects in square and hexagonal
particles and by demonstrating the harmonic-based recognition of nano-QR-codes representing
different characters.
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